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Abstract 

Floods are one of the most frequent and most devastating natural disasters, which cause 

widespread destruction and pose significant risks to human life, infrastructure, and the 

environment. Advancement in remote sensing technologies and methodologies have 

demonstrated their efficacy in disaster-related applications, such as the detection, monitoring, 

and analysis of floods. This study explores the utilization of Synthetic Aperture Radar (SAR) and 

optical imagery for flood extent mapping and studying the extent of flood over various land 

cover and land use classes in Pakistan's Sindh province, utilizing the cloud computing power of 

Google Earth Engine. The change detection method identified extensive flooding in Sindh 

province, covering an area of 25,229 km2 in August and 19,181 km2 in the first 19 days of 

September 2022. The Land Use/Land Cover dataset was developed for the pre-flood period. The 

study highlighted the effectiveness of Random Forest classification in distinguishing Land 

Use/Land Cover (LULC) types more accurately than K-means clustering. Additionally, the 

analysis provided insights into the spatial distribution of flood extent and vulnerability of land 

use/land cover classes such as urban areas, agricultural areas, and sparse natural vegetation as 

significant areas remained inundated in the province. 
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Chapter 1 - Introduction 

1.1 Research Background 

Climate change has significantly increased the severity and frequency of natural disasters 

worldwide, intensifying the risks associated with extreme weather events such as floods 

(Khokhar et al., 2021; Otto et al., 2023). Key climatic factors influencing flood risks such as 

atmospheric temperature, precipitation, humidity, and air circulation, have been altered, leading 

to more frequent and severe flooding events (Meresa et al., 2022). This trend is expected to 

continue, with a particular increase in high-magnitude floods. Notably, the impact of these 

changes varies by region (Hirabayashi et al., 2021; Meresa et al., 2022). Countries like Pakistan 

are particularly vulnerable, where heightened flood risks exacerbate existing challenges and 

compound the threats posed by global warming and climate-related disasters. 

Despite contributing less than 1% to global greenhouse gas emissions, Pakistan is 

disproportionately affected by climate change and extreme weather events (Shehzad, 2023; 

Waqas, 2022; Waseem & Rana, 2023). Pakistan is ranked among the top eight countries most 

vulnerable to climate change impacts according to the Global Climate Risk Index by German 

Watch (Ali, 2013). Pakistan has been a victim of severe floods throughout history and faces an 

extreme flood almost every three years, recording up to 21 extreme floods between 1950 and 

2019. These incidents have intensified recently, with more frequent droughts, extreme 

temperatures, heavy precipitation, and accelerated glacial melts. The nation's susceptibility to 

climate-induced events is compounded by its diverse topography and geographical 

characteristics, and the damaging impacts of such events are exacerbated by human interventions 

such as urbanization, and population growth (Kazi, 2014). The region's rising temperatures have 
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increased glacial melts during the summer, leading to excessive runoff into lowland areas and 

heightening the likelihood of flooding events. Heavy precipitation during the monsoon 

exacerbates the floods. The recent floods in 2010 and 2022 are stark examples of such extreme 

floods. The Flood of 2010 was considered the most devastating flood before 2022. The 

frequency and magnitude of the floods have been on the rise, underscoring the growing impact of 

extreme weather conditions in the region (Gupta et al., 2022; Yuan et al., 2023).  

Pakistan exhibits varied topography and distinct climatic characteristics, encompassing the 

mountainous northern region, hilly and sloping areas, and low-lying plains. This diversity 

includes prominent features such as the Himalayan and Karakoram Mountain ranges, the 

Balochistan plateau, and the Indus River plains. River Indus is the major river in the region, the 

majority of which lies within Pakistan (Kazi, 2014). Such varied landscapes further influence the 

distribution and impact of floods across the country. The process of orographic lifting in 

mountainous areas plays a crucial role in generating the extreme precipitation characteristic of 

monsoon seasons (Houze et al., 2011; Yuan et al., 2023). Floods in Pakistan stem from various 

factors beyond heavy precipitation. Pakistan experiences a monsoon season from July to 

September, characterized by substantial rainfall. Melting glaciers in the northern regions, 

including the Himalayas and Karakoram Range, contribute to the swelling of the Indus River and 

its tributaries as well as major water bodies within the region during the pre-flood summer 

months. These natural causes of floods are compounded by human interventions and activities 

such as rapid urbanization, the construction of dams and reservoirs, and poor water management 

practices have worsened the severity (Shehzad, 2023; Waqas, 2022; Waseem & Rana, 2023). 
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Between 1950 and 2010, the extreme floods impacted around 446,000 km2 of Pakistan, killed 

8887 people and caused an economic loss of about $19.0 billion (Ali, 2013). The Super Flood of 

2010 occurred during July and August 2010. The 2010 Floods directly caused the death of over 

1900, affecting the lives of 20 billion people (Manzoor et al., 2022). An economic loss of $16.0 

billion was reported by the Government of Pakistan. The floods of 2022 caused an economic loss 

of more than $10.0 billion, with over $2.3 billion loss in crops. The provinces of Sindh, 

Balochistan, and Punjab were hard hit by the floods (Shehzad, 2023). 

The 2022 floods were triggered by a variety of causes, including prolonged heavy rains, the 

melting of glaciers, and strong low-pressure areas formed due to heat waves earlier in the 

summer. In the summer months of 2022, Pakistan experienced record-breaking temperatures, 

with readings surpassing 40°C in several regions. These intense heat conditions and heat waves 

during April and May contributed significantly to the increase in glacier melting (Nanditha et al., 

2023; Shehzad, 2023). By mid-June, several intense episodes of monsoon rains commenced, 

exacerbating the higher river flows from the melting glaciers. This resulted in the Indus River 

basin enduring severe floods, which majorly affected the southern provinces of Balochistan, 

Sindh, and Khyber Pakhtunkhwa, from continuous heavy rainfall spanning May to August 2022. 

Additionally, in August 2022, there was a notable rise in the transport of water vapor, which led 

to elevated precipitation and subsequent widespread floods in the southern parts of Pakistan 

(Gupta et al., 2022; Nanditha et al., 2023). 

Sindh province of Pakistan experienced a severe humanitarian crisis as extreme precipitation 

inundated large areas, with several regions covering over 117,850 km² enduring 15-day rainfall 

accumulations exceeding 400 mm. Particularly hard-hit were the communities along the Indus 

River, where many homes were destroyed, and families were displaced to overcrowded relief 
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camps lacking basic amenities. The floods caused approximately $2.3 billion in damage to 

agricultural lands across Sindh, Balochistan, and Punjab, destroying 1.9 million tons of rice, 10.5 

million tons of sugarcane, and 3.1 million bales of cotton. These losses translated to significant 

economic setbacks in key commodities (Nanditha et al., 2023; Shehzad, 2023). Additionally, the 

floods decimated 42,273 heads of livestock worth $13 million and inflicted major losses on 

essential crops such as tomatoes, onions, and chilies. 

Understanding the scope of flooding is crucial for supporting emergency responses and 

facilitating mitigation plans. Remote sensing methodologies, particularly through Earth 

observation satellites, offer critical data for gauging flood extents and managing, monitoring, and 

responding to flood events. This information is instrumental across various flood management 

domains, including rainfall-runoff analysis, flood prediction, and flood pattern analysis 

(Schumann, 2015). When integrated with Geographic Information Systems (GIS), remote 

sensing enhances the continuous collection of crucial flood-related data such as discharge rates, 

flooding depths, and inundation maps, significantly outperforming traditional methods. This 

continuous assimilation of information is essential not only for comprehending the extent and 

damage of floods but also for analyzing risks, assessing community vulnerabilities, and 

formulating effective management strategies to mitigate the impacts of future floods (Cohen et 

al., 2019; Nasr et al., 2022). 

Flood extent mapping is a crucial tool in disaster management and urban planning, aiding in the 

identification of flood-prone areas and those affected by floods. This mapping is essential for 

enhancing disaster risk reduction strategies, improving preparedness, and increasing community 

resilience against floods (Ullah & Zhang, 2020). Utilizing advanced remote sensing technologies 

and high-resolution satellite imagery, accurate flood mapping provides critical insights for 
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sustainable development, emergency response, and effective flood management practices 

(Belabid et al., 2019). These technologies ensure the rapid dissemination of time-sensitive 

information, vital for informed decision-making and strategy formulation in disaster scenarios. 

Furthermore, historical flood data accessed through various platforms enhances the 

understanding of flood patterns, crucial for developing effective planning and adaptation 

strategies (Munawar et al., 2022). Overall, the continuous improvement in remote sensing data 

acquisition and mapping techniques significantly bolsters resilience and readiness amidst 

escalating flood threats, thereby supporting more resilient communities and infrastructure. 

Damage assessments, alongside flood extent mapping, are vital for quantifying the economic 

impacts of floods, including agricultural losses, infrastructural damages, and changes in land use 

(Nie et al., 2017; Jin et al., 2013). These evaluations are crucial for estimating the extent of 

damage caused by disasters and play a significant role in the economic analysis of affected 

regions. Beyond immediate impacts, historic damage assessments are crucial in understanding 

climate change effects, aiding long-term planning and risk mitigation in flood-prone areas. 

Collaborative remote sensing methodologies significantly enhance these efforts by supporting 

the formulation of effective emergency responses and strategic long-term planning (Inoue et al., 

2008; Wang et al., 2016). 

In addition to flood extent mapping, damage assessments are crucial for quantifying the 

economic impacts of floods, including agricultural losses, infrastructural damages, and changes 

in land use (Nie et al., 2017). Damage assessments are crucial in the quantification of damage 

resulting from disasters such as floods, which impact the economies of the affected regions. The 

evaluation extends beyond agricultural losses to encompass infrastructural damages and changes 

in land use and cover categories (Jin et al., 2013).Historic damage assessments help in 
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understanding the effects of climate change in the region. These assessments are vital for 

understanding the effects of climate change and supporting long-term planning and risk 

mitigation strategies in flood-prone regions. Collaborative remote sensing methodologies play a 

significant role in advancing emergency response efforts, aiding in the formulation of effective 

relief initiatives and long-term planning strategies in flood-prone areas (Inoue et al., 2008; Wang 

et al., 2016). 

Ongoing advancements in mapping technologies and the increased availability of high-

resolution, remotely sensed satellite data are pivotal for improving flood risk management and 

enhancing community resilience. This detailed data supports the rapid dissemination of time-

sensitive information, which is instrumental in making informed decisions about disaster 

management strategies and response efforts. Furthermore, the integration of advanced remote 

sensors, historical flood data accessed through various platforms, and innovative mapping 

techniques not only helps identify flood-prone areas but also aids in the development of effective 

planning and adaptation strategies. Such enhanced access to remote sensing data and historical 

analyses is essential for bolstering readiness and resilience, ultimately contributing to more 

robust infrastructure and safer communities in the face of escalating flood threats (Munawar et 

al., 2022). 

1.2 Research Motivation 

Flood incidents have always been significant globally due to their devastating consequences. 

Asia is home to some rivers most prone to flooding, accounting for nearly 38% of the flooding 

events. Regions in South Asia such as the Indo-Gangetic Plain, the Indus Delta, and the Ganges–

Brahmaputra–Meghna basin are the key economic zones, whilst also being prone to flooding 

events and affecting the livelihood of more than one billion people. With dramatic changes in 



7 

 

weather patterns, climatic conditions, and summer monsoon rainfall, occurrences of severe 

droughts and floods are more frequent. A considerable segment of the population dwells in 

flood-prone lands that are exposed to floods repeatedly (Nanditha et al., 2023). With the 

increasing frequency and severity of flooding events globally, it is imperative to prioritize flood 

risk assessment and management in vulnerable regions like South Asia (Matheswaran et al., 

2018). In South Asia, authorities and communities are frequently compelled to adapt and adjust 

to changing climatic conditions induced by disasters facing economic, human, and infrastructural 

losses consequently. Climate change plays a significant role in exacerbating flood risks, posing 

environmental threats and challenges to plant growth and development (Moortgat et al., 2022). 

The need for interdisciplinary approaches to understanding and addressing flood risks is 

highlighted to enhance preparedness and response strategies (Suarez & Meeroff, 2021). 

Climate change and global warming have been linked to changes in weather patterns beyond 

prediction and have led to an increase in the frequency and severity of floods globally 

(Kapilaratne & Kaneta, 2020). This necessitates the development of accurate and real-time flood 

mapping technologies. Accurate and timely flood extent mapping is critical for effective flood 

management and mitigation efforts (Porter & Demeritt, 2012). Such mapping provides a 

comprehensive overview and improves upon the localized insights from traditional methods 

which usually depend solely on point-sourced data. Recent advancements in flood mapping 

technologies include the use of unmanned aerial vehicles (UAVs) equipped with high-resolution 

cameras for efficient and cost-effective data acquisition in hazardous areas (Gebrehiwot et al., 

2019). The combination of remote sensing data and digital elevation models (DEMs) derived 

from Light Detection and Ranging (LiDAR) technology has proven effective in flood hazard 

mapping and assessment (Muhadi et al., 2020; Annis et al., 2020). This broader perspective 
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facilitates authorities to make informed decisions regarding evacuation efforts, resource 

allocation, and emergency response strategies and enables targeted actions to mitigate economic 

and human losses. Therefore, the progress in flood mapping methods is taken as an important 

sector within climate adaptation strategies, highlighting the need for continued innovation and 

investment in this domain. 

Remote sensing technologies, including satellite imagery and aerial sensors, have aided in 

significant advancements in flood detection, monitoring, and analysis capabilities. Utilizing 

satellite data enables researchers and disaster management authorities to monitor flood dynamics 

extensively, pinpointing inundated areas, observing water level changes, and forecasting flood 

trends (Frappart et al., 2005). These techniques also facilitate damage assessment by allowing for 

the comparison of pre- and post-flood images which also aids in evaluating the severity of 

damage to infrastructure, agricultural land, and natural ecosystems. They are essential for 

effective recovery planning and allocation of resources for rehabilitation efforts. Remote sensing 

proves invaluable in delivering timely, precise, and exhaustive data regarding flood impacts. 

Moreover, combining this information with GIS and other data sources, such as the Digital 

Elevation Model (DEM), allows for a detailed analysis of floods' effects across various sectors. 

Optical sensors, with their extensive spatial coverage and high temporal frequency ranging from 

daily to bi-weekly, have been pivotal in flood analysis, operating across the visible to thermal 

wavelengths as active sensors. Their effectiveness in water detection via the infrared spectrum is 

well-documented, with notable examples including MODIS, AVHRR, ASTER, Landsat, and 

Sentinel-2 (Zhang et al., 2014). Techniques leveraging the multispectral capabilities of these 

sensors have been instrumental in identifying water bodies (Hamidi et al., 2023; Ticehurst et al., 

2009). However, their utility is constrained under conditions of cloud cover and dense foliage, 
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presenting challenges in flood monitoring (Ticehurst et al., 2009; Ward et al., 2014). Conversely, 

microwave remote sensing, particularly Synthetic Aperture Radar (SAR), operates at longer 

wavelengths and lower frequencies, enabling it to penetrate obstacles such as clouds and 

vegetation, thus ensuring all-weather capabilities for flood mapping (Tazmul Islam & Meng, 

2022; Ticehurst et al., 2009). The introduction of Sentinel-1 has revolutionized SAR data usage, 

offering weekly access to SAR-C data, and facilitating high-resolution, near-real-time flood 

detection and monitoring under any weather condition (Hamidi et al., 2023). SAR's ability to 

detect changes in backscatter signals is crucial for identifying water bodies, using methods such 

as supervised classification, thresholding techniques, and multitemporal analysis (Amitrano et 

al., 2018; Long et al., 2014). Despite the valuable spectral information provided by optical 

sensors for water detection, SAR's all-weather operational capability offers an indispensable 

perspective for accurate and reliable flood mapping, underscoring the complementary roles of 

SAR and optical imagery in comprehensive flood extent mapping. 

The impacts of floods in the Sindh region have been highlighted in various studies. Challenges 

are faced in South Asia due to floods, which emphasize the need for climate mitigation strategies 

(Nanditha et al., 2023). The devastating consequences of floods in Pakistan in 2022 have been 

reported by various sources (FAO, 2022; Manzoor & Adesola, 2022; Qamer et al., 2023), 

suggesting significant disruption to the agriculture sector, alteration in cropping patterns and 

losses in agriculture. Additionally, the floods destroyed irrigation structures and other farm 

facilities, further compounding the agricultural challenges (Ali et al., 2017; Manzoor et al., 

2022). Changing weather patterns due to climate change have also reduced crop yields and 

livestock productivity, adversely affecting the dairy and poultry sectors, vital to Pakistan's 
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economy (Ishaque et al., 2022). Given these impacts, there is a clear need for targeted 

interventions to support farmers and enhance sector performance (Rajpar et al., 2019). 

The Modified Normalized Difference Water Index (MNDWI) has been established as an 

effective tool for the detection of open water bodies, gaining recognition for its utility in 

numerous studies (Baig et al., 2013; Hamidi et al., 2023; Hidayah et al., 2022; Markert et al., 

2018; Sajjad et al., 2020; Sajjad et al., 2023; Ward et al., 2014). This index is particularly valued 

for its ability to minimize errors associated with the presence of built-up areas, vegetation, and 

soil, making it highly suitable for surface water detection in flood-related research. Despite its 

advantages, MNDWI differentiates water at the pixel scale, rather than by the area's proportion 

of water, limiting its precision in accurately extracting water information. Furthermore, its 

sensitivity towards vegetation over soil compromises water mapping accuracy (Baig et al., 

2013). 

In the context of Sindh Province, Pakistan, which experiences a climate ranging from arid to 

semi-arid, with hot summers, mild winters, low rainfall, and high monsoon humidity, the 

limitations of MNDWI become apparent. The index's inability to effectively distinguish between 

water bodies and hill shadows, or to accurately identify built-up areas in lowlands, poses 

challenges. Moreover, MNDWI is vulnerable to signal noise from land cover in built-up and 

disturbed areas that may undermine the reliability of water body extraction due to its sensitivity 

to green and shortwave infrared parts of the spectrum (Sajjad et al., 2020; Sajjad et al., 2023). 

Additionally, the presence of vegetation impacts the green band reflectance, potentially leading 

to erroneous water body detection in areas with sparse vegetation. 
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This study highlights a significant research gap in employing Sentinel-1 SAR data for flood 

detection and damage assessment within Pakistan's Sindh region. Despite the existing literature 

on flood mapping using various remote sensing techniques and data sources (Notti et al., 2018; 

Qamer et al., 2023; Rahman & Di, 2020; Sajjad et al.,2020), there is a notable absence of a 

comprehensive change detection method for detecting floods in Sindh using Sentinel-1 SAR 

imagery. Moreover, the comparison of flood extent mapping obtained from Sentinel-1 SAR data 

with other data sources has not been adequately explored, particularly in the context of the Sindh 

region, where direct comparisons remain unaddressed in the current literature. This lack of 

standardized methodologies for Sentinel-1 SAR-based flood extent mapping studies leads to 

issues with the reliability and comparability of flood mapping results across different studies and 

regions. Although there is a common understanding that the fusion of multi-temporal and multi-

spatial datasets can provide an accurate representation of flooding events, this approach remains 

largely unexplored, especially for Pakistan. This underscores the necessity for developing 

methodologies that not only address the limitations of using Sentinel-1 SAR imagery but also 

enhance the accuracy and comparability of flood mapping results. 

Research in damage assessment using Land use/Land cover (LULC) classification images and 

flood extent mapping has seen advancements. Publicly available global remotely sensed land use 

land cover (LULC) datasets are crucial for damage assessment in flood studies. Researchers 

generally make use of publicly available datasets such as Dynamic World V1, ESA WorldCover 

10m V100, ESA WorldCover 10m, V200, and Copernicus Global Land Cover Layers. By 

integrating the latest LULC data into flood damage assessments, researchers can gain a 

comprehensive understanding of landscape changes and flood vulnerability, facilitating more 

informed decision-making in disaster management and mitigation efforts. However, such 
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datasets are updated annually to maintain accuracy and relevancy. This necessitates the 

exploration of machine learning and artificial intelligence techniques to improve the accuracy of 

classification images and damage assessment practices. While there are studies that have utilized 

machine learning approaches, there is a lack of in-depth understanding of leveraging these 

advanced techniques. 

The integration of Sentinel-1 SAR imagery for flood extent mapping and the application of land 

use and land cover (LULC) classification for damage assessment has significant implications for 

disaster management and policy making. The use of an index-based approach on Sentinel-1 SAR 

images enables the rapid, accurate identification of flooded areas, even under challenging 

conditions such as cloud cover or night-time (Anusha & Bharathi, 2020). This real-time flood 

mapping capability allows for timely and effective emergency response, resource allocation, and 

evacuation planning, thereby minimizing human and material losses. Furthermore, the 

combination with LULC classification data enhances the capacity for detailed damage 

assessment post-disaster (Benoudjit & Guida, 2019). By identifying the specific types of land use 

and cover affected by flooding, authorities can better understand the impact on critical 

infrastructure, agriculture, and residential areas. This detailed damage assessment informs 

recovery and rehabilitation efforts, ensuring that they are well-targeted and efficient. For 

policymaking, these technologies offer a solid evidence base for the development of more 

resilient infrastructure and land use planning strategies. By analyzing flood extent and damage 

patterns over time, policymakers can identify vulnerable areas and prioritize interventions to 

reduce flood risk and enhance community resilience. Additionally, this data-driven approach 

supports the implementation of adaptive policies that can respond to the changing dynamics of 
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flood risk under climate change scenarios, ensuring sustainable development and the protection 

of vulnerable populations.  

1.3 Research Objectives 

The overarching goal of the study is to understand the impacts associated with flood events by 

utilizing open-access remote sensing datasets. Optical and microwave sensors have been used in 

flood studies due to their larger spatial coverage and high temporal resolution at frequencies 

ranging from daily to every two weeks. Optical sensors operate in the visible portion of the 

wavelength spectrum but also include the infrared and thermal regions and fall under active 

sensors. However, due to their limitations in detecting through clouds and tree canopies, flood 

progress is difficult to monitor in many circumstances where cloud and smoke concentrations are 

significant. Microwave remote sensors, on the contrary, operate on longer wavelengths than 

optical remote sensors, the operating wavelengths ranging from 1 cm to 1m which facilitates 

flood inundation mapping in all-weather circumstances as microwaves can penetrate cloud, 

aerosol, haze, and tree canopy. The change detection method, however, must be adjusted to be 

applicable to the Sindh province. Utilizing remote sensors for flood detection proves valuable in 

damage assessments and recovery efforts. These aspects will be investigated using the Google 

Earth Engine. The thesis has been organized into two objectives, and each objective attempts to 

answer a set of research questions. The objectives of the study are: 

1. Assessing the performance of three optical and microwave remote sensing data-based 

flooding indices to map the flooding extent in semi-arid regions. 

a. How can the change detection method be adopted for the detection of floods in 

Sindh with Sentinel-1 SAR images? 
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b. What were the spatial extent and total area affected by the flooding in the Sindh 

region? 

c. How can the flood extent mapping derived from Sentinel-1 SAR data be 

compared to flood extent mapping obtained from other data sources? 

2. Evaluating the extent of flood on various land cover classes using remote sensing-based 

flood maps and Land Use/Land Cover (LULC) dataset. 

a. What is the spatial distribution of flood-affected areas across different land 

classes within the districts of Sindh? 

b. How does the flood extent vary among different land classes (e.g., agricultural 

fields, urban areas, forests) in the administrative districts of Sindh during the 

flood event? 

1.4 Thesis Organization 

The research conducted in this project has been documented in the form of a manuscript. The 

document comprises three chapters, each serving a specific purpose. The initial chapter, titled 

"Introduction" lays the groundwork by presenting the problem statement and the imperative need 

for this study. A summary of the literature work previously done on the subject has been 

included in this chapter. The research objectives are laid out alongside the crucial research 

questions which aid in realizing the objectives of the study. 

The succeeding chapter, Chapter 2 titled “Assessing the effectiveness of Sentinel-1 SAR 

backscatter-based Difference Image Index and Sentinel-2 reflectance-based Desert Flood Index 

to map the flood extent.” is dedicated to the first objective and answers the first set of research 
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questions under the same objective. The chapter is dedicated to developing the change detection 

algorithm for mapping the extent of floods in Sindh province using Sentinel-1 images. The 

chapter further describes how the change detection method is developed and optimized with the 

use of Sentinel-2 images with less cloud cover. The results of fine-tuning the hyperparameters 

and the results of the change detection algorithm are discussed in this chapter. The results are 

also compared with other sources such as published journal articles, and newspaper articles.  

The third chapter titled “Evaluating the extent of flood impact on various land cover classes 

using remote sensing-based flood maps and Land Use/Land Cover (LULC) dataset.” is dedicated 

to the second objective of the thesis study. This chapter addresses the objective of assessing the 

damage caused by the floods of 2022 in the Sindh province in the overall region of Sindh 

Province. In this chapter, the methodology adopted to derive the Land Use/Land Cover (LULC) 

dataset is discussed. The Land Use/Land Cover dataset has been prepared using supervised 

random forest classification and unsupervised clustering method with the help of the publicly 

available Land Cover Dataset by the Food and Agricultural Organization (FAO). The 

methodology and results of the spatial coverage of flood extent over various land use classes 

have been discussed. Chapter 2 and Chapter 3 are dedicated to two objectives of the study which 

make use of publicly available datasets in Google Earth Engine and highlight the importance of 

high-resolution, and frequent imaging datasets in flood studies. The fourth chapter presents the 

summary of the research work, its contributions, limitations, and recommendations for water 

managers and future research. 
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Chapter 2 - Assessing the Performance of Three Optical and Microwave Remote Sensing 

Data-Based Flooding Indices to Map the Flooding Extent in Semi-Arid Regions. 

Abstract 

Mapping of flood extents is essential for effective disaster management and mitigation efforts as 

they are one of the most widespread natural disasters. Remote sensing technologies and 

techniques have proven to be effective and efficient in various applications related to disasters 

such as flood detection, monitoring, and analysis capabilities. With advancements in 

technologies, remotely sensed high spatial resolution and high temporal frequency are available. 

The effectiveness of the Synthetic Aperture Radar (SAR) datasets for near real-time flood 

mapping has been studied. As a microwave sensor, SAR is superior to optical sensors as it 

overcomes limitations such as cloud cover and adverse weather conditions. All the computations 

have been performed in Google Earth Engine, which is a cloud-based platform powered by 

Google which allows users to access multiple geospatial datasets and utilize the cloud computing 

capacity and storage facilities. A change detection algorithm has been developed and optimized 

using the Difference Image Index (DII) based on Sentinel-1 SAR data. Desert Flood Index (DFI) 

imagery based on Sentinel-2 data has been used to refine the threshold value of DII to produce 

accurate flood extent mapping for the region of Sindh province. The study identified extensive 

flooding that covered an area of 25,229 square kilometers in August and 19,181 square 

kilometers in the first 19 days of September 2022 in Sindh province. 

Keywords: flood extent mapping, change detection, thresholding, Sentinel-1 flooding, Sentinel-2 

flooding, Google Earth Engine 
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2.1 Introduction 

One of the most destructive natural disasters in the world is flooding, which is defined as water 

overflowing into typically dry ground. As the impacts of climate change and global warming 

become apparent, the occurrences of extreme flood events are bound to increase. There has been 

a significant increase in the number of flood-related research in recent decades which highlights 

the importance of understanding floods (Zhang et al., 2023). Disasters such as floods very often 

cause considerable damage to the economy, infrastructures, and livelihoods of the people. They 

uproot communities and force people to relocate, frequently surpassing the capacity of the 

existing disaster management systems. Flood disaster mitigation initiatives are crucial for 

lessening the effects of floods on ecosystems and populations, highlighting the significance of 

taking preventative action in disaster management. 

Understanding the nature and extent of increasing extreme flooding events requires the 

exploitation of existing data resources to maximum potential. Geo-information technologies, 

particularly remote sensing, and GIS, serve as effective tools for understanding these geo-events. 

The advent of advanced technologies enables a comprehensive overview and faster analysis 

compared to traditional surveying methods (Liang & Liu, 2020; Sunar et al., 2019). Remote 

sensing has emerged as cost-effective and one of the popular choices among water resources and 

environmental researchers due to its high spatial coverage and temporal resolution. Numerous 

studies have utilized both active and passive remotely sensed data sources to assess their 

effectiveness in reliably capturing events like floods, droughts, etc. without requiring in-situ data 

collection (Gupta et al., 2022; F. Zhang et al., 2014). Integrating remote sensors and satellites in 

research offers long-term time series data, allowing researchers to map and understand changes 

in aspects due to climate changes and human advancements, land use change, increase in global 
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temperature, flooding patterns in different regions, change in forests and vegetation, etc. since 

the launch of ERTS-1 (Earth Resources Technology Satellite), also commonly known as 

Landsat-1 in 1972 (Shastry et al., 2023). Remote sensing data is preferred compared to site-based 

data such as weather station records, and gauge data. By nature of remote sensing, researchers 

have easier access to otherwise tedious data collection. The rising use of these techniques 

enhances our understanding of flood dynamics and supports the study of hydrology and ecology 

in flood-prone areas. 

Microwave remote sensors, on contrary to optical sensors, operate on longer wavelengths than 

optical remote sensors, ranging from 1 cm to 1m and at frequencies from 89 GHz to 0.3 GHz, 

respectively. These properties allow them to penetrate cloud cover, aerosols, haze, and tree 

canopies, facilitating all-weather flood inundation mapping (Tazmul Islam & Meng, 2022; 

Ticehurst et al., 2009). Despite the popularity of microwave remote sensing in flood mapping, 

most of the data, especially Synthetic Aperture Radar (SAR) was not freely available before 

Sentinel-1, which often made extensive flood monitoring ineffective. The deployment of 

Sentinel-1 has enabled the liberated use of SAR data and enhanced accessibility with its short 

revisit times, providing SAR-C data weekly. SAR satellites have gained popularity in flood 

detection and monitoring because of their ability to deliver high-resolution surface data 

promptly, regardless of weather conditions (Hamidi et al., 2023). Flood detection with SAR 

involves detecting changes in the backscattered signals, such as identifying dark regions on water 

bodies that correspond to low backscatter signals compared to other land-cover categories. 

Multiple techniques, including supervised classification and threshold algorithms, are used to 

map floods using SAR data. Additionally, multitemporal approaches that utilize both pre- and 
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post-flood SAR data have proven to be highly reliable in generating accurate flood maps 

(Amitrano et al., 2018; Long et al., 2014).  

SAR change detection, which involves generating different images and applying classification 

methods, has found widespread application in urban planning, flood mapping, agricultural 

monitoring, and other domains. Unsupervised methods are often preferred for SAR image 

change detection due to the complexity involved in classifying SAR images. Statistical 

techniques, including thresholding algorithms, have been successfully employed to extract flood 

extent information. Challenges encountered in flood detection using SAR data include the 

presence of radar shadows, layover effects, and the influence of wind and heavy rainfall on flood 

delineation (Amitrano et al., 2018). Despite these challenges, the benefits offered by SAR data 

outweigh the limitations, thereby establishing SAR as an invaluable tool for flood detection.  

Google Earth Engine (GEE) is a cloud-based platform powered by Google and allows remote 

processing of geospatial data in the cloud without requiring the users to download the data to 

their devices. GEE facilitates accessing a comprehensive repository of multiple datasets and 

processing them without the need to download them. Allowing researchers to utilize the 

computational resources of Google has revolutionized Earth science research. (Kumar et al., 

2022). GEE allows researchers to access remote sensing datasets seamlessly (Tazmul Islam & 

Meng, 2022). Long-term data are available in GEE which facilitates trend analyses of climate 

change, drought and flood conditions, crop yields, and many more (Venkatappa et al., 2021).  

The escalating frequency and severity of flooding events globally, particularly in vulnerable 

regions like Pakistan, underscore the urgent need for advanced flood management techniques. 

Despite experiencing numerous extreme flood incidents, Sindh, a province in Pakistan remains 
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an understudied area in terms of comprehensive flood extent mapping using remote sensing 

techniques. The integration of Synthetic Aperture Radar (SAR) from Sentinel-1 and optical 

sensors from Sentinel-2 is significant in overcoming the limitations posed by traditional 

monitoring methods, especially under adverse weather conditions and cloud cover during floods. 

These technologies offer high spatial coverage and temporal resolution data, essential for 

accurate mapping. Particularly, the Modified Normalized Difference Water Index (MNDWI) has 

proven effective in enhancing water detection and has been a popular choice among researchers. 

MNDWI effectively reduces the misclassification errors often associated with the presence of 

built-up areas, vegetation, and soil and calculates water presence at the pixel level. It can lead to 

inaccuracies when assessing water bodies that do not occupy entire pixels. In contrast, the Desert 

Flood Index (DFI) improves upon MNDWI by introducing a correction factor that reduces the 

influence of vegetation on the water signal, making it more effective in arid and semi-arid 

regions where desert landscapes predominate alongside vegetative areas. 

The objective of the study is to assess the effectiveness of the Sentinel-1 SAR backscatter-based 

Difference Image Index and Sentinel-2 reflectance-based Desert Flood Index to map the flood 

extent for the Sindh province of Pakistan. The objective of the study is achieved by utilizing the 

multispectral satellite images from Sentinel-1 and Sentinel-2. These satellites have frequent 

revisit times and high spatial resolution making them suitable for near-real time studies. A 

change detection algorithm based on the respective indices for these datasets was developed and 

optimized so that there is maximum agreement between the results in pixel levels. The change 

detection algorithm once tuned provides fast and reliable results in assessing flooding extents 

using near real-time SAR datasets.  
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2.2 Study Area and Data 

2.2.1 Study Area 

Sindh province lies in the southern part of Pakistan and is bordered by the Arabian Sea in the 

south, Balochistan in its north and west, Punjab in the northeast, and India in the east. Sindh 

covers approximately 141,000 km2 and 17.7% of Pakistan. The Sindh province is situated in a 

tropical to subtropical zone, resulting in extreme summers with temperatures exceeding 46°C 

from May to August, and brief winters with average temperatures dropping to around 2°C from 

December to January. The region receives most of its rainfall between July and September. The 

major river in the province is Sindh whose tributaries such as the Jhelum, Chenab, Ravi, and 

Sutlej, also flow in the region. However, these rivers flow through other provinces before joining 

the Indus River in Sindh. Figure 2-1 shows the study area, Sindh province. 
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Figure 2-1. Map of the Study area: Sindh province of Pakistan. 

 

 

2.2.2 Datasets 

Sentinel-1 is a mission undertaken as a joint initiative of the European Commission (EC) and the 

European Space Agency (ESA) and uses Synthetic Aperture Radar (SAR) technology. C-band 
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SAR sensors of Sentinel-1 operate under four modes, with short revisit times and dual-

polarization capability. Long-term time series data collected by the Sentinel-1 mission has been 

available since April 2014. A satellite covers the Earth in 12 days. However, with a two-satellite 

constellation, a region of interest is mapped every six days. SAR tools can capture valuable data 

regardless of weather conditions, including cloudy situations, and operate both day and night. 

The mission provides imagery at three different levels of detail, with spatial resolutions of 10, 

25, and 40 meters. Four combinations of polarization: single polarizations, vertical-vertical (VV) 

or horizontal-horizontal (HH) bands, as well as dual-band options such as VV + VH and HH + 

HV, are available (Kaplan & Avdan, 2018). These features make the Sentinel-1 images 

informative for various applications such as sea-ice mapping, humanitarian aid, crisis response, 

and forest management. Sentinel-1 data Ground Range Detected (GRD) imagery can be accessed 

in Google Earth Engine (GEE) as ‘COPERNICUS/S1_GRD’. 

The study employs a comprehensive approach integrating multisource and multitemporal remote 

sensing datasets to accurately extract floodwater information. The Sentinel-1 GRD dataset is 

used for flood inundation mapping. Sentinel-1 SAR GRD data, available in Google Earth Engine 

as ‘COPERNICUS/S1_GRD’. The spatial resolution for this dataset is 10 m. The revisit time is 

12 days. The image collection is filtered to access images with ‘VV’ polarization, instrument 

mode ‘IW,’ and orbital pass ‘Ascending’ for obtaining flood extent maps in the region of 

interest. JRC Global Surface Water Mapping Layers, v1.4 can be accessed from the Google 

Earth Engine as ‘JRC/GSW1_4/GlobalSurfaceWater’ and is used to obtain permanent water 

bodies based on seasonality. The water bodies are generated from long-term continuous images 

between 16 March 1984 and 31 December 2021 from Landsat 5, 7, and 8. NASADEM, 

‘NASA/NASADEM_HGT/001’ is a modernized Digital Elevation Model developed from the 
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Shuttle Radar Topography Mission (SRTM). The resolution of this dataset is 30 m data used to 

filter out the pixels whose slope is greater than 5°. These datasets are available in the GEE 

platform and are used in conjunction to determine the flooded regions.  

The sentinel-2 dataset is used to validate the flood extent result obtained from Sentinel-1 

imageries. The dataset is available in GEE as ‘COPERNICUS/S2’. The revisit frequency of 

satellites of Sentinel-2 missions is 10 days, and the combined frequency of the constellation is 5 

days. The spatial resolution of the S2 dataset in GEE ranges from 10-60 m depending on the 

bands. The bands suitable for water mask detection have been used in this study. The datasets 

used in this study are given in Table 2-1. 
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Table 2-1. List of Data in the study. 

  

Dataset 

Spatial 

Resolution 

Revisit 

Days 

Corresponding 

Date 

Source 

Sentinel-1 SAR 

(S1) 

10 m 12 days - ESA Copernicus 

Sentinel-2 (S2) 

B3, B4, B8: 10 

m and B11: 20 

m 

5 days - ESA Copernicus 

JRC Global 

Surface Water 

Mapping 

30 m - 

March 1984 - 

December 2021 

Global Surface 

Water Explorer 

NASADEM 30 m - February 2000 NASA 

 

 

2.3 Methodology  

This section describes the methodology implemented to achieve the objectives of investigating 

and optimizing the change detection-based thresholding algorithm for mapping the flooding 

extents in Pakistan. The methodology is presented in Figure 2-2. The methodology consists of 

the following steps:  
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● Data acquisition and preprocessing, 

● Change detection algorithm, 

● Sentinel-1 flooding extent, 

● Sentinel-2 flooding extent, 

● Threshold optimization, 

● Results and Analyses. 
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Figure 2-2. Flowchart diagram of flood extent mapping using Sentinel-1 and Sentinel-2 images.  
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2.3.1 Data Acquisition and Preprocessing 

The datasets used in this study are available in Google Earth Engine and all the processing and 

computations have been carried out in GEE. Sentinel-1 and Sentinel-2 datasets are used in this 

study. Sentinel-1 data is available In GEE as ‘COPERNICUS/S1_GRD’. For the flood 

inundation mapping study, the Sentinel-1 images acquired between June to September have been 

used; the details are presented in Table 2.2. Sentinel-1 GRD is processed to backscatter 

coefficient (σ°) in decibels (dB) in GEE. The scenes are corrected for thermal noise removal, 

radiometric calibration, and terrain correction. However, SAR images are affected by 

interference between returns from backscatters of the surface, and patterns like salt and pepper 

can be observed, which are also called speckles. Therefore, speckle filtering needs to be applied 

during the preprocessing of Sentinel-1 SAR images in GEE. (Dasari et al., 2016; Tazmul Islam 

& Meng, 2022). Sentinel-2 data have been used for optimizing the threshold value of the 

Sentinel-1 image index. The cloud coverage during the period of the study was high due to 

which, a rectangular region in Dadu district was selected where cloud cover was almost 

insignificant. Table 2-2 shows the data obtained for each objective of the study. 
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Table 2-2. Data acquisition for flood extent mapping. 

Objective Dataset Description Acquisition date 

Thresholding  

(A rectangular region in 

Dadu district) 

Sentinel-1 Before flood '2022-05-01' - '2022-05-14' 

After flood '2022-08-18' - '2022-08-30' 

Sentinel-2 Before flood '2022-05-09' - '2022-05-15' 

After flood '2022-08-29' - '2022-08-30' 

Flood Inundation 

Mapping 

Sentinel-1 

 

Before flood '2022-05-01' - '2022-05-14' 

After flood, August '2022-08-01' - '2022-08-31' 

After flood, September '2022-09-01' - '2022-09-19' 

 

 

2.3.2 Change Detection Algorithm 

The change detection method is a well-established method for detecting changes due to floods 

and has been explored by several researchers (Amitrano et al., 2018; Cian et al., 2018; Clement 

et al., 2018; Giustarini et al., 2013; Hamidi et al., 2023; Kumar et al., 2022; Long et al., 2014; 
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Nasirzadehdizaji et al., 2019). The change detection method compares two scenes of the same 

location to quantify the changes that occurred in the interval. In this study, a change detection-

based thresholding method has been implemented.  

2.3.3 Sentinel-1 Flooding Extent 

In this study, for Sentinel-1 flooding extent, two stacks of images were retrieved for pre-flood 

and post-flood conditions in Google Earth Engine. Speckles filters are applied. For pre-flood or 

reference and post-flood Sentinel-1 images, the mean, minimum, and maximum of ‘VV’ values 

are computed. For the compound reference image, the mean values of the backscatter of each 

pixel are obtained, and this represents the average behavior of the land covers before flooding. 

The backscatter values of water bodies are lower than other land classes. This is because of the 

smoothness of the water surfaces. However, these values can be medium-high due to wind (Cian 

et al., 2018). For non-smooth classes of land use, the mean backscatter values are high. This 

distinction between spectrally smooth and non-smooth land-use classes helps in distinguishing 

land-use classes impacted by flood. The backscatter values of land-use classes are reduced when 

the region is under water or impacted by flood which is why the minimum values of the stack of 

post-flood images are obtained. The change detection method distinguishes the difference 

between these values to identify the floods.  

A SAR index called the Difference Image Index is used in the study. DII is quantified as the 

difference between absolute values of minimum backscatter values of post-flood images stack 

and absolute values of mean or average of the reference images stack. The SAR image index DII, 

is given by Hamidi et al. (2023) and is calculated as,   
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 𝐷𝐼𝐼 = |𝑚𝑖𝑛{𝑉𝑉𝑎𝑓𝑡𝑒𝑟}| − |𝑚𝑒𝑎𝑛{𝑉𝑉𝑏𝑒𝑓𝑜𝑟𝑒}| (1) 

where 𝑚𝑖𝑛{𝑉𝑉𝑎𝑓𝑡𝑒𝑟}  represents the minimum backscatter values of Sentinel-1 images of the pre-

flood stack and 𝑚𝑒𝑎𝑛{𝑉𝑉𝑏𝑒𝑓𝑜𝑟𝑒} represents the mean of backscatter values of Sentinel-1 images 

of the post-flood stack.  

There is a substantial change to the backscatter values of the pixels when the flooding occurs. 

Therefore, thresholding is required to distinguish between flooded and non-flooded regions. 

Thresholding approaches commonly used in flood studies are based on the distribution of 

histograms. Hamidi et al. (2023) defined the threshold value for flooding as, 

 𝑇ℎ𝑟 =  𝑚𝑒𝑎𝑛{𝐷𝐼𝐼} + 𝑘𝐷𝐼𝐼 × 𝑠𝑡𝑑𝑒𝑣{𝐷𝐼𝐼} (2) 

 The thresholding values are obtained for areas where cloud cover was insignificant. Regions 

where the DII values of the pixels were less than the threshold were considered flooded. 

2.3.4 Sentinel-2 Flooding Extent 

The flooding extent observed from DII is compared with a flooding extent observed from a 

widely used optical sensor, Sentinel-2 data. Sentinel-2 satellites are equipped with high-

resolution optical sensors, making them particularly useful for observing and analyzing changes 

in land cover and vegetation before and after flood events. In this study, Sentinel-2 images were 

acquired for pre-flood and post-flood conditions to identify changes in vegetation health, soil 

saturation, and water coverage. The analysis focused on the utilization of specific spectral bands 

and vegetation index, Normalized Difference Vegetation Index (NDVI) to get the flooding index 
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called the Desert flood index (DFI). DFI has shown better results in desert areas with vegetation 

compared to the Modified Normalized Difference Water Index (MNDWI). The DFI approach 

has also been explored in the Lower Indus Basin of Pakistan for mapping 2010 floods (Baig et 

al., 2013). MNDWI is a widely accepted index for flooded pixel detection. The comparison of 

pre-flood and post-flood indices allowed for the identification of areas affected by flooding, 

quantifying the extent of inundation, and evaluating the impact on different land cover classes. 

The DFI was obtained from the following equations, 

 𝐷𝐹𝐼 = 
𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟+0.1

(𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟)(𝑁𝐷𝑉𝐼+0.5)
  (3) 

 𝑁𝐷𝑉𝐼 = 
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
 (4) 

 MNDWI= 
𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟
 (5) 

where 𝜌𝑔𝑟𝑒𝑒𝑛, 𝜌𝑟𝑒𝑑, 𝜌𝑛𝑖𝑟, and 𝜌𝑠𝑤𝑖𝑟 are the reflectance values of B3, B4, B8, and B11 bands 

of Sentinel-2, respectively. Since clouds and their shadows can obscure features and distort 

information, the clouded pixels were masked out from the computation. Permanent water bodies 

were removed from the flood extent image. Regions where the DFI and MNDWI values were 

higher than the threshold values are taken as flooded for both cases.  
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2.3.5 Threshold Fine-Tuning  

In this study, threshold optimization is done using equations from Hamidi et al. (2023). In 

evaluating the accuracy of SAR-based flood maps, agreement percentage (𝐴𝑔𝑟%) between SAR 

indices and results from optical imagery has been determined. This percentage is calculated 

using the formula, 

 𝐴𝑔𝑟% = 
𝐵

𝑂
 ×  100% (6) 

where 𝐵 represents the overlapping area of flood detections from both SAR and optical sources, 

and O represents the area of flood detections in the optical imagery. Essentially, this equation 

quantifies the proportion of SAR flood detection that coincides with optical water detection. 

The total agreement percentage (𝑇𝑜𝐴𝑔𝑟%) is calculated to estimate flood extents from both SAR 

and optical sources. This equation serves for sensitivity analysis of flood extent maps derived 

from SAR- and Optical-based indices. 𝑇𝑜𝐴𝑔𝑟% is calculated as, 

 𝑇𝑜𝐴𝑔𝑟% = 
𝐵

𝑂+𝑆𝑟𝑐−𝐵
 ×  100% (6) 

where 𝑆𝑟𝑐 represents the area of SAR flood detections excluding regions covered by clouds in 

the optical image. Cloud-covered areas are excluded from the SAR flood extent map to ensure 

comparability with the optical image flood extent. Subtracting B from the denominator avoids 

counting the intersection area twice. This equation effectively illustrates the overall disparities 

between SAR and optical flood detection areas in regions unaffected by clouds. This takes into 
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account disagreements, capturing instances where SAR might inaccurately classify areas as 

flooded. 

The optimal values of 𝑘𝐷𝐼𝐼 and DFI, and 𝑘𝐷𝐼𝐼 and MNDWI have been determined by the 

exhaustive grid search, whereby 𝑘𝐷𝐼𝐼 values between 0 to 2 (Hamidi et al., 2023; Cian et 

al.,2018), and DFI and MNDWI values between 0 to 1 were tested at a constant interval of 0.05. 

The agreement percentage and total agreement percentages are obtained for each set of 𝑘𝐷𝐼𝐼 and 

DFI and 𝑘𝐷𝐼𝐼 and MNDWI. The optimal values of 𝑘𝐷𝐼𝐼 are obtained for the values of DFI and 

MNDWI whose agreement percentage and total agreement percentages were highest. Higher 

percentages of these agreements define the sensitivity of Sentinel-1-derived flood maps to 

Sentinel-2-derived flood maps.  
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2.4 Results 

2.4.1 Thresholding 

Sentinel-1 SAR images and Sentinel-2 images were used simultaneously to obtain the optimum 

threshold values for Sentinel-1-based DII images and Sentinel-2-based DFI and MNDWI 

images. A rectangular region, approximately 3,220 km2 in Dadu district with minimum cloud 

cover was chosen for threshold calibration. Pre-flood and post-flood images were obtained for 

the rectangular region and their composite images were prepared by computing the mean and 

minimum of the backscatter values from the image stacks, respectively. Figure 2-3 shows the 

mean of backscatter values from May 1 to May 14 as reference image composite or pre-flood 

images composite, and the minimum of backscatter values for after flood period from August 18 

to August 30, 2023. A comparison of these pre- and post-flood image composites shows an 

increase in the darker regions in the post-flood images due to a reduction in backscatter signals.  

  

Figure 2-3. Sentinel-1 images backscatter values in dB before and after Pakistan floods 2022. 
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Flood extent mappings were computed for Sentinel-1 and Sentinel-2 images. The Difference 

Image Index (DII) image was computed for the region of interest using equation (1), the Desert 

Flood Index (DFI) image using equation (3), and the Modified Normalized Difference Water 

Index (MNDWI) using equation (5).  

2.4.2 Case I: Thresholding for DII and DFI 

In the comparative analysis of flood extents between DII and DFI flood extent mappings, notable 

agreement and total agreement percentages were observed. The total agreement has been 

preferred over the agreement since it depicts the percentage of intersection of floods in Sentinel-

1 and Sentinel-2 images. Figure 2-4 shows a 3D surface plot generated to visualize the region of 

maximum agreement and total agreement region. The values of total agreement and agreement 

percentages for values of DFI and 𝑘𝐷𝐼𝐼 from 0.2 to 0.45 have been provided in Table 2-3 and 

Table 2-4 respectively. At a DFI value of 0.25, the comparison between DFI and DII flood 

extents achieved a total agreement of 72.08% with a 𝑘𝐷𝐼𝐼 value set at 0.35. Additionally, the 

agreement between them stood at 79.31%. The optimum threshold value for DII was computed 

as 0.414. 
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Table 2-3. Total Agreement percentage of DII and DFI Flood extent maps at different thresholds. 

 

 

DFI 

0.2 0.25 0.3 0.35 0.40 0.45 

𝑘𝐷𝐼𝐼  

0.2 70.97% 70.78% 69.71% 67.93% 65.52% 62.64% 

0.25 71.40% 71.53% 70.73% 69.19% 66.94% 64.15% 

0.3 71.54% 71.99% 71.50% 70.21% 68.15% 65.47% 

0.35 71.31% 72.08% 71.90% 70.89% 69.06% 66.52% 

0.4 70.72% 71.79% 71.91% 71.19% 69.60% 67.24% 

0.45 69.84% 71.17% 71.60% 71.16% 69.84% 67.68% 
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Table 2-4. Agreement percentage of DII and DFI Flood extent maps at different thresholds. 

 

 

DFI   

0.2 0.25 0.3 0.35 0.4 0.45 

𝑘𝐷𝐼𝐼  

0.2 81.28% 83.38% 85.02% 86.28% 87.15% 87.77% 

0.25 79.86% 82.08% 83.86% 85.24% 86.22% 86.92% 

0.3 78.39% 80.74% 82.65% 84.16% 85.25% 86.03% 

0.35 76.84% 79.31% 81.34% 82.98% 84.20% 85.06% 

0.4 75.24% 77.81% 79.97% 81.73% 83.06% 84.02% 

0.45 73.58% 76.24% 78.51% 80.39% 81.84% 82.90% 
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Figure 2-4. 3D-plot of agreement and total agreement at different values of DFI and kDII. 

 

 

The Figure 2-5, Figure 2-6, and Figure 2-7 depict the utilization of DII and DFI indices for flood 

detection in a specific rectangular area within the Dadu district, with Figure 2-5 and Figure 2-6 

showcasing the individual application of DII and DFI indices, respectively, for threshold-based 

flood identification, and Figure 2-7 illustrating the agreement between the flood detection 

outcomes of both indices within the same region. 
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Figure 2-5. Flood detection in the rectangular region in Dadu district using the DII index for 

thresholding. 

 

 



41 

 

 

Figure 2-6. Flood detection in the rectangular region in Dadu district using the DFI index for 

thresholding. 
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Figure 2-7. Agreement visualization of DII and DFI Flood detection in the rectangular region of 

Dadu district. 
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Flooded regions identified solely through the Difference Image Index (DII) data were labeled 

with the value 1, encompassing an area of 119.65 km2. Likewise, areas flooded exclusively 

according to the Desert Flood Index (DFI) were designated with the value 3, amounting to 

223.77 km2. Regions concurrently identified as flooded by both DII and DFI indices were 

assigned the value 4, covering a significant area of 877.57 km2. The agreement percentage of 

79.31% and total agreement of 72.08% indicate a high level of reliability in the coherence 

between the flood detection capabilities of Sentinel-1 and Sentinel-2 datasets. 

2.4.3 Case II: Thresholding for DII and MNDWI 

The methodology was repeated for the comparative analysis of flood extents between DII and 

MNDWI flood extent mappings. Figure 2-8 shows a 3D surface plot generated to visualize the 

region of maximum agreement and total agreement region. The values of total agreement and 

agreement percentages for values of MNDWI and 𝑘𝐷𝐼𝐼 ranging from 0.1 to 0.35 have been 

provided in Table 2-5 and Table 2-6 respectively. At an MNDWI value of 0.15, the comparison 

between MNDWI and DII flood extents achieved a total agreement of 70.06% with a 𝑘𝐷𝐼𝐼 value 

set at 0.25. Additionally, the agreement between them stood at 83.86%. The optimum threshold 

value for DII was computed as 0.427. 
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Figure 2-8. 3D-plot of agreement and total agreement at different values of MNDWI and kDII. 
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Table 2-5. Total Agreement percentage of DII and MNDWI Flood extents at different thresholds. 

 

 

MNDWI 

0.1 0.15 0.2 0.25 0.3 0.35 

𝑘𝐷𝐼𝐼  

0.1 69.26% 66.40% 58.32% 45.81% 26.47% 5.81% 

0.15 70.00% 67.78% 59.95% 47.32% 27.47% 6.06% 

0.2 70.56% 69.01% 61.52% 48.81% 28.49% 6.32% 

0.25 70.91% 70.06% 62.99% 50.27% 29.51% 6.59% 

0.3 70.98% 70.85% 64.27% 51.60% 30.49% 6.85% 

0.35 70.69% 71.28% 65.28% 52.76% 31.40% 7.11% 
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Table 2-6. Agreement percentage of DII and MNDWI Flood extents at different thresholds. 

 

 

MNDWI   

0.1 0.15 0.2 0.25 0.3 0.35 

𝑘𝐷𝐼𝐼  

0.1 83.25% 87.05% 89.02% 90.12% 91.69% 94.28% 

0.15 81.94% 86.07% 88.29% 89.55% 91.27% 94.15% 

0.2 80.55% 85.00% 87.49% 88.90% 90.81% 94.02% 

0.25 79.10% 83.86% 86.62% 88.22% 90.31% 93.84% 

0.3 77.61% 82.66% 85.71% 87.49% 89.77% 93.67% 

0.35 76.05% 81.37% 84.73% 86.71% 89.21% 93.45% 

 

 

Obtained flood extent maps from the MNDWI and DII index were examined at the pixel level. A 

comparison map was prepared by mapping the study region into 4 distinct classes assigning 

numeric values: 0, 1, 3, and 4, each representing specific flood conditions. Pixels assigned the 

value 0 indicated non-flooded regions, signifying non-flooded by both Sentinel-1 and Sentinel-2 

images. The regions inundated solely based on the Difference Image Index (DII) data were 

categorized with the numerical value 1, encompassing an area of 209.45 km2. Similarly, areas 
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submerged exclusively as per the Modified Normalized Difference Water Index (MNDWI) were 

denoted by the value 3, totaling 165.88 km2. Regions concurrently identified as flooded by both 

DII and MNDWI indices were assigned the value 4, covering a substantial area of 865.58 km2. 

The agreement percentage of 70.06% and the total agreement of 83.86% demonstrate a reliable 

coherence in the flood detection capabilities between Sentinel-1 and Sentinel-2 datasets. 

Figure 2-9 and Figure 2-10 illustrate the application of the MNDWI and DII indices, 

respectively, for flood detection in a specific rectangular region within Dadu district, while 

Figure 2-11 presents a comparative visualization, showcasing the agreement between the flood 

detection results obtained from both the DII and MNDWI methods in the same area. 
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Figure 2-9. Flood detection in the rectangular region in Dadu district using the MNDWI index 

for thresholding. 
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Figure 2-10. Flood detection in the rectangular region in Dadu district using the DII index for 

thresholding. 
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Figure 2-11. Agreement visualization of DII and MNDWI Flood detection in rectangular region 

of Dadu district. 
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2.4.4 Flood Extent Mapping of Sindh 

Utilizing the refined threshold value obtained for the Difference Image Index (DII) through the 

integration of both the Desert Flood Index (DFI) and the Modified Normalized Difference Water 

Index (MNDWI), detailed flood extent maps of Sindh were generated for the flooded months of 

August and September 1 to September 19. The resulting inundation maps delineated the areas 

affected by floods within the Sindh province are shown in Figure 2-12, and Figure 2-13 

respectively for August and September 1-19 using threshold values derived from analyses of DFI 

and DII values. It was found that 25,229 km2 was inundated in August, and 19,181 km2 in the 

first 19 days of September. Similarly, the flood extent maps derived from threshold analysis 

between MNDWI and DII indices (Figure 2-14, Figure 2-15) show that the total flooded area 

was 30,582 km2 for August and 21,851 km2 in the first 19 days of September respectively.  
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Figure 2-12. Flood Extent Map of Sindh province for August using DII threshold defined by 

agreement assessment between DFI and DII. 
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Figure 2-13. Flood Extent Map of Sindh province for September 1-19 using DII threshold 

defined by agreement assessment between DFI and DII. 
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Figure 2-14. Flood Extent Map of Sindh province for August using DII threshold defined by 

agreement assessment between MNDWI and DII. 
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.

 

Figure 2-15. Flood Extent Map of Sindh province for September 1-19 using DII threshold 

defined by agreement assessment between MNDWI and DII. 

 

 



56 

 

2.5 Discussion 

The study's results underscore the utility of Sentinel-1 SAR and Sentinel-2 optical data in 

mapping flood extents, especially in regions like the Sindh province, where adverse weather 

conditions and cloud cover can impede the use of optical data alone. The integration of SAR 

with optical data improves the accuracy and reliability of flood mapping efforts through the 

optimization of their respective indices' thresholds. The methodology has been applied through 

the Google Earth Engine (GEE) platform which allows researchers to access and analyze a wide 

array of satellite images and geospatial datasets. GEE allows the users to compute complex 

geospatial arrays leveraging Google's cloud infrastructures without having to download them 

into the user’s computer. 

Pakistan experienced severe flooding, intensified by a sequence of extreme weather phenomena. 

Notably, between the 16th and 25th of August, extreme rainfall events were recorded, with the 

most intense two-day precipitation observed on the 17th and 18th of August, followed by another 

notable rainfall event on the 24th and 25th of August. This period was marked by anomalously 

high precipitation levels. The heavy rainfall persisted into mid-September, contributing to the 

widespread and devastating impact of the floods across the region.  

The flood extent maps have been obtained by classifying the DII index images with DFI index 

images and MNDWI index images by thresholding using an exhaustive grid search method. The 

threshold value of DII (0.414227) was obtained at 𝑘𝐷𝐼𝐼 value at 0.35 during the thresholding with 

DFI index (0.25) with the agreement and total agreement observed at 79.31% and 72.08%, 

respectively. The threshold value of DII (0.42718) was obtained during thresholding with 

MNDWI Index (0.15), whereby 𝑘𝐷𝐼𝐼 was obtained at 0.25, with the agreement and total 
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agreement observed at 83.86% and 70.06%, respectively. A similar study was conducted by 

Hamidi et al. (2023) to assess flood impacts from Hurricane Ida in 2021 near New Orleans, 

Louisiana, and Hurricane Harvey in 2017 near Houston, Texas. The study used SAR-based 

indices Normalized Difference Flood Index (NDFI), Ratio Image (RI), and Difference Image 

Index (DII) to delineate flood extents. The results were compared against MNDWI-based flood 

extents. For Hurricane Ida, the optimum threshold value for DII was obtained at 0.6003 at 𝑘𝐷𝐼𝐼 

1.5, yielding agreement and total agreement percentages of 80% and 66%, respectively. 

Similarly, for Hurricane Harvey, the optimum threshold value for DII was obtained at 0.6480 at 

𝑘𝐷𝐼𝐼 0.8, with the agreement and total agreement also reaching 80% and 63%, respectively. 

Based on the study area and environmental characteristics, the value of  𝑘𝐷𝐼𝐼 can vary compared 

to the value of 1.5 suggested often in literature (Cian et al., 2018; Hamidi et al., 2023). A study 

by Baig et al. (2013) showed that the reported value of the threshold for DFI and MNDWI was 

0.3098, while 0.41 was chosen as the threshold for effective classification for the Lower Basin of 

the Indus River. In a study conducted in the Barotse floodplain in Zambezi River by Zimba et al. 

(2018), DFI thresholds between 0.3 and 0.7 have been suggested.  

The flood mapping results indicate that an area of 25,229 km2 was submerged during August, 

and 19,181 km2 during the initial 19 days of September as determined by the DFI Index. 

Meanwhile, the MNDWI Index identified 30,582 km2 of inundation in August and 21,851 km2 in 

the same period of September. These findings were then validated against external sources, 

including reports from the Food and Agriculture Organization (FAO, 2022) and research by 

Qamer et al. (2023), which documented an inundation of approximately 25,000 km2, 

approximately 18% of the total area of Sindh. Similarly, Wang et al. (2023) noted 20,912 km2 

flooded in their study of Sindh. They are presented in Table 2-7Table 2-7. Notably, variations in 
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the data range considered in these studies from August to September did not lead to differences 

in the total reported inundation area.  

 

Table 2-7. Results comparison with other sources 

 Sources Flooded area (km2) Data acquisition dates 

This study (Case 1) 25,229 Aug 1-31  

This study (Case2) 30,582 Aug 1-31  

Qamer et al. (2023) 25,000 Aug 22 - Sept 3 

FAO (2023) 25,440 Aug 1-31  

Wang et al. (2023) 20,912 Aug 25 - Sept 3 

 

 

This study contributes to flood mapping efforts by highlighting the advantages of integrating 

SAR and optical data available publicly. The effectiveness of using Sentinel-2 optical data in 

flood extent mapping is significantly compromised by persistent cloud cover during flooding 

periods. This limitation necessitated the exclusion of cloud-obscured areas, restricting the 

analysis to smaller, clear regions which may not accurately reflect wider flood impacts. 

Additionally, the fixed revisit times of both Sentinel-1 and Sentinel-2 satellites introduce further 
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complications; the intervals between image acquisitions can miss critical flood development 

stages, potentially leading to under or overestimations of flood extents. This temporal gap affects 

the consistency and reliability of flood mapping, particularly at the edges of images where flood 

conditions are most likely to change between passes. Using an exhaustive grid method allows for 

the adjustment of the MNDWI value to be more suitable for regional specificities, thereby 

enhancing the precision of flood extent maps. A universal threshold for flood detection is not 

suitable globally as it fails to account for geographical and environmental variability, often 

leading to inaccurate flood boundary delineations and severity assessments.  

2.6 Conclusion 

The accurate delineation of flood extents plays a crucial role in the efficient management of 

disasters and the implementation of mitigation strategies. Advances in remote sensing 

technology and methodologies have demonstrated their value in disaster-related applications, 

including the identification, monitoring, and assessment of flood events. Due to advancements in 

technologies, high spatial resolution, and frequent temporal coverage remote sensing data are 

available. The utility of Synthetic Aperture Radar (SAR) data for timely flood mapping has been 

explored, highlighting its advantage over optical sensors by providing reliable data even under 

conditions of cloud cover or inclement weather. The processing and analysis of these datasets 

have been facilitated by Google Earth Engine, a cloud-based platform. This study underscores 

the critical role of integrating Synthetic Aperture Radar (SAR) and optical satellite data in 

enhancing flood extent mapping, particularly in the Sindh province of Pakistan. Through the 

optimization of thresholds for the Difference Image Index (DII), Desert Flood Index (DFI), and 

Modified Normalized Difference Water Index (MNDWI), the accuracy and reliability of flood 

mapping efforts were assessed. Based on the total agreement percentages observed between the 



60 

 

sets of indices, DII performed better than MNDWI for the Sindh province. The DFI index 

yielded a closer result to previously published studies compared to the MNDWI Index.  

The study's methodology employed an exhaustive grid search for threshold optimization for 

flood detection and analysis. The findings reveal the variability of optimal threshold values 

depending on specific environmental conditions and study area characteristics, thereby 

emphasizing the importance of a nuanced approach to flood classification. The comparative 

analysis of SAR-based flood extents identified by optical-based DFI and MNDWI Indices with 

external sources confirms the validity of the study's results and particularly the efficacy of the 

DFI index in open water detection in arid regions like Pakistan. 

This study contributes valuable insights into the integration of SAR and optical data for flood 

mapping, highlighting the potential of cloud-based platforms like GEE for processing and 

analyzing large geospatial datasets efficiently. The study reaffirms the critical need for accurate 

flood mapping in regions prone to extreme weather events and demonstrates the potential for 

methodological innovations that can enhance the precision and reliability of such efforts. As 

climate change continues to exacerbate the frequency and severity of flooding events, the 

findings of this study underscore the importance of continuous advancements in remote sensing 

technologies and methodologies. Such advancements are vital for informing and guiding disaster 

management strategies, aiding in the mitigation of flood impacts on vulnerable communities and 

ecosystems. 
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Chapter 3 - Evaluating the Extent of Flood on Various Land Cover Classes Using Remote 

Sensing-Based Flood Maps and Land Use/Land Cover (LULC) Dataset. 

Abstract 

Disaster damage assessment is a crucial phase in emergency management, involving activities to 

evaluate the impact, scope, and specific needs following a disaster. It is more relevant to 

countries with regions like Sindh which are frequently troubled by floods, due to its geographic 

and climatic conditions. Assessment of damage can help authorities and relief organizations to 

make informed decisions regarding efficient resource allocation and distribution and make 

policies regarding focused mitigation practices. This study investigates the flooding impacts on 

different land cover classes in Pakistan's Sindh province, using remote sensing flood maps and 

Land Use/Land Cover (LULC) datasets. Unsupervised K-means clustering and supervised 

Random Forest classification to Sentinel-2 imagery are implemented to analyze flood-affected 

spatial distributions across croplands, urban areas, and forests. The study demonstrates the 

efficacy of Random Forest classification over K-means clustering in accurately delineating 

LULC classes. The study further revealed the vulnerability of built-up areas, irrigated crops, and 

sparse shrubs to flooding, especially in the Kambar Shahdad Kot, Jacobabad, and Larkana 

districts.  

Keywords: Flooding extent, Land use/Land cover, LULC, K-means clustering, Random Forest  

3.1 Introduction 

Remote sensing is a critical tool in flood studies, providing essential data for flood inventory, 

monitoring, mapping, and disaster response. High-resolution satellite imagery is employed to 

assess the extent of flooding, identify affected regions, and comprehend the dynamics of 
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floodwaters over time (Bioresita et al., 2018). Remote sensing technologies such as Synthetic 

Aperture Radar (SAR) offer all-weather, day-and-night imaging capabilities, enabling 

continuous flood monitoring even in adverse weather conditions, and are dependable for flood-

related studies (Irwin et al., 2018; Kitajima et al., 2021; White et al., 2015). Numerous studies 

have emphasized the significance of remote sensing in flood analysis, particularly in mapping 

and monitoring floods to support disaster response efforts (Cian et al., 2018; Hamidi et al., 2023; 

Schumann, 2015). The comparative analysis of satellite images captured before and after a flood 

event facilitates the examination of alterations in land cover, identification of inundated areas, 

and the quantification of flood severity. Such maps can be integrated with other data such as the 

Digital Elevation Model (DEM) and GIS techniques to improve the understanding of flood 

dynamics (Martinis et al., 2013). Additionally, remote sensing technology aids in analyzing 

changes in vegetation cover, influencing water dynamics and runoff patterns, thereby 

contributing to assessing the impacts of floods (Bolanos et al., 2016). Remote sensing-based 

investigations support urban planning, vulnerability assessment, the development of flood 

mitigation strategies, and support development of resilient communities (Sun et al., 2022).  

Assessing damage is crucial for understanding the impacts of disasters on public health and the 

economy, playing a pivotal role in disaster management and policy formulation (Ghaffarian et 

al., 2018). This process not only aids in coordinating efforts among various stakeholders but also 

involves communities and offers invaluable insights for the development of response strategies. 

Moreover, damage assessment is instrumental in identifying vulnerabilities and risks, enabling 

targeted mitigation measures such as resilient infrastructure development and informed land-use 

planning to reduce the likelihood and severity of future disasters (Chen et al., 2021). Damage 

assessment provides vital information for resource allocation, planning, and improving the 
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efficiency of response efforts by strategic deployment based on identified needs (Nex et al., 

2019). Damage assessment also plays a key role in identifying vulnerabilities and risks and 

facilitates targeted mitigation measures such as resilient infrastructure development and informed 

land-use planning to decrease the likelihood and severity of future disasters (Ghaffarian et al., 

2018). 

Land use and land cover (LULC) encapsulate the physical state of the land and the impact of 

human activities on these landscapes. They are key elements in driving environmental 

transformations at both local and global scales, impacting ecosystems, land stewardship, and 

water management strategies. Remote sensing, GIS, and field observations are integrated to 

generate LULC maps, aiding in understanding human-nature interactions. Machine learning 

algorithms, utilizing labeled training data and high-resolution satellite imagery, enhance land 

cover classification accuracy (Xie et al., 2019). The alterations in land cover are central to 

understanding climate change dynamics, highlighting the significant role of human interventions 

(Morin et al., 2021). Understanding LULC dynamics is, therefore, essential for developing 

comprehensive approaches to managing environmental resources, mitigating the effects of 

climate change, and ensuring sustainable development. Through the integration of remote 

sensing, geographic information systems (GIS), and field observations, LULC maps can be 

generated, facilitating an understanding of the intricate interactions between human actions and 

the natural environment. Moreover, machine learning algorithms, leveraging labeled training 

data that represent different land cover classes and employing multi-temporal, high-resolution 

satellite imagery, enhance the accuracy of land cover classification (Bui & Mucsi, 2021). Land 

use and land cover (LULC) are subject to dynamic changes influenced by both natural events 

and human activities. These alterations, stemming from both natural causes and various human 
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interventions, can provide significant environmental challenges and hazards. Monitoring 

transformations in land use and land cover (LULC) is essential for understanding potential 

concerns. This surveillance enables researchers and policymakers to understand the intricate 

relationships between human actions and the natural world, tracking these changes over time to 

facilitate better-informed decisions (Tzepkenlis et al., 2023). 

Unsupervised classification in remote sensing is a powerful technique for systematically 

categorizing and grouping pixels into distinct classes or clusters based on similar spectral 

characteristics without prior knowledge of the land classes. Detailed class information is not a 

necessity in unsupervised classification which is advantageous in exploratory studies. This 

feature is particularly beneficial in remote sensing applications where the area of interest is 

inaccessible or has not been extensively studied. Machine learning techniques play a vital role in 

enhancing the efficiency and accuracy of unsupervised classification in remote sensing. Using 

algorithms such as k-means clustering, hierarchical clustering, and Principal Component 

Analysis (PCA), machine learning enables the segmentation of the image into meaningful 

clusters without manual intervention (Hu et al., 2015). Advanced machine learning and deep 

learning models can handle high-dimensional data leading to more accurate classification 

outcomes. 

While unsupervised classification offers considerable advantages, it also encounters obstacles, 

including the potential for subjective interpretation of classes. This issue is particularly evident in 

algorithms such as K-Means, where the results can be significantly influenced by how the 

algorithm is initialized, thereby affecting the overall classification accuracy (Sonobe, 2019). 

Advanced machine learning models have been applied to remote sensing tasks, such as scene 

classification and crop mapping, demonstrating the effectiveness of transfer learning and self-
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supervised learning approaches (Berg et al., 2022; de Lima & Marfurt, 2020). Another challenge 

arises in dealing with mixed pixels, which occur when a single spatial unit displays 

characteristics of multiple land cover types, complicating the classification process for 

unsupervised methods. Hence, knowledge of the field is extremely important to get accurate 

results in such techniques.  

One of the most used unsupervised machine learning algorithms is K-means clustering. In 

remote sensing, this algorithm categorizes the pixels based on their spectral similarities by 

partitioning the dataset into K number of pre-determined non-overlapping clusters by minimizing 

within-cluster variance while maximizing variance between clusters (Li et al., 2014). Pixels are 

allocated to the closest cluster centroid by measuring the Euclidean distance, followed by a 

recalculation of the centroids. The solution is produced when the reassignment of data does not 

change the result with iterations. In remote sensing, unsupervised clustering algorithms like K-

Means are essential for processing and interpreting remote sensing data efficiently and accurately 

and facilitate tasks such as land cover classification, flood mapping, and vegetation monitoring 

(Sublime & Kalinicheva, 2019; Weinstein et al., 2019). The performance of K-means clustering 

depends heavily on the initial seed values chosen and specifying the number of cluster centers 

before cluster identification. 

With unsupervised classification techniques like K-means clustering, the optimal number of 

clusters is not predetermined and can significantly impact the results and interpretability of the 

analysis (Langford et al., 2019). Tools like the elbow method are helpful in this context which 

calculates the within-cluster sum of squares (WCSS) for each configuration and an optimal 

number of clusters is determined where the rate of WCSS decreases sharply. Selecting a cluster 

number in the optimal range effectively balances between too few clusters (underfitting) and too 
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many clusters (overfitting), ensuring the most efficient representation of the data's structure 

without unnecessary complexity (Li et al., 2016). This ensures the balance between fitting the 

data well and avoiding overfitting (Amatya et al., 2019). The elbow method has been applied in 

remote sensing and environmental science studies to estimate the number of clusters (Huang et 

al., 2016; Karim & Zhang, 2021; Santaga et al., 2021; Scarth et al., 2019; Viana-Soto et al., 

2020). 

Supervised classification in remote sensing is essential for various applications such as creating 

land cover maps, monitoring vegetation, and detecting land use changes. Supervised 

classification relies on labeled datasets to accurately categorize land cover and land use. This 

method involves collecting representative samples from different land cover classes, extracting 

features like spectral and spatial attributes, and training machine learning algorithms (Yang et al., 

2021). Supervised classification algorithms utilize a dataset with predefined labels to understand 

the correlation between features and their corresponding class labels during the training phase. 

After the model has been adequately trained, it is then employed to categorize pixels throughout 

the image, attributing a class label to each pixel. The accuracy of supervised classification is 

crucial and is typically assessed by comparing the results with independent validation data or 

ground truth information (Yang et al., 2021).  

Random Forest (RF) is an ensemble classifier particularly helpful for Land use/ land cover 

(LULC) mapping. The effectiveness of RF classifiers has been well-studied in vegetation 

mapping and land cover classification (Saini & Ghosh, 2018; Wulder et al., 2018). RF classifier 

has demonstrated robust and superior performance in comparison to other machine learning 

classifiers such as Support Vector Machine (SVM), k-nearest Neighbors (KNN), and Decision 

Trees (DT) for remote sensing image classification. RF is an ensemble classifier that generates 
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multiple decision trees constructed from random segments of the training data and its attributes 

avert overfitting and enhance variability among the trees to collectively make more accurate 

predictions. RF can work with complex datasets and extract significant insights for precise land 

cover classification (Mellor et al., 2013). Random Forest has been successfully applied in various 

remote sensing scenarios, including crop classification using optical and radar images (Hütt et 

al., 2016). 

Accurately mapping flood extents and assessing damage using remote sensing is crucial, 

especially in areas like the Sindh province of Pakistan, which are prone to severe and recurrent 

floods. Land Use/Land Cover (LULC) classification images combined with flood maps from 

Sentinel-1 SAR imagery improve disaster management and policymaking. The integration of 

publicly accessible global remotely sensed LULC datasets, such as Dynamic World V1, ESA 

WorldCover 10m V100, and the Copernicus Global Land Cover Layers, is instrumental for 

accurately assessing flood impacts. By detailing the specific types of land use and cover 

impacted by floods, authorities can better assess the effects on critical infrastructure, agriculture, 

and residential areas. This detailed damage assessment informs targeted recovery and 

rehabilitation efforts and supports the development of resilient infrastructure and land use 

planning strategies. However, the need to update these datasets annually to maintain accuracy 

and relevancy necessitates further exploration into advanced techniques to enhance the precision 

of classification images and overall damage assessment practices. Despite the existence of 

studies utilizing these advanced techniques, there is a significant gap in fully leveraging them in 

flood studies.  

The province of Sindh, located in the southeastern part of Pakistan, is particularly susceptible to 

floods due to its geographical location and climatic conditions. Due to high intraseasonal 
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variability in the region, Sindh receives significant rainfall between July and September each 

year, making it vulnerable to calamities such as floods and droughts. This study aims to evaluate 

the impact of flooding on various land cover classes within Sindh, utilizing remote sensing-based 

flood maps and Land Use/Land Cover (LULC) datasets. By analyzing the spatial distribution of 

flood-affected areas across different land classes detected by Sentinel-1 Synthetic Aperture 

Radar (SAR) imagery, this study seeks to understand how the extent of flooding varies among 

different land classes, such as croplands, urban areas, and forests, during a flood event. The 

objective of the study is to evaluate the extent of flood impact on various land cover classes 

using remote sensing-based flood maps and the Land Use/Land Cover (LULC) dataset in the GIS 

environment.  

3.2 Study Area and Data 

Located in the southern part of Pakistan, Sindh province borders the Arabian Sea to the south, 

Balochistan to the north and west, Punjab to the northeast, and India to the east as shown in 

Figure 3-1. Spanning about 141,000 km2, Sindh constitutes about 17.7% of Pakistan's total area. 

Positioned within a zone that transitions from tropical to subtropical, Sindh experiences intensely 

hot summers, with temperatures often soaring above 46°C from May through August, while the 

winters are relatively short, with temperatures averaging around 2°C in December and January. 

The province's primary watercourse is the Indus River, fed by its tributaries like the Jhelum, 

Chenab, Ravi, and Sutlej, which traverse through other provinces before converging in Sindh. 

Sindh province has a semi-arid climate, but it features diverse natural features such as coastal 

and riverine forests, vast freshwater lakes, and varied landscapes of mountains and deserts. The 

province is predominantly arid and has sparse vegetation, except the areas along the Indus Valley 

that are irrigated. 
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Figure 3-1. Map of the Study area: Sindh province of Pakistan. 
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The European Union's Copernicus Sentinel constellation delivers data through both optical (such 

as Sentinel-2) and synthetic aperture radar (SAR, like Sentinel-1) technologies. Sentinel-2 

mission has a pair of Satellites, Sentinel-2A, and Sentinel-2B with Multispectral Instrument 

(MSI) capable of capturing imagery over 13 spectral bands spanning from visible to shortwave 

infrared spectrum (Helber et al., 2019). The dataset 'COPERNICUS/S2_SR' from the Sentinel-2 

mission, a Level-2A product, is accessible through the Google Earth Engine (GEE) platform and 

has been used in this study for land use and land cover (LULC) analysis. The dataset offers high 

spatial resolution, ranging from 10 to 60 meters, and frequent observation intervals of every 5 

days (Silva-Cardoza et al., 2022). Land cover (Sindh Province, Pakistan - 10m) is the dataset 

released by the FAO Geospatial Team NSL and the FAO GIS team in Pakistan and has been 

used as ground data in this study. Land cover data offers a detailed account of the biological and 

non-biological resources within a province, covering a wide range of classifications such as 

farmed areas, natural plant life, barren landscapes, and urban territories. It primarily focuses on 

the geographical characteristics of a province. Google Earth Engine has been utilized to carry out 

both supervised and unsupervised classification of Sentinel-2 data for the province of Sindh, to 

acquire the Land Use and Land Cover (LULC) dataset. The post-processing of the results and 

statistical analyses are carried out in ArcGIS Pro. 

3.3 Methodology 

This section of the thesis describes the methodological framework utilized to evaluate the spatial 

distribution and extent of flooding on various land cover classes in the administrative districts of 

Sindh province. The study leverages remote sensing-based Land Use/Land Cover (LULC) 

datasets and flood maps derived from Sentinel-1 Synthetic Aperture Radar (SAR) imagery. The 

approach involves creating LULC maps via both unsupervised and supervised classification 
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methods and comparative analysis to select the most accurate LULC map. This map is then 

integrated with flood extent and administrative district maps to assess the flood impact. The 

flowchart of the methodology is shown in Figure 3-2. 

 



76 

 

 

 

Figure 3-2. Flowchart diagram of the methodology. 
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3.3.1 Data Acquisition 

To develop a Land Use and Land Cover (LULC) Dataset, the Sentinel-2 Level-2A dataset 

'COPERNICUS/S2_SR' was accessed through the Google Earth Engine. Sentinel-2 images 

collected in the initial half of May 2022, directly preceding the flooding period were filtered. For 

the unsupervised classification, the bands B1-B12 were taken in the median composite. The 

filtered images do not require further processing in Google Earth Engine. The study uses the 

Land Use/Land Cover (LULC) dataset for the whole period of the year 2021, obtained from the 

Food and Agriculture Organization (FAO) as the ground data, shown in Figure 3-3. The LULC 

dataset was ingested into the GEE as assets. Overlay and zonal statistical analyses were 

performed in ArcGIS Pro software. Table 3-1 presents the land cover classes identified within 

the FAO land cover classification - Sindh dataset.  
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Table 3-1. Labels of classes from Land Cover Map (FAO, 2023) 

Class Value  Label 

C_1  Built-up (BUP) 

C_2  Roads (ROA) 

C_3  Tree Orchards (ORC) 

C_4  Herbaceous crops irrigated (HCI) 

C_5  Herbaceous crops rainfed (HCR) 

C_6  Herbaceous crops in flood plain (HCF) 

C_7  Herbaceous natural vegetation (HER) 

C_8  Shrubs sparse natural vegetation (SOP) 

C_9  Shrubs dense natural vegetation (SCL) 

C_10  Shrubs in temporary wet soil (SWE) 

C_11  Trees sparse natural vegetation (TOP) 

C_12  Tree forest plantations (TFP) 

C_13  Trees dense natural vegetation (TCL) 
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C_14  Sand dunes (SDU) 

C_15  Bare soil (BSO) 

C_16  Bare soil in temporary wet (BTW) 

C_17  Water bodies (WBO) 

C_18  Wetlands (WET) 
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Figure 3-3. Land Cover Map for Sindh (FAO, 2023). 
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3.3.2 LULC Dataset Development 

LULC Dataset has been developed by supervised and unsupervised classification methods. In the 

unsupervised classification, the K-means clustering algorithm was performed on the mosaic 

composite of Sentinel-2 images. In unsupervised classification approaches, determining the 

optimal number of clusters is crucial as it directly influences the outcomes and the clarity of the 

analysis. The Elbow plot method was implemented which computes the within-cluster sum of 

squares (WCSS) across various configurations, identifying the optimal cluster count. Supervised 

classification was conducted using the Random Forest (RF) method, known for its high accuracy 

and robustness in dealing with non-linear data. This approach involved training the model on a 

subset of the data with known classifications and then applying it to classify the entire dataset 

into distinct land cover classes. The choice of initial seeds can markedly influence the choice of 

training samples as well as the results by determining the starting initial centroids of clusters, 

resulting in slightly different final cluster arrangements. Hence, multiple iterations were 

performed until the results. Hence, multiple iterations were performed until the change in seed 

value no longer significantly influenced the results in both Random Forest and K-means 

classification, thereby ensuring the stability and robustness of the models. 

To evaluate the accuracy of the Land Use and Land Cover (LULC) maps produced by 

unsupervised (K-means) and supervised (Random Forest) classification techniques, a range of 

metrics are utilized. The Confusion Matrix plays a pivotal role as it illustrates the performance of 

a classification model against a dataset with known outcomes. It aligns the model's predictions 

against the actual classifications on orthogonal axes, where each entry represents the count of 

predictions for a predicted class against the actual class. This aids in the detailed assessment of 

the model’s predictive accuracy and error rates. Accuracy serves as another fundamental metric, 
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defining the overall correctness of the model by the proportion of correct predictions made from 

total predictions, thus offering a direct measure of performance efficiency. 

The kappa statistic, k enhances this analysis by evaluating the congruence between predictions 

and actual classifications, adjusted for random chance agreement. A k value of 1 denotes perfect 

congruence, whereas a value of 0 indicates no improvement over random chance, providing 

deeper insights into the model’s predictive precision. Furthermore, user accuracy (UA) and 

producer accuracy (PA) assess the model’s predictive reliability and completeness, respectively. 

UA, also known as precision, is the ratio of correct positive predictions to all positive predictions 

made. In contrast, PA, or recall, measures the proportion of correct positive predictions out of the 

actual positive cases. 

 

3.3.3 Flood Extent Mapping 

The flood extent mapping was developed using the Sentinel-1 SAR dataset using the Difference 

Image Index (DII) to define the flooded areas. A change detection algorithm was used to analyze 

the indices derived from the SAR dataset with the Sentinel-2 dataset. A sensitivity analysis was 

conducted to evaluate the threshold values for each index so that there is maximum agreement 

between the results in pixel levels. This analysis determined the optimal threshold values for 

each index, crucial for achieving maximum alignment of the results. Utilizing these threshold 

values, a comprehensive flood extent map was generated, delineating the areas affected by 

flooding in the Sindh province during August.  
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3.3.4 Overlay and Zonal Statistical Analyses 

The LULC Dataset generated through unsupervised classification methods, is chosen based on 

its high accuracy in comparison with the FAO land cover dataset. The LULC dataset is overlaid 

with the Flood extent map and administrative district maps of the Sindh province. The overlay 

analyses are carried out in the GIS environment which enabled the identification and 

quantification of flood-affected areas within each land cover class across different administrative 

districts. This analysis provided insights into the spatial distribution and magnitude of the 

severity and distribution of flood impacts. 

3.4 Results 

3.4.1 K-means Clustering 

The optimal number of clusters is not predetermined in unsupervised classification techniques 

like K-means clustering. This optimal cluster number forms the foundation for subsequent 

analyses, including the detailed examination of flood extents across different land cover classes 

within the administrative districts of the study area. To select the optimal number of clusters, the 

elbow method was used where the number of clusters was plotted against WCSS values with K-

means clustering. At the Elbow point, change in WCSS becomes negligible with an increase in 

clusters, indicating that adding more clusters does not significantly improve the model's 

performance. Initially, the WCSS values were plotted against the number of clusters ranging 

from 5 to 50. The analysis revealed a gradual decline in WCSS as the number of clusters 

increased, with notable inflection points observed at specific cluster values, as shown in Figure 

3-4. 



84 

 

The WCSS was initially high at 1,270,852 for 5 clusters and decreased as more clusters were 

added, reflecting improvements in cluster homogeneity. However, as the number of clusters 

increased further to 15, 20, 25, and beyond, the rate of decrease in WCSS began to diminish. The 

plot visually supports the principle, with the "elbow"; the point of inflection on the curve situated 

between 10 and 20 clusters.  

 

 

 

Figure 3-4. Elbow Plot Showing the Within-Cluster Sum of Squares (WCSS) against the Number 

of Clusters (1). 

 

 

To determine the optimal number of clusters, an elbow plot was refined to include additional 

data points, representing the WCSS values for each cluster count ranging from 10 to 20, as 

shown in Figure 3-5. The curve began to flatten after 10 clusters and continued to decrease at a 
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diminishing rate up to 20 clusters. Beyond 20 clusters, the reduction in WCSS became less 

prominent, suggesting that the additional complexity of more clusters did not improve 

homogeneity within clusters. The curve starts to level off after 10 clusters. Hence, clusters 

numbers 10, 14, and 18 were chosen to proceed with the unsupervised clustering.  

 

 

 

Figure 3-5. Elbow Plot Showing the Within-Cluster Sum of Squares (WCSS) against the Number 

of Clusters (2). 
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3.4.1.1 Results of K-means Clustering with k=10 

The K-means clustering algorithm was applied to the median composite of Sentinel-2 satellite 

images in GEE for each predetermined cluster count (k=10, 14, and 18) to identify the land use 

and land cover (LULC) patterns within the study area. Each of the clusters identified represents 

distinct land cover types. For each predetermined cluster count (k=10, k=14, and k=18), the k-

means algorithm was iteratively executed with varying initial seed values. The derived clusters 

were labeled and reclassified based on the land use and land cover characteristics provided by 

the FAO-Pakistan. The accuracy of the land cover classifications for each cluster count was 

accessed through comparison with the FAO-Pakistan LULC dataset. The validity and accuracy 

of the clustered LULC classes for each k value (10, 14, and 18) were quantitatively assessed 

using confusion matrices. These matrices quantify the performance of clustering algorithms for 

selected cluster numbers.  

Figure 3-6 presents the results obtained from applying the k-means clustering algorithm to 

Sentinel-2 satellite composite imagery, where the initial number of clusters (k) was set to 10. 

This figure illustrates the segmentation of the landscape into 10 distinct clusters, each 

representing a potential unique land use and land cover (LULC) category identified from the 

Sentinel-2 imagery. Subsequently, these clusters were labeled to correspond with specific LULC 

types for interpreting the segmented imagery meaningfully.  
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Figure 3-6. Output of K-means clustering using 10 clusters. 
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During the labeling stage, reclassification was needed for an accurate representation of the area's 

Land Use and Land Cover (LULC) distribution. This led to the merging of the original 10 

clusters into 6 clusters. Land cover class C_1 which represented built-up areas was removed 

from the final classified map and replaced with city masks due to the classification's inability to 

adequately capture this land cover type and the resulting map has been presented in Figure 3-7. 

The performance of classification was then accessed through confusion matrices. Table 3-2 

presents the outcomes derived from the confusion matrix analysis. 
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Table 3-2. Confusion matrix between K-means (k=10) derived LULC map with FAO LULC map 

Class C_4 C_5 C_14 C_15 C_17 Total 

U Acc 

(%) Kappa 

C_4 256324 1881 67852 39525 4842 370424 69.2 0 

C_5 16648 40495 36345 33895 736 128119 31.61 0 

C_14 11779 13465 92103 39653 631 157631 58.43 0 

C_15 3580 13598 9988 67717 286 95169 71.15 0 

C_17 922 14 511 1198 16497 19142 86.18 0 

Total 289253 69453 206799 181988 22992 770485 0 0 

P Acc (%) 88.62 58.31 44.54 37.21 71.75 0 61.41 0 

Kappa 0 0 0 0 0 0 0 0.4581 

 

 

The confusion matrices revealed varying levels of accuracy across different LULC classes. Class 

C_4 had a user accuracy of 69.2%, while Classes C_5 and C_14 experienced significantly lower 

user accuracies of 31.61% and 58.43%, respectively. Conversely, Class C_15 displayed a 

relatively high user accuracy of 71.15%, indicating a better alignment with the ground truth. In 

contrast, Class C_17 exhibited the highest user accuracy of 86.18%, suggesting an excellent 
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agreement with the reference LULC dataset. Producer accuracy also varied significantly across 

classes, with Class C_4 achieving an accuracy of 88.62%, whereas Class C_14 had a lower 

producer accuracy of 44.54%. The kappa statistic of 0.4581 indicates a moderate agreement 

between the k-means classified output and the reference LULC dataset, after accounting for the 

removal of built-up areas and their replacement with city masks to address the classification's 

limitations. The overall accuracy of the classification was observed to be approximately 61.41%. 
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Figure 3-7. LULC map generated from K-means clustering using 10 clusters. 
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3.4.1.2 Results of K-means Clustering with k=14 

The k-means clustering algorithm was initiated with 14 clusters on Sentinel-2 satellite composite 

imagery and initializing it with 14 clusters. Each cluster is suggested to correspond to a distinct 

category of land use and land cover (LULC), as identified from the Sentinel-2 dataset and 

presented in Figure 3-8. The clusters were labeled to match specific LULC types. During 

labeling the LULC distribution consolidated from 14 clusters to 8 meaningful labeled clusters. 

The land cover class C_1, indicative of urban or built-up regions, was substituted with city 

masks due to the classifier's inability to accurately depict this particular type of land cover. 

Consequently, class C_1 was omitted from the confusion matrix analysis. The final classification 

underwent an evaluation using confusion matrices, the results of which are detailed in Table 3-3. 

Figure 3-9 represents the revised labeled LULC map.  
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Figure 3-8. Output of K-means clustering using 14 clusters. 
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The analysis conducted via the confusion matrices showed varied accuracy levels across the 

different LULC classes. Class C_4, for example, had a user accuracy of 71.43%, while classes 

such as C_5 and C_14 displayed considerably lower user accuracies of 37.88% and 38.52%, 

respectively. On the other hand, Class C_15 and C_17 exhibited a notably higher user accuracy 

of 73.68% and 80.67%, suggesting a strong alignment with the reference LULC dataset. The 

producer accuracy across the classes displayed significant variability. Class C_4 achieved a high 

producer accuracy of 96.69%, which contrasts sharply with the much lower accuracies seen in 

classes like C_5 and C_14, with producer accuracies of 54.14% and 82.71%, respectively. The 

kappa statistic of 0.4878 indicates a moderate agreement between the k-means classified output 

and the reference LULC dataset. The classification model's performance was measured, 

revealing an overall accuracy rate of 59.95%. 
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Table 3-3. Confusion matrix between K-means (k=14) derived LULC map with FAO LULC map 

Class 

 C_4 C_5 C_8 C_14 C_15 C_17 C_18 Total 

U Acc 

(%) Kappa 

C_4 279456 2389 55131 1151 39952 5476 7669 391224 71.43 0 

C_5 944 37593 28320 3344 28979 13 54 99247 37.88 0 

C_8 2083 3782 50878 9922 16072 22 36 82795 61.45 0 

C_14 2909 13729 63151 70087 31626 223 225 181950 38.52 0 

C_15 2073 11928 8347 227 63769 98 102 86544 73.68 0 

C_17 122 12 54 0 59 10401 2246 12894 80.67 0 

C_18 1445 6 818 4 1488 6758 16090 26609 60.47 0 

Total 289032 69439 206699 84735 181945 22991 26422 881263 0 0 

P Acc 

(%) 96.69 54.14 24.61 82.71 35.05 45.24 60.9 0 0 0 

Kappa 0 0 0 0 0 0 0 0 0 0.4878 
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Figure 3-9. LULC map generated from K-means clustering using 14 clusters. 
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3.4.1.3 Results of K-means Clustering with k=18 

Figure 3-10 illustrates the application of the k-means clustering algorithm to Sentinel-2 satellite 

composite imagery, initially configured with 18 clusters. This process divided the landscape into 

18 distinct clusters, each class representing a unique land use and land cover (LULC) category as 

identified from the Sentinel-2 data. These clusters were subsequently assigned labels 

corresponding to specific LULC types which also required a reclassification to ensure an 

accurate LULC distribution. Class C_1 was retained in the LULC map despite being excluded 

from the confusion matrix analysis as the classifier did not identify this class accurately. The 

adjusted classification map is demonstrated in Figure 3-11, where the performance of this 

classification is evaluated using confusion matrices detailed in Table 3-4. 
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Figure 3-10. Output of K-means clustering using 18 clusters. 
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The confusion matrix analysis, adapted for 18 clusters, reveals varied accuracy levels across the 

LULC classes. Class C_4, for instance, displayed a user accuracy of 62.53%, while Classes C_5 

and C_14 had lower user accuracies of 38.95% and 40.22%, respectively. Class C_15 showed a 

higher user accuracy of 69.65%. Class C_17 exhibited the highest user accuracy among the 

assessed classes at 76.12%. The producer accuracy presented a broad spectrum, with Class C_4 

achieving 90.21% and C_14 showing 73.11%. The kappa statistic of 0.4703 indicates a moderate 

agreement between the k-means classified output and the reference LULC dataset, while the 

overall accuracy at 58.51% signifies that around 42% of the predictions were inaccurately 

classified. 
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Table 3-4. Confusion matrix between K-means (k=18) derived LULC map with FAO LULC map 

Class C_4 C_5 C_8 C_13 C_14 C_15 C_17 C_18 Total 

U Acc 

(%) 

Kapp

a 

C_4 261039 3690 52509 2867 3007 35821 4515 6171 369619 62.53 0 

C_5 3175 34590 25364 2 2842 22389 11 39 88412 38.95 0 

C_8 16576 4080 65262 16 16375 28453 1224 1681 133667 47.07 0 

C_13 1514 3 501 4581 0 110 404 415 7528 44.06 0 

C_14 1915 12659 52280 0 62277 25097 26 29 154283 40.22 0 

C_15 4277 14415 10401 1 232 68726 139 129 98320 69.65 0 

C_17 114 10 61 132 0 69 9826 1868 12080 76.12 0 

C_18 643 6 421 3556 3 1323 6847 16096 28895 43.45 0 

Total 289253 69453 206799 11155 84736 181988 22992 26428 892804 0 0 

P Acc 

(%) 90.21 49.72 31.49 40.12 73.11 37.44 41.74 60.32 0 58.51 0 

Kappa 0 0 0 0 0 0 0 0 0 0 

0.470

3 
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Figure 3-11. LULC map from K-means clustering using 18 clusters. 
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3.4.2 Random Forest Classification 

The Random Forest classification algorithm was implemented on Sentinel-2 satellite composite 

imagery and the region of interest, Sindh province, was divided into distinct land use and land 

cover (LULC) categories. The resulting map, which segments the landscape into various LULC 

classes based on the Sentinel-2 data, is detailed in Figure 3-12. The effectiveness of this 

classification was evaluated using confusion matrices, with the results tabulated in Table 3-5. 

The confusion matrix for the Random Forest classification reveals the algorithm's varied 

performance across LULC classes. Irrigated herbaceous crops represented by Class C_4 was 

accurately identified, as evidenced by a user accuracy of approximately 68.92%. In contrast, 

certain classes such as C_6 and C_7 demonstrated much lower user accuracies of 0.1% and 

nearly 0.05%, respectively. The algorithm effectively classified Class C_15 with a user accuracy 

of 74.18%. The producer accuracies across classes also varied, highlighting the algorithm's 

differing effectiveness in identifying specific LULC types. Class C_4, for example, achieved a 

high producer accuracy of 89.69%. Similarly, Class C_14, which indicates Sand dunes, showed a 

significant producer accuracy of 77.27%. The kappa statistic, standing at 0.5637, indicates a 

meaningful level of agreement between the Random Forest classified output and the reference 

LULC dataset, underscoring the model's overall predictive accuracy. 
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Table 3-5. Confusion matrix between RF-derived LULC map with FAO LULC map. 

Class C_1 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 C_11 C_13 C_14 C_15 C_16 C_17 C_18 Total 

U Acc 

(%) Kappa 

C_1 2774 39 1979 87 20 0 1635 2 189 167 15 14 1309 381 288 348 9247 30 0 

C_3 363 5683 2520 6 3 0 401 76 606 474 323 0 35 13 68 30 10601 53.61 0 

C_4 18412 8474 259100 1460 557 82 35837 317 8361 12827 2009 85 19056 1865 3107 4377 375926 68.92 0 

C_5 1638 400 6052 35393 20 6 15214 68 566 800 132 357 6299 78 135 180 67338 52.56 0 

C_6 593 146 2097 2218 9 0 2526 29 211 324 57 87 621 36 72 74 9100 0.1 0 

C_7 370 49 1112 1951 2 4 2812 41 149 181 31 70 603 21 39 52 7487 0.05 0 

C_8 4196 122 5959 18576 77 43 109963 1812 596 979 106 7818 12687 188 94 174 163390 67.3 0 

C_9 339 55 980 366 6 3 3142 172 229 250 57 766 1024 37 90 58 7574 2.27 0 

C_10 227 250 1589 241 10 0 1735 161 1109 518 311 572 645 41 147 177 7733 14.34 0 
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C_11 77 31 392 142 1 1 1122 10 128 83 44 606 531 27 163 70 3428 2.42 0 

C_13 63 41 487 133 3 0 1368 5 311 55 6091 1402 841 85 411 614 11910 51.14 0 

C_14 177 3 343 1406 7 2 13837 8 131 20 256 64923 12883 153 188 248 94585 68.64 0 

C_15 1918 6 5044 7300 26 35 15341 147 280 132 183 7294 122397 1592 1308 2002 165005 74.18 0 

C_16 270 1 433 11 6 0 236 2 143 11 271 13 1150 3809 1025 2498 9879 38.56 0 

C_17 163 4 524 12 7 1 369 8 422 27 414 4 538 1651 13936 3051 21131 65.95 0 

C_18 93 2 280 4 1 0 129 1 138 6 807 6 715 4102 1815 12412 20511 60.51 0 

Total 31673 15306 288891 69306 755 177 205667 2859 13569 16854 11107 84017 181334 14079 22886 26365 984845 0 0 

P Acc 

(%) 8.76 37.13 89.69 51.07 1.19 2.26 53.47 6.02 8.17 0.49 54.84 77.27 67.5 27.05 60.89 47.08 0 64.77 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5637 
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Figure 3-12. LULC map generated by Random Forest Algorithm. 
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3.4.3 LULC Dataset Selection 

Following a detailed analysis of land use and land cover (LULC) patterns using k-means 

clustering and Random Forest classification algorithms on Sentinel-2 satellite imagery, two 

distinctive methodologies were identified. Each result provides perspectives on the distribution 

of LULC across the area studied. The k-means clustering algorithm was explored with varying 

cluster counts of 10, 14, and 18. In this study, K-means clustering, and Random Forest 

classification techniques were implemented to analyze and classify land use and land cover 

(LULC) patterns. K-means clustering was initiated with k=10, 14, and 18 clusters. In the 

comparative analysis between K-means clustering and Random Forest classification for mapping 

land use and land cover (LULC) within the study area, the Random Forest classification showed 

better results – presented in Table 3-6. The Random Forest method's higher Kappa statistic of 

0.5637, suggests a more robust agreement with the reference LULC dataset compared to K-

means clustering. Additionally, it achieved an overall accuracy of 64.77%, making it the 

preferred method over the K-means configurations tested. 
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Table 3-6. Classification accuracy and kappa coefficients for adopted classification techniques. 

Classification Overall Accuracy Kappa 

Unsupervised- 10 Clusters 61.41% 0.4581 

Unsupervised- 14 Clusters 59.95% 0.4878 

Unsupervised- 18 Clusters 58.51% 0.4703 

Supervised - RF 64.77% 0.5637 

 

 

3.4.4 Overlay and Zonal Statistics 

The study employed ArcGIS software to overlay the flood extent map onto the LULC map and 

the administrative boundaries of Sindh province, merging three essential geographic layers to 

analyze the flood's impact across various land uses and administrative zones. This overlay 

process facilitated the analysis of flood coverage across various LULC classes within each 

administrative zone. By employing zonal statistics, detailed insights were garnered regarding the 

spatial distribution and intensity of flood impacts within distinct LULC categories and 

administrative units. The integration of these layers allowed for an assessment of the flood's 

impact on each LULC class in the Sindh province and is shown in Table 3-7. 
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Table 3-7. Flood extent over various Land cover/Land use classes (km2). 

Land Class Total Area Flooded Area % Flooded 

BUP 1384 250 18.1 

ORC 1723 125 7.3 

HCI 61471 19296 31.4 

HCR 9494 269 2.8 

HCF 0 0 0 

HER 0 0 0 

SOP 30572 1028 3.4 

SCL 30 1 3.3 

SWE 451 76 16.9 

TOP 548 69 12.6 

TCL 1413 68 4.8 

SDU 14532 53 0.4 

BSO 26365 3335 12.6 

BTW 1288 141 10.9 

WBO 3407 124 3.6 

WET 3343 315 9.4 

 

 

The flooded extent over the LULC classes, and each district within Sindh were identified and the 

results have been presented in Table 3-8 and Table 3-9 respectively. Among the districts, 

Kambar Shahdad Kot experienced the highest flood coverage in built-up areas, with an extent of 
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28.75 km2 affected. This was closely followed by Jacobabad and Larkana, where the floodwaters 

impacted 23.79 and 25.01 km2 of built-up regions, respectively. These districts represent the 

areas with the most inundations on urban and built-up land, highlighting a critical need for 

targeted flood mitigation and urban planning strategies.  

In the district of Dadu, the herbaceous crops irrigated (HCI) class experienced the most 

significant flood impact, with 1384.90 km2 affected (63.5% of the total flooded area in the 

district). This is followed by the Kambar Shahdad Kot district, where the HCI class again faced a 

substantial inundation, covering an area of 3167.34 km2 (84.4% of the total flooded area in the 

district). The third highest district, Jacobabad, showed a similar trend with 1946.87 km2 the HCI 

class impacted by flooding (88.7% of the total flooded area in the district). The HCI class stands 

out as the most affected, with 31.4% of its total area inundated, highlighting the vulnerability of 

irrigated agricultural lands to flood events in Sindh. The second most impacted class is the 

shrubs sparse natural vegetation (SOP), with significant inundation in Kambar Shahdad Kot 

(157.18 km2 - 4.2% of the total flooded area in the district) and Dadu (113.30 km2 - 5.2% of the 

total flooded area in the district). The third class, bearing significant flood impact, is the bare soil 

(BSO) class, especially within the Jamshoro district, where 1062.82 km2 were affected (66.1% of 

the total flooded area in the district). 

The analysis of the flood extent over built-up areas across different districts of Sindh province, as 

depicted in the provided data, revealed significant inundation within specific regions. Jacobabad, 

Larkana and Kambar Shahdad Kot are the most affected districts with 71.6%, 66.9% and 59.2% 

of the land affected. In terms of affected area, Kambar Shahdad Kot, Jacobabad, Dadu are the 

most affected districts with 3753 km2, 2195 km2 and 2179 km2 of the land affected. 
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Table 3-8. Flood extent by District (km2) over various Land cover/Land use classes (%). 

    % of Land Class/Land use in the Flooded Area in the District 

District 

Total 

Area 

(km2) 

Flooded 

Area 

(km2) 

% 

Flooded BUP ORC HCI HCR SOP SCL SWE TOP TCL SDU BSO BTW WBO WET 

Badin 7270 1881 25.9 0.3 0.2 84.5 0 2.8 0 0.1 0.1 0.1 0.1 10.5 0.2 0.3 0.9 

Central 

Karachi 72 0 0.6 28.9 0 37.8 0 8.9 0 0 0 0 0 22.2 0 2.2 2.2 

Dadu 9024 2179 24.2 0.7 0.1 63.5 8.3 5.2 0 0.1 0.1 0.1 0.2 21.1 0.2 0.3 0.1 

East Karachi 225 2 0.9 12.1 0 32 1.5 25.2 0 0 0.5 0 1.5 24.8 1 1 0.5 

Ghotki 7227 620 8.6 1.2 0.9 84.2 0 4.9 0 0.3 0.4 0.1 1.7 5.1 0.2 0.7 0.4 

Hyderabad 1132 200 17.6 1.5 3.8 81.5 0.5 2.9 0 0.3 0.3 0.1 0.1 6.9 0.7 0.8 0.5 

Jacobabad 3065 2195 71.6 1.1 0.1 88.7 0 3.6 0 0.1 0.3 0 0.1 4.7 0.2 0.5 0.5 

Jamshoro 12520 1608 12.8 0.7 0.1 25.2 2.8 4.5 0 0 0.1 0 0.1 66.1 0.2 0.2 0.1 

Kambar 

Shahdad Kot 6342 3753 59.2 0.8 0.2 84.4 0.7 4.2 0 0.5 0.3 0.2 0.2 7.9 0.1 0.4 0.2 

Kashmore 2980 800 26.8 1 0.2 88.6 0 3.5 0 0.2 0.3 0 0.1 4.9 0.4 0.5 0.4 

Khairpur 18008 1163 6.5 1.7 0.9 82.1 0.1 5.7 0 0.7 0.5 0.2 0.3 6 0.4 0.9 0.4 
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    % of Land Class/Land use in the Flooded Area in the District 

District 

Total 

Area 

(km2) 

Flooded 

Area 

(km2) 

% 

Flooded BUP ORC HCI HCR SOP SCL SWE TOP TCL SDU BSO BTW WBO WET 

Korangi 

Karachi 115 2 1.9 6.3 0.5 49.8 1.4 16.7 0 0.9 0.9 0.9 1.4 16.7 0.9 1.8 1.4 

Larkana 2175 1455 66.9 1.7 0.2 88.1 0.1 4.3 0 0.2 0.4 0 0.1 3.9 0.4 0.5 0.2 

Malir Karachi 3025 97 3.2 0.8 0.1 8.4 1.4 12.1 0 0.1 0.2 1 0.8 69.8 1.6 0.7 3 

Matiari 1626 463 28.5 1.3 3.7 87.2 0 2.4 0 0.4 0.4 0.1 0 3.4 0.7 0.3 0.2 

Mirpur Khas 3848 495 12.9 0.3 1.5 88.4 0 1.2 0 0.2 0.2 0.1 0 7.4 0.1 0.3 0.3 

Naushahro 

Feroze 3418 1069 31.3 1.9 0.7 85 0.1 5.3 0 0.3 0.5 0.1 0.1 4.3 0.9 0.5 0.2 

Sanghar 11345 832 7.3 0.9 1.1 86.6 0 2.1 0 0.8 0.2 0.6 0 5.5 0.2 1 1 

Shaheed 

Benazir Abad 5135 1199 23.4 1.5 0.7 84.6 0.1 4.3 0 0.3 0.3 0.1 0.1 6.8 0.2 0.6 0.3 

Shikarpur 2900 1624 56 1.3 0.1 86.2 0.1 6.5 0 0.2 0.4 0 0.1 4.5 0.1 0.2 0.1 

South Karachi 562 10 1.8 3.7 0.3 26.8 0.5 12.7 0 0.1 0.1 0.8 4.6 36.2 4.3 5.8 4.1 

Sujawal 9571 1306 13.6 0.5 0.1 46 0 2.2 0 0.4 0.1 2.7 0.5 24.9 5.4 0.7 16.4 
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    % of Land Class/Land use in the Flooded Area in the District 

District 

Total 

Area 

(km2) 

Flooded 

Area 

(km2) 

% 

Flooded BUP ORC HCI HCR SOP SCL SWE TOP TCL SDU BSO BTW WBO WET 

Sukkur 5861 541 9.2 1.4 0.5 83.4 0.2 3.9 0 0.3 0.5 0.1 0.2 8.4 0.2 0.5 0.3 

Tando 

Allahyar 1718 211 12.3 0.3 5.9 89.5 0 0.8 0 0.4 0.2 0.6 0 1.3 0 0.5 0.4 

Tando 

Muhammad 

Khan 1858 457 24.6 0.6 1.3 89.8 0 1.5 0 0.2 0.2 0.1 0 5.5 0.2 0.3 0.4 

Tharparkar 21775 76 0.3 0.8 0.2 35.4 1.2 7.3 0 0.1 0.1 0 5.1 44.3 2.7 1.7 1.3 

Thatta 8438 586 6.9 1 0.9 53.4 0.8 4.7 0 1.1 0.3 1 0.2 30.1 1.5 1.6 3.4 

Umer Kot 6102 324 5.3 0.5 0.3 87.8 0 2.1 0 0.1 0.1 0.1 0 7.9 0.1 0.3 0.5 

West Karachi 268 5 1.7 6.9 0.2 55.3 0.9 15.1 0 0.4 0.2 0.2 0.4 14.2 0.9 3.4 1.7 
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Table 3-9. Flooded area over various Land Use/Land Cover classes by District (km2). 

District BUP ORC HCI HCR SOP SCL SWE TOP TCL SDU BSO BTW WBO WET 

Total 

(km2) 

Badin 6.58 3.66 1588.26 0.16 51.82 0.02 2.38 2.7 1.08 1.64 196.99 3.62 5.55 16.03 1880.54 

Central 

Karachi 

0.13 0 0.17 0 0.04 0 0 0 0 0 0.1 0 0.01 0.01 0.45 

Dadu 14.74 2.5 1384.9 180.85 113.3 0.05 1.66 2.82 1.28 4.38 459.97 3.63 6.1 3.26 2179.44 

East 

Karachi 

0.25 0 0.66 0.03 0.52 0 0 0.01 0 0.03 0.51 0.02 0.02 0.01 2.06 

Ghotki 7.45 5.41 521.89 0.27 30.64 0.04 1.7 2.23 0.61 10.56 31.52 1.32 4.06 2.39 620.11 

Hyderabad 3.08 7.69 162.79 1.03 5.87 0 0.58 0.58 0.23 0.21 13.77 1.42 1.6 0.92 199.78 

Jacobabad 23.79 1.73 1946.87 0.29 79.45 0.02 2.66 6.55 0.57 1.42 104.21 3.73 11.52 11.89 2194.7 

Jamshoro 10.75 0.81 405.12 45.11 72.58 0.01 0.59 0.94 0.1 1.63 1062.82 3.92 2.6 1.36 1608.35 
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District BUP ORC HCI HCR SOP SCL SWE TOP TCL SDU BSO BTW WBO WET 

Total 

(km2) 

Kambar 

Shahdad 

Kot 

28.75 7.82 3167.34 25.79 157.18 0.25 18.36 11.51 7.42 8.57 296.48 2.85 14.57 6.02 3752.93 

Kashmore 8.26 1.58 708.76 0.26 28.09 0.03 1.42 2.07 0.33 0.68 38.81 2.8 3.96 2.86 799.92 

Khairpur 20.04 10.4 954.59 1.65 66.58 0.04 8.57 5.78 1.88 3.67 69.41 4.97 10.59 4.51 1162.67 

Korangi 

Karachi 

0.14 0.01 1.1 0.03 0.37 0 0.02 0.02 0.02 0.03 0.37 0.02 0.04 0.03 2.21 

Larkana 25.01 2.79 1281.98 1.23 61.92 0.03 2.28 5.4 0.5 0.87 56.36 5.99 7.78 2.48 1454.62 

Malir 

Karachi 

0.74 0.07 8.06 1.39 11.64 0 0.12 0.2 0.92 0.8 67.41 1.57 0.71 2.87 96.51 

Matiari 5.8 17 403.37 0.11 10.89 0.01 1.78 1.68 0.57 0.23 15.74 3.26 1.43 0.74 462.61 
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District BUP ORC HCI HCR SOP SCL SWE TOP TCL SDU BSO BTW WBO WET 

Total 

(km2) 

Mirpur 

Khas 

1.66 7.65 437.21 0.08 5.76 0.01 0.95 0.9 0.72 0.03 36.73 0.31 1.24 1.51 494.76 

Naushahro 

Feroze 

20.67 7.69 908.33 1.16 56.3 0.02 3.31 4.94 1.18 1.53 46.07 9.93 5.25 2.47 1068.86 

Sanghar 7.56 9.24 720.29 0.04 17.16 0.02 6.42 1.66 4.94 0.15 45.53 1.95 8.65 7.97 831.59 

Shaheed 

Benazir 

Abad 

17.47 8.46 1014.43 1.78 51.96 0.01 3.96 3.4 1.43 1 81.21 2.66 7.63 3.91 1199.33 

Shikarpur 20.85 1.99 1400.81 1.07 106.35 0.04 3.77 7.15 0.48 2.3 72.45 1.86 3.66 1.57 1624.35 

South 

Karachi 

0.38 0.03 2.77 0.05 1.31 0 0.01 0.01 0.08 0.48 3.74 0.44 0.6 0.42 10.33 

Sujawal 6.29 1.68 600.22 0.09 28.5 0.02 5.41 1.57 35.33 6.94 324.78 70.78 9.61 214.82 1306.05 
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District BUP ORC HCI HCR SOP SCL SWE TOP TCL SDU BSO BTW WBO WET 

Total 

(km2) 

Sukkur 7.56 2.57 451.02 1.26 20.92 0.04 1.7 2.82 0.5 0.87 45.52 1.2 2.96 1.53 540.5 

Tando 

Allahyar 

0.69 12.41 188.69 0.01 1.75 0 0.9 0.47 1.24 0 2.71 0.09 0.99 0.85 210.8 

Tando 

Muhammad 

Khan 

2.8 5.77 410.57 0.02 6.87 0.01 0.87 1.07 0.24 0.06 25.05 0.72 1.26 1.67 456.97 

Tharparkar 0.59 0.14 26.85 0.9 5.52 0 0.05 0.05 0.03 3.89 33.64 2.05 1.28 0.95 75.95 

Thatta 5.86 5.06 312.94 4.61 27.37 0.02 6.16 1.75 6.05 1 176.51 9.01 9.38 20.02 585.73 

Umer Kot 1.61 1.1 283.9 0.02 6.92 0 0.25 0.43 0.42 0.07 25.61 0.43 1.07 1.68 323.51 

West 

Karachi 

0.32 0.01 2.57 0.04 0.7 0 0.02 0.01 0.01 0.02 0.66 0.04 0.16 0.08 4.65 
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3.5 Discussion 

Unsupervised K-means and supervised Random Forest classification were employed to evaluate 

the Land Use/Land Cover (LULC) dataset and extent of flooding on land cover classes within 

Sindh province. This analysis highlighted the flood's extensive reach across different land cover 

classes, emphasizing the distinct vulnerability of built-up areas, herbaceous crops irrigated, and 

shrubs sparse natural vegetation to flood events. Notably, Kambar Shahdad Kot, Jacobabad, and 

Larkana districts emerged as significantly affected areas, underlining the urgent need for focused 

flood mitigation strategies in urban planning endeavors. 

The evaluation of K-means clustering, and Random Forest (RF) classification brought out 

essential information regarding the efficiency of these techniques in delineating LULC across the 

study region. The Random Forest classification showed higher accuracy and alignment with the 

reference dataset compared to several results of K-means classification. The accuracy of K-

means clustering was impacted by the choice of the number of clusters and the initial seed 

values, which could lead to variations in the resulting classifications. In K-means, the reliance on 

spectral similarities without ground data can lead to inaccuracies, whereas Random Forest uses a 

labeled dataset for training and employs an ensemble approach with multiple decision trees to 

manage spectral dissimilarities within the same cluster and reduce overfitting, thereby enhancing 

prediction accuracy in complex datasets. Furthermore, the use of ground truth training data 

facilitates informed and accurate categorization of land cover types, an advantage not available 

with K-means clustering. 

The accuracy of K-means clustering, an unsupervised learning method, can be significantly 

affected by several factors. Firstly, the initialization of centroids plays a crucial role; different 
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initializations can lead to varying outcomes due to the algorithm's sensitivity to starting points. 

The selection of the number of clusters, as informed by the Elbow Method in this study, also 

impacts quality of the classification. Moreover, the presence of mixed pixels, where a single 

spatial unit displays characteristics of multiple land cover types, poses a challenge for K-means, 

complicating the classification process. These factors collectively contribute to the moderate 

accuracy levels observed in the analysis, with overall accuracy ranging from 58.51% to 61.41% 

for different cluster numbers (k=10, 14, and 18) while kappa values were 0.4638 to 0.4878. 

Random Forest (RF), a supervised classification method, demonstrated better accuracy due to its 

inherent advantages over unsupervised methods like K-means. Factors affecting RF accuracy 

include the quality and quantity of training points, feature selection, and the algorithm's 

capability to handle high-dimensional data and mixed pixels more effectively. RF's ensemble 

approach, generating multiple decision trees and aggregating their predictions, reduces the risk of 

overfitting and enhances classification accuracy. The kappa statistic (0.5602) and overall 

accuracy (64.29%) in the study underscore the effectiveness of RF in handling the complexity of 

LULC classification. 

The quality and quantity of training data are pivotal in both K-means clustering and Random 

Forest classification. In K-means, although unsupervised, the interpretation of clusters as specific 

LULC classes can benefit indirectly from knowledge in selecting and validating clusters. For 

Random Forest, the direct use of training points significantly influences the model's ability to 

learn and generalize. Accurate, well-distributed training data covering the range of LULC classes 

ensures that RF models can correctly classify the land cover. Also, there is a lack of reliable and 

extensive ground data for Sindh province, because of which this study was heavily reliant on the 

FAO's land cover dataset. While the FAO dataset provides a valuable resource for such contexts, 
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the lack of detailed information on its development and processing raises questions about the 

assumptions and accuracy of the underlying data.  

3.6  Conclusion 

Remote sensing serves as a fundamental tool in flood studies, providing essential data for 

inventorying, monitoring, mapping, and responding to disasters. This study underscored the 

critical role of remote sensing technologies in assessing flooding extents, identifying affected 

regions, and comprehending flood dynamics under varying weather conditions. Moreover, 

remote sensing aids in analyzing changes in vegetation cover, influencing water dynamics and 

runoff patterns, thereby supporting urban planning, vulnerability assessment, and development of 

flood mitigation strategies. Disaster damage assessment plays a crucial role in emergency 

management, providing vital insights for resource allocation and informed decision-making. 

Land use and land cover (LULC) mapping, enabled by remote sensing, GIS, and machine 

learning algorithms, contributes to understanding human-nature interactions and supports 

sustainable development initiatives. Unsupervised and supervised classification techniques, such 

as K-means clustering and Random Forest classification, offer systematic categorization of 

remote sensing data, aiding in accurate land cover mapping. The study aims to assess flood 

impacts on various land cover classes in Sindh, Pakistan, utilizing remote sensing-based flood 

maps and LULC datasets within a GIS framework, thereby enhancing spatial understanding of 

flooding across different land classes during flood events. 

The exploration of the impact of flooding on various land cover classes within Sindh province 

through remote sensing-based flood maps and Land Use/Land Cover (LULC) datasets 

culminates in revealing the significant role and application of both unsupervised (K-means 

clustering) and supervised (Random Forest classification) methods in assessing environmental 



120 

 

changes and disaster impacts. The study highlights the vulnerability of specific land cover 

classes such as built-up areas, irrigated herbaceous crops, and sparse natural vegetation to 

flooding, highlighting the necessity for targeted mitigation strategies and urban planning 

interventions. The comparative analysis of K-means clustering and Random Forest classification 

in this study illuminates the strengths and limitations of each method in the context of LULC 

mapping. The superior performance of RF, driven by its ensemble nature and effective handling 

of training data, emphasizes the value of supervised learning in complex classification tasks. 

However, the challenges posed by limited ground-truth data and the reliance on secondary 

datasets like FAO's LULC map emphasize the critical necessity for robust ground-truth datasets 

to refine the precision of remote sensing analyses. This study's findings contribute to a deeper 

understanding of the dynamics of flood impacts across different land cover classes in Sindh, 

offering valuable insights for future mitigation and planning efforts. 

In conclusion, this study enhances our understanding of flood dynamics and their impact in 

Sindh province, while also broadening the knowledge of the applicability and limitations of 

remote sensing techniques in environmental monitoring and disaster management. The findings 

provide a deeper insight into how floods affect various land cover classes in Sindh and 

underscore the importance of combining advanced remote sensing technologies with reliable and 

accessible ground-truth datasets, like LULC data. This integration offers valuable insights for 

future mitigation and planning efforts. 
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Chapter 4 - Contributions and Recommendations 

4.1 Summary 

Climate change has emerged as a critical global issue, intensifying the impact of natural disasters 

like floods. These calamities are influenced by various factors, including alterations in 

atmospheric conditions such as temperature, precipitation, humidity, and air circulation. Despite 

Pakistan's minimal contribution to greenhouse gas emissions, the nation remains highly 

vulnerable to climate-induced disasters. This vulnerability is exacerbated by the country's diverse 

topography and human interventions such as urbanization and inadequate water management 

practices. The devastating floods of 2022, triggered by heavy rainfall and glacier melting, 

resulted in significant economic losses, particularly affecting provinces like Sindh, Balochistan, 

and Punjab. Understanding the complexities and dynamics of floods is essential for effective 

emergency responses and mitigation efforts and for formulating flood mitigation strategies. To 

explore and understand the potential of open-access remote sensing datasets, two objectives were 

defined in this thesis focusing on Pakistan Floods 2022 in the Sindh province. 

The first objective was to investigate and validate the utility of the Synthetic Aperture Radar 

(SAR) dataset to identify the extent of inundated areas. To do so, the indices relevant to open 

water pixel identification such as Sentinel-1 SAR backscatter-based Difference Image Index and 

Sentinel-2 reflectance-based Desert Flood Index and Modified Normalized Difference Water 

Index were used to develop the change detection method. This approach exploited the unique 

capabilities of SAR and optical satellite data to detect and map the spatial extent of flooding 

leveraging the computation capabilities of Google Earth Engine. 
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The Difference Image Index (DII), derived from the backscatter values of Sentinel-1 data, was 

used to distinguish the flooded regions. Sentinel-2-based Desert Flood Index (DFI) and Modified 

Normalized Difference Water Index (MNDWI) images were used to optimize the threshold value 

of the SAR-based DII index. A region with minimal cloud cover during the acquisition of 

Sentinel-2 images was carefully selected to ensure the reliability of the flood extent mappings. 

The process of threshold fine-tuning, which was based on exhaustive grid search methods, 

played a crucial role in refining the detection process. This approach ensured the highest level of 

agreement between flood maps derived from SAR imagery and those obtained from optical 

imagery. 

The second objective of this thesis is to evaluate the effects of floods across diverse land cover 

categories by leveraging flood maps and Land Use/Land Cover (LULC) datasets obtained 

through remote sensing. The effects of flooding on different land cover types within the 

administrative regions of Sindh were investigated utilizing Sentinel-2 images. The inundated 

land classes were identified which quantified the extent of flood damage and provided insights 

on the vulnerability of different land cover classes. The findings help us understand the long-

term implications for land use planning and disaster management in flood-prone regions. 

 A comprehensive LULC dataset was prepared to reflect the pre-flood land cover conditions of 

the study area using Sentinel-2 imagery. Two sets of LULC datasets were created using 

unsupervised K-means clustering and supervised Random Forest classification techniques. The 

unsupervised K-means algorithm was optimized using the Elbow plot method to identify the 

most appropriate number of clusters, ensuring that the classification results were both accurate 

and reflective of the diverse land cover types present in the region. The supervised ensemble 

Random Forest classification utilized training data to classify the Sentinel-2 imagery into 
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detailed land cover classes. The Land Cover dataset for Sindh published by FAO-Pakistan has 

been used as ground-truth data for LULC development. The spatial distribution and magnitude of 

flood impacts on various land cover classes were studied with overlay and zonal statistical 

analyses conducted within a GIS environment. 

Optimal threshold values for mapping flood extents were established using imagery from 

Sentinel-1 SAR and Sentinel-2. Calibration of thresholds was performed in Dadu district, Sindh 

province, on pre- and post-flood composite images, revealing darker regions post-flood due to 

reduced backscatter signals. Flood extent mappings were generated for both imagery types, 

utilizing the Difference Image Index (DII), Desert Flood Index (DFI), and Modified Normalized 

Difference Water Index (MNDWI). Comparative analysis between DII and DFI showed 

significant agreement, with an optimal DII threshold of 0.414 and an agreement of 79.31% at a 

DFI value of 0.25. Similarly, a comparison between DII and MNDWI indicated substantial 

agreement, with an optimal DII threshold of 0.427 and an agreement of 83.86% at an MNDWI 

value of 0.15. Flood extent mapping of Sindh province revealed extensive inundation areas for 

August and September, totaling 25229 km² and 19181 km² respectively for DFI-DII analysis, 

and 30582 km² and 21851 km² for MNDWI-DII analysis.  

The Elbow method was applied to identify the ideal number of clusters for unsupervised 

classification. By applying the elbow method, a graph of the number of clusters versus the 

Within-Cluster Sum of Squares (WCSS) from the K-means clustering analysis was plotted. This 

plot usually shows a distinct elbow point occurring between 10 and 20 clusters. K-means 

clustering was applied to Sentinel-2 satellite imagery to delineate patterns of land use and cover. 

Evaluation using confusion matrices showed varied accuracies across different classes, with 

overall accuracies ranging from 59.95% to 61.41%. In contrast, Random Forest classification 
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outperformed K-means, boasting a kappa statistic of 0.5602 and an overall accuracy of 64.29%, 

thus becoming the preferred method for mapping land use and cover. Overlaying flood extent 

maps onto LULC maps and administrative boundaries of Sindh province uncovered significant 

inundation in built-up areas, particularly in districts like Kambar Shahdad Kot, Jacobabad, and 

Larkana. Additionally, irrigated herbaceous crops emerged as notably impacted, highlighting 

agricultural vulnerability to floods. This integrated approach provided comprehensive insights 

into flood impacts, aiding targeted mitigation and urban planning strategies in the region. 

4.2 Contributions 

Optical sensors are popular in flood mapping and monitoring studies as they can provide high-

resolution, multispectral data that captures detailed surface characteristics, allowing for the 

identification and analysis of various land cover types affected by flooding. Most of the studies 

employ the Modified Normalized Difference Water Index (MNDWI) in delineating water 

features, especially in the context of river basin flooding. One significant limitation of the 

MNDWI index is its reduced sensitivity to areas with sparse vegetation or complex urban areas 

and arid landscapes, which can lead to less accurate identification of water bodies, especially in 

cases of flooding. Such scenarios are commonplace in regions like Sindh which can benefit from 

use of the indices such as the Desert Flood Index (DFI). This study demonstrated that DFI 

outperforms the more established Modified Normalized Difference Water Index (MNDWI) by 

minimizing the influence of non-water pixels. Familiarity with the application of the index is 

crucial to regions like Sindh. 

This study also introduces the application of an exhaustive grid search method for determining 

threshold values applicable to both SAR and optical imagery indices for flood extent mapping, 
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with a focus on the Sindh region. This approach is characterized by its easier reproducibility, 

flexibility, and capability for precise threshold determination, suited to the dynamic and complex 

nature of flood conditions. Through the exhaustive grid search, the method evaluates each 

potential threshold value, offering critical insights that contribute to the refinement of flood 

mapping methodologies. Additionally, this technique demonstrates resilience to the influence of 

clouds on flood detection, primarily by leveraging the agreement with SAR-based indices, which 

are unaffected by cloud cover or adverse weather conditions. This approach hence effectively 

mitigates the impact of clouds and shadows and is particularly beneficial for flood studies in 

regions prone to heavy cloud cover during monsoon seasons, where optical images may be 

compromised. 

4.3 Limitations 

Despite this study's diligent efforts to understand the impacts of flooding on various land cover 

classes in Sindh province using remote sensing-based flood maps and LULC datasets, it is not 

without its limitations. These limitations are inherent to the nature of remote sensing analysis, 

data availability, and methodological constraints, and outline the aspects that require 

improvement and consideration in future research.  

The cloud cover in Sentinel-2 images limits the effectiveness of flood extent mapping, as it 

frequently occurs during rainfall-induced flooding conditions. This limitation was partially 

addressed by focusing on smaller, cloud-free regions for thresholding analysis. The presence of 

cloud cover often necessitates the removal of a substantial amount of optical data, which could 

otherwise obscure the flood analysis if included in larger areas. 
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The 5 to 6-day revisit cycles of the Sentinel satellites are insufficient to capture the rapid changes 

in flood events fully. This limitation means that the dynamics of flood progression or recession, 

which can alter significantly within a single day, may not be completely observed. Inaccuracies 

arise particularly at the edges of images, where flood extents might not uniformly represent the 

current state of flooding by the time new images are acquired. 

Discrepancies arise when combining data from Sentinel-1 and Sentinel-2, due to their different 

acquisition times, sensor characteristics, and processing levels. These discrepancies can 

introduce errors in flood mapping, especially when data from these sensors are integrated to 

create a comprehensive flood extent map. 

The thresholds used for flood detection were not precisely calibrated across the entire region, 

which could have improved using an exhaustive grid search technique despite its high 

computational demands. Applying a single threshold value uniformly assumes consistent 

conditions across diverse geographical areas, which is often not the case due to varying climate, 

land cover, and hydrological characteristics. 

The reliance on the FAO's LULC dataset for 2021 introduces uncertainties due to unclear data 

development and processing details, and the lack of post-processing in the study's datasets. These 

factors create discrepancies between the LULC maps used and potentially affect the accuracy of 

the flood impact assessments. Additionally, mismatches between the timing of image 

acquisitions and actual flooding events further complicate the accuracy of these assessments. 

Google Earth Engine (GEE) has been extensively utilized for image processing, primarily due to 

the large area covered by Sindh and GEE’s computational capability in processing vast amounts 

of geospatial data. However, considering the extensive area covered by Sindh, approximately 
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140,910 km², and the wide array of data collected by Sentinel images, significant challenges 

were presented. To address this, many computations had to be downscaled within manageable 

parameters in GEE which had to be performed for a small region. This necessity for downscaling 

raises concerns about the representativeness of the findings of the study.  

4.4 Recommendations for the Future Work 

The study has provided valuable insights into the spatial dynamics of flooding and its influence 

on land cover, emphasizing the necessity for ongoing progress in remote sensing techniques, 

computational resources, and data availability. Subsequent recommendations are proposed to 

enhance future flood assessment studies and tackle the limitations identified in this research. 

1. Google Earth Engine possessed significant challenges during the study in processing such 

a large area with state-of-the-art techniques. Future studies should explore alternatives 

such as increased processing capacity or other processing systems so that machine 

learning models can be improved.  

2. The major setback regarding the use of optical data for thresholding the SAR-based 

flooding extent was the presence of clouds. This can be abated by increasing reliance on 

datasets that are less affected by clouds and bad weather.  

3. Different environmental conditions can lead to non-uniform backscatter values within a 

single ROI, causing a single threshold value to be ineffective across the whole region. By 

dividing the ROI into smaller segments, each can be analyzed under a threshold value 

that is optimized for its specific conditions. This method enhances the overall precision of 
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the thresholding process as each smaller ROI is more likely to exhibit homogenous 

characteristics. 

4. In this study, K-means classification and Random Forest were employed to develop the 

land use/Land cover dataset. Future studies should delve into the application of advanced 

machine learning and deep learning techniques to improve the accuracy of flood extent 

mapping and land cover classification. These techniques can better handle the 

complexities of mixed pixels and cloud shadows in satellite imagery. 

5. The remote sensing data can be integrated with hydrological models to predict flood 

behaviors accurately. 

6. To overcome the limitations associated with reliance on secondary LULC datasets, future 

research should prioritize the collection of ground-truth data, and allowing open access to 

such datasets will encourage researchers to pursue the topic. Continued monitoring is 

crucial to generate accurate LULC maps. 

7. To assess the impact of floods on livelihood, future studies should incorporate socio-

economic datasets such as housing conditions, and income levels. This will allow 

quantification of direct and indirect costs of floods such as lost income and housing 

displacement, thereby providing a more detailed assessment of the overall economic 

damage. 

4.5 Recommendations for Water Management Authorities 

This study highlights the importance of the approaches used for analyzing historical flooding. 

Employing such approaches is critical for precisely identifying flood-prone locations, allowing 
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for the ideation and implementation of targeted flood management frameworks and solutions. 

This will lead to collaborative and informed approaches to decrease the effect of floods, and thus 

increase the resilience of people and ecosystems to such natural disasters. 

1. Based on the findings of this study, it is recommended to upgrade or construct flood 

protection infrastructure. Such infrastructures are vital for protecting vulnerable 

communities from the negative consequences of flooding. 

2. The findings of this study should be used to redesign and improve drainage systems to 

improve the ability of existing systems to control floodwaters more effectively, hence 

lowering the danger of flooding. 

3. Water management authorities should conduct ongoing studies to detect and analyze 

flood trends for a more nuanced understanding of changing trends, which is required for 

evolving flood management methods to future concerns. 

4. The identification of flood-prone areas can be used to develop policies regarding land use 

in these locations. Such policies act as a preventative strategy, reducing communities' 

susceptibility to flooding risks. 

5. Communities and stakeholders should be educated on the construction of flood-resistant 

infrastructures, thereby reducing vulnerabilities in the future. 

6. The flood extent maps can be integrated with Digital Elevation Models (DEM) to 

determine the suitable areas for the construction of detention basins, which aid in faster 

drainage during flood disasters, reducing the risk of water collection and subsequent 

damage. 
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7. The outcome of the study can be used for the promotion of low-impact development and 

green infrastructures in appropriate regions so that they help, not only mitigate flood but 

also contribute to water conservation and the environment, especially for residential 

areas.  

8. The outcome of the study should be used to understand the impact of urbanization on 

flood risks, and thus promote planned urban development. Carefully designed urban 

spaces can significantly reduce the impermeable surfaces that contribute to runoff, 

thereby minimizing the risk of flooding. 

9. Coordination between different stakeholders in the public and private sectors should be 

encouraged for developing and implementing comprehensive flood management 

strategies. This leads to more sustainable and effective solutions that leverage diverse 

expertise and resources. 
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