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Abstract

The acid-fast stain is frequently used for laboratory diagnosis of tuberculosis. It is a labor

intensive task requiring thorough examination of extremely high-resolution images to pinpoint

the presence of the mycobacteria. This paper presents a machine learning assisted slide image

analysis tool with the aim of aiding histopathology professionals in the accurate diagnosis of

tuberculosis in patients through the analysis of microscopic imagery. The proposed tool

combines a digital whole slide image viewer with an online learning framework. We also

conducted a survey of different state-of-the-art online learning methods, and found that MIR

with pre-training has the best performance on the CIFAR-10 dataset.

Keywords: Histopathology, Online Learning, Tuberculosis, Acid-Fast Staining.
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1. Introduction

The acid-fast staining test of sputum sample smears to detect acid-fast bacilli (AFB) is a

commonly used method of diagnosing Tuberculosis (TB), recommended by WHO for its cost

efficiency [1-2]. However, the process of diagnosing a slide image is notoriously very time

consuming and labor intensive [2-3]. The traditional way of diagnosing TB through this method

uses the Ziehl-Neelsen (ZN) staining. After obtaining the stained sample, analysis is an

exhaustive task that requires skilled technicians to examine the slide under a microscope to

identify AFB.

While TB is preventable and curable, it still remains a major global health concern to this

day. The World Health Organization (WHO) stated that TB ranked as the second highest cause of

global mortality following the Coronavirus (COVID-19) in 2022, causing 1.3 million deaths. [5].

Despite COVID-19 disruptions to social events causing a large decrease in the number of

recorded TB cases globally, as the world recovers from the pandemic, TB cases have climbed

back to reach previous levels [1].

Several studies have been made on diagnosing TB via automated detection of AFB on

ZN stains. Earlier proposed methods use images captured with cameras over a microscope [6-7].

Ayas et al. used a SVM pixel classifier to segment AFBs, and Khutlang et al. proposed a random

forest method that uses decision trees to classify segments. More recently, digital whole slide

image (WSI) technology has gained popularity due to having increased fidelity in the captured

images [4]. There have been studies using convolutional neural network (CNN) models for
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analyzing WSIs [8-9], but there is a lack of publicly available data for the task of detecting AFB

in WSIs.

In this thesis, a tool is proposed with the aim of assisting histopathologists in analyzing

WSIs. First we will discuss the design and implementation of the proposed framework, the

frontend application and the technologies used, as well as the functionality of the backend server.

Due to the lack of publicly available labeled data, it is not feasible to train an image classification

model with traditional methods from scratch. Instead, we propose an online learning (OL)

framework that can incrementally learn from a constant stream of incoming data. We conduct a

survey of different state-of-the-art online learning techniques and present experiment results

comparing their effectiveness.
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2. Methods

Figure 1. Overview of the proposed framework design.

The proposed OL framework contains two parts, the frontend user interface application and the

backend OL model training and hosting server (Figure 1). The main purpose of the frontend

interface is to be a lightweight WSI viewer that supports a variety of different vendor formats,

with the capability to use a trained model to analyze WSIs. As the user provides labels for image

patches through the frontend application, the labeled data is sent to a backend server to perform

online learning. After training is complete, the server will distribute the updated model back to

the frontend application, improving future analysis results.

During the ZN staining process, the acid-fast nature of AFB allows it to resist coloration

from the blue dye, thus they remain a red color. A naive unsupervised algorithm to detect AFB is

to simply look for pixels with higher red value. The application contains an implementation of an

unsupervised clustering algorithm as a starting point before a model can be trained.
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2.1 Frontend Application

Digital slide images are most often saved as an Aperio format SVS file, a format which is

unsupported by most image viewers. The Aperio format is based on the TIFF format and utilizes

the tiled image capabilities in order to display very large images. However, other vendors may

use different formats. The OpenSlide library is designed to interface with a variety of different

vendor formats [12]. Utilizing OpenSlide for reading slide images, another software,

OpenSeadragon [13], is used to display the zoomable pyramid structured image.

Figure 2. Slide file selection screen.
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Upon starting the application, the user will be met with a message to select a slide image

file to start (Figure 2). Clicking the “Select SVS Files” button will open a file selection dialog

box.

Figure 3. Slide file selection screen after multiple queued slide analysis.

When a slide is opened, the user can choose to analyze the slide with the provided model.

Currently, large images at about 3 GB in size can take from 30 minutes to an hour to complete

analysis depending on hardware. Because the operation on large WSIs can take a long time to

finish, a queue is implemented such that the user can select and queue up multiple slide images,

and the application will perform analysis for all of them in sequence (Figure 3). If a trained
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model is provided, the application will prioritize analysis using the model, otherwise, the

unsupervised clustering algorithm will be used.

Figure 4.WSI viewer with analysis results.

After analysis, patches with high probabilities of containing AFB are presented to the

user to make a decision (Figure 4). After a decision is made, the user labels the patch and the

patch image along with the label is uploaded to the backend server .1

1 Discussions with medical professionals suggest that directly sending segmented slide patch images with decision labels and no other metadata should not violate

any patient privacy laws, as there is no identifying information. Additionally, it is not possible to extract any original training data from the trained AI model.

However, hospitals should notify patients and ask for permission before using samples taken from them in training AI models. It is recommended to check with

HIPAA and other related laws and regulations.
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2.2 Server Backend

The backend server is written in Python, it can receive patch images along with a label when a

histopathologist using the frontend application makes decisions about a slide. Multiple users of

the frontend application are supported. When labeled data is received, the server will temporarily

store it and use it to train the model using an OL method implemented through PyTorch. After

training, the updated model will be saved, and future uses of the frontend application will receive

the updated model.
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3. Online Learning

Online learning techniques can keep updating and improving a model’s performance by

incrementally learning from new data as it becomes available, without needing to be retrained

from scratch. The key differences between OL and traditional offline training lie in the

assumptions that can be made about training data. In offline machine training, it is generally

assumed that we have an acceptably sized dataset, the data is independent and identically

distributed (IID), and the learner is allowed to learn through multiple passes of the entire training

dataset. However, in OL, these assumptions cannot be made. Data may arrive intermittently

through a continuous stream, it will likely not be IID, and aside from a limited memory buffer,

the learner can only make one single pass through the arriving training data [14]. These harsh

restrictions on the training data is one of the challenges of OL.

Since OL does not keep all of the training data, it is less computationally expensive

compared to offline training, as well as having much less memory demands for large datasets.

For potentially sensitive data, discarding old data after training is good for data privacy.

Additionally, OL methods are designed to be able to generalize concepts better than traditional

machine learning methods [10]. This opens up the possibility of future research in lifelong online

learning where a model learns many different slide analysis tasks.

A major challenge in OL is the phenomenon coined Catastrophic Interference, the

tendency of a model to lose previously learned information as it is trained with new information

[15]. Many algorithms have been developed to combat this problem. We researched different
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baseline and state-of-the-art OL methods and their performance on the CIFAR-10 dataset in

different situations with modifications on the data.

3.1 Related works

Learning without Forgetting (LwF) - LwF [16] is a non memory based method that combines

fine tuning with knowledge distillation [17]. After the model learns some information, it is used

as a “teacher” model which will supervise the next iteration of the model as a “student” model as

it learns new information.

Incremental Classifier and Representation Learning (iCaRL) - iCaRL [8] attempts to

learn the representations of classes. Using knowledge distillation to combat catastrophic

interference, it uses the memory buffer to hold samples and trains a CNN feature extractor to

classify images using the nearest class mean of each class.

Experience Replay (ER) - ER [19] is replay based method. It uses reservoir sampling [20]

to ensure that the probability of each sample from the data stream to be stored in the memory

buffer is equal, and trains the model on incoming data as well as randomly retrieved old samples

from the memory buffer.

Maximally Inferred Retrieval (MIR) - MIR [21] is an extension of ER, instead of

randomly retrieving samples from the memory buffer, it instead determines which samples to

store and replay by determining the loss increase after estimating the parameter updates of the

model.
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Greedy Sampler and Dumb Learner (GDumb) - GDumb [22] greedily pulls samples from

the data stream into the memory buffer, keeping a balanced distribution between all classes.

Whenever a prediction is requested it trains a new model at using the samples stored in the

memory buffer. Effectively, GDumb performs offline training over stored samples from a data

stream.

3.2 Experiments

3.2.1 Experimental Results

We show the potential applications of different online learning methods to the AFB detection

problem, using general image datasets. To assess the online learning performance, we trained the

ResNet-18 [23] model, one of the most popular deep learning models, using several different

state-of-the-art online learning techniques. Due to the lack of publicly accessible labeled AFB

slide image datasets, we performed the training and evaluation using the CIFAR-10 [24] image

dataset.

We conducted the experiments with five settings: (1) Training through the entire dataset

as a continuous stream. (2) Training on only a subset of the total dataset as a continuous stream.

Training is stopped at 10%, 25%, 50%, and 75% of the total dataset and the resulting model

evaluated. (3) Pre-training an initial model on 25% of the dataset with offline training, then using

another 25% of the dataset as a continuous stream. (4) Incrementally adding noise into the
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training images as the stream goes on. (5) Incrementally blurring the images as the stream goes

on.

In the first test, we train each method over a data stream containing the entire dataset,

compared with offline training for 20 epochs, which will be the baseline upper bound for the first

three tests. Results are the average across 5 runs of each test. Memory buffer size on memory

based methods is 5000 samples.

Table 1. Results after training from the entire CIFAR-10 dataset.

Method Accuracy (over 5 runs)

Offline (20 epochs) 0.736 ± 0.009

LwF (Li. et al, 2017) 0.583 ± 0.025

iCaRL (Rebuffi. et al, 2017) 0.604 ± 0.016

ER (Rolnick. et al, 2019) 0.599 ± 0.051

MIR (Aljundi. et al, 2019) 0.641 ± 0.051

GDumb (Prabhu. et al, 2020) 0.601 ± 0.013

At the beginning of training, only very few samples of labeled data may exist. It is

important for the model to quickly learn from a limited number of samples. Test two measures

model performances as the number of samples increases in continuous batches.
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Table 2. Results after training on only a subset of the data.

Method 10% of data 25% of data 50% of data 75% of data

Offline (20 epochs) 0.522 ± 0.045 0.631 ± 0.015 0.677 ± 0.007 0.715 ± 0.004

LwF 0.276 ± 0.028 0.334 ± 0.065 0.448 ± 0.049 0.508 ± 0.024

iCaRL 0.338 ± 0.019 0.396 ± 0.028 0.491 ± 0.015 0.546 ± 0.032

ER 0.285 ± 0.055 0.417 ± 0.02 0.485 ± 0.064 0.527 ± 0.109

MIR 0.303 ± 0.025 0.422 ± 0.013 0.518 ± 0.031 0.591 ± 0.048

GDumb 0.601 ± 0.007 0.6 ± 0.01 0.583 ± 0.035 0.603 ± 0.008

Figure 5. Results after training on different amounts of data.

If some labeled data already exists, then it is possible to use offline training to pre-train a

model, then use OL on future data using the pre-trained weights. Test three shows how each
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method performs starting with a model trained on 25% of the dataset using offline learning, then

on another 25% of the dataset using the respective OL method.

Table 3. Results using pre-training.

Method Accuracy (over 5 runs)

Offline (50% data) 0.677 ± 0.007

LwF 0.683 ± 0.012

iCaRL 0.689 ± 0.008

ER 0.674 ± 0.018

MIR 0.678 ± 0.019

GDumb 0.661 ± 0.007

Considering the offline training accuracy over 50% of data after 20 epochs was 0.677, the

pre-training test results are very impressive. All of the OL methods achieve similar to or even

exceeding offline accuracy with pre-training. GDumb suffers in this test due to not being

designed to take advantage of previous knowledge in the form of model weights. Inversely, LwF

and iCaRL perform better in this test compared to tests without any pre-training, since these

methods use regularization terms to preserve old weights better.
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Figure 6. Results using pre-training.

If the staining method is not perfectly consistent, samples may be stained with varying

quality. Tests four and five measures how methods perform as the data degrades from varying

degrees of noise and blurriness respectively.

Figure 7. Incrementally adding noise to data.
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Table 4. Results after training with incrementing amounts of gaussian noise to data.

Method
10%
data

20%
data

30%
data

40%
data

50%
data

60%
data

70%
data

80%
data

90%
data

LwF 0.2624 0.3346 0.3621 0.4008 0.4133 0.4146 0.4170 0.4025 0.3870

ER 0.3069 0.2788 0.4348 0.4286 0.4200 0.5110 0.5531 0.5430 0.5516

MIR 0.2589 0.3133 0.3690 0.4340 0.4726 0.5216 0.5146 0.5444 0.4923

iCaRL 0.2725 0.2940 0.3920 0.4170 0.4918 0.5020 0.5290 0.5339 0.4804

GDumb 0.4471 0.4460 0.4355 0.4440 0.4388 0.4171 0.4293 0.3943 0.4300

Figure 8. Incrementally adding blur to data

Table 5. Results after training with incrementing amounts of gaussian blur to data.

Method
10%
data

20%
data

30%
data

40%
data

50%
data

60%
data

70%
data

80%
data

90%
data

LwF 0.1566 0.1759 0.1823 0.1911 0.1793 0.1816 0.1820 0.1770 0.1700

ER 0.1549 0.1636 0.1869 0.2194 0.2067 0.2011 0.2076 0.2252 0.1883

MIR 0.1687 0.1782 0.1464 0.2018 0.2021 0.2218 0.2149 0.2254 0.2260

iCaRL 0.1428 0.1428 0.1095 0.1568 0.1633 0.1868 0.1864 0.1857 0.1904

GDumb 0.2103 0.2322 0.2239 0.2312 0.2311 0.2287 0.2315 0.2338 0.2237
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Figure 9. Results after incrementally adding noise and blur to the data stream.

In the data degradation tests, MIR performed most consistently well, and is a competitive

and versatile method. ER has a similar trend but is generally worse than MIR due to its random

retrieval method. However, ER is computationally more efficient than MIR. It is notable that

blurring the image destroys identifying features much faster than adding noise, thus the accuracy

of every model was significantly lower for each OL method, and some even regressed as it

trained on blurry samples. To prevent this regression in accuracy, a simple solution would be to

roll back to the previous model state if the accuracy decreases.

In these tests, LwF performs worse than the memory based methods with a 5000 sample

memory buffer size. If memory constraints are tight and fewer samples can be stored by the

memory based methods, LwF may perform more favorably by comparison.

While the results for GDumb are impressive, due to the method needing to retrain a new

model at each inference point, it is very computationally inefficient. Another pitfall of GDumb is

its greedy sample grabbing strategy, which prevents it from being able to continue improving
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after the memory buffer becomes full. In all of the tests, GDumb performs consistently with

itself, with no noticeable improvement as more samples are made available, while other methods

show increasing accuracy as they learn more data.
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4. Conclusion

This study has presented a novel application designed to provide AI assistance to

histopathologists in analyzing WSIs for detection of AFB. Utilizing OL methods to train models,

Histolearn has the potential to incrementally improve its diagnostic model as new data becomes

available through continued use. This capability addresses the challenge of the lack of publicly

available labeled data at the outset.

Our evaluation of various OL methods under different conditions shows their

applicability to potential real-world scenarios. It was demonstrated that while LwF offers

benefits in memory-constrained environments, it fails to match the accuracy of memory-based

methods. Conversely, while GDumb provides a surprisingly effective baseline in accuracy, it is

computationally inefficient and is unable to improve past the allocated memory buffer bounds

due to its data sampling strategy. Based on these findings, MIR shows the most promise as a

highly competitive and versatile OL method.

4.1 Future works

Due to the lack of data, we have not evaluated the performance of the proposed framework on

real AFB slide images. Future work can be directed at obtaining a sufficiently large set of labeled

images. With the dataset, further testing can be performed on the effectiveness of pre-training.
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To improve the effectiveness of learning on few labeled data, the OL framework may be

modified with an active learning query method. Instead of presenting the user with patches that

are most likely to contain AFB, the active learning query method will prompt the user to instead

provide labels on the most uncertain patches, or the most informative patches based on estimated

parameter updates.

OL methods tend to be able to generalize to multiple concepts well, another possible

direction of future research is to utilize the proposed framework and extend the model prediction

capabilities to beyond the detection of AFB, and transfer the knowledge to predicting other

diseases.
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