
IDENTIFYING DISEASE-RELATED GENE-ENVIRONMENT INTERACTIONS BASED ON

METHOD OF MOMENTS

By

Linchuan Shen

Bachelor of Economics - Financial Engineering
Sichuan University

2014

Master of Science - Statistics
University of Science and Technology of China

2017

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy - Mathematical Sciences

Department of Mathematical Sciences
College of Sciences

The Graduate College

University of Nevada, Las Vegas
May 2024



Copyright by Linchuan Shen, 2024
All Rights Reserved



ii 

  
 

Dissertation Approval 

The Graduate College 
The University of Nevada, Las Vegas 

        
May 1, 2024

This dissertation prepared by  

Linchuan Shen 

entitled  

Identifying Disease-Related Gene-Environment Interactions Based on Method of 
Moments 

is approved in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy - Mathematical Sciences 
Department of Mathematical Sciences 

 
                
Amei Amei, Ph.D.         Alyssa Crittenden, Ph.D. 
Examination Committee Chair         Vice Provost for Graduate Education &  

                                                                                         Dean of the Graduate College 
Malwane Ananda, Ph.D. 
Examination Committee Member 
        
Farhad Shokoohi, Ph.D. 
Examination Committee Member 
 
Mira Han, Ph.D. 
Graduate College Faculty Representative 

 



ABSTRACT

IDENTIFYING DISEASE-RELATED GENE-ENVIRONMENT

INTERACTIONS BASED ON METHOD OF MOMENTS

APPROACHES

by

Linchuan Shen

Dr. Amei Amei, Examination Committee Chair
Professor of Mathematics

University of Nevada, Las Vegas, USA

Human diseases are often caused by a complex interplay of multiple factors, including genetics and

environmental factors. These factors can play critical roles in the development and progression

of diseases. Although genome-wide association studies (GWAS) have successfully identified many

genetic variants associated with human diseases, the estimated effects of these variants are small

and can explain only a relatively small portion of the heritability of the underlying diseases.

Detecting gene-environment interactions (G × E) can shed light on the biological mechanisms of

diseases. However, most existing methods that investigate G × E only look at how one environ-

mental factor interacts with either common or rare genetic variants, not both. In this study, we

propose two approaches to detect interaction effects of an environmental factor and a set of genetic

markers containing both rare and common variants.

iii



The first approach is derived from the MinQue for Summary statistics (MQS) method and has been

adapted in our study to develop two sub-methods: the MArginal Gene-Environment Interaction

Test with RANdom or FIXed genetic effects (MAGEIT RAN or MAGEIT FIX). Our second ap-

proach leverages the Generalized Method of Moments (GMM), leading to the Gene-Environment

Interaction Test based on GMM (GEITGMM). Through simulation studies and real data anal-

ysis, we evaluate the performance of these methods. Both the MQS-based MAGEIT RAN and

MAGEIT FIX, and the GMM-based GEITGMM are grounded in moment estimation and offer

analytical tools for examining gene-environment interactions.
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CHAPTER 1

INTRODUCTION

1.1 Background

Over almost two decades, genome-wide association studies (GWAS) have significantly revolution-

ized the field of genetic research [1, 2] and have successfully detected hundreds of thousands to

millions of genetic variants across a multitude of genomes that are associated with specific diseases

or traits [1]. Despite these promising capabilities, GWAS are not without their inherent constraints

and have left certain aspects of genetic research unresolved, highlighting the necessity for further

research methodologies to deeply understand the intricate relationships between genetics and dis-

ease [1, 3]. A notable challenge, often referred to as the “missing heritability” problem, continues

to persist. This issue underscores the fact that the identified variants only explain a minor portion

of the estimated heritability for most complex disease [4, 5]. The observed discrepancy might be

ascribed to the stringent significance threshold applied in these studies, which potentially overlooks

single nucleotide polymorphisms (SNPs) with relatively moderate effects [6, 7]. The inception of

methodologies involving larger sample sizes and novel research designs could pave the way for

GWAS results to account for a larger fraction of heritability in a variety of complex diseases in

future studies [2, 3, 8, 9, 10, 11].

Furthermore, it is critical to understand that the risk of an individual to a certain disease cannot

be evaluated in the absence of environmental risk factors, as these factors exhibit a complex in-

teraction with genetic elements. The expectation of gene-gene and gene-environment interactions

may help bridge some knowledge gaps in “missing heritability” [12, 13]. Moreover, the practical
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utility of GWAS is faced with limitations of interpreting their results. For example, linkage disequi-

librium (LD)—a scenario where neighboring genetic variants tend to be inherited together—poses

challenges in pinpointing the actual causal variants [14, 15]. All of the aforementioned factors call

for further in-depth research [15, 16, 17].

Considering these limitations of GWAS, this dissertation proposes two complementary research

approaches to address one of the issues focusing on gene-environment interactions. The interac-

tion between genetic elements and the environment plays significant roles in the development and

progression of numerous complex diseases. Statistical models considering gene-environment inter-

actions provide a potential answer to the enduring problem of “missing heritability”.

1.2 Literature review

1.2.1 Gene-environment interaction

The causes of human complex diseases are multifactorial, involving a complex interplay between

genetic factors and the environment. The impact of environment exposures on disease outcomes

may differ among genotypic groups. In many complex diseases, individuals with specific profiles

exhibit an increased disease risk only when exposed to a particular environmental factor [18]. For

example, many environmental factors, such as smoking, drinking, diet, stress, air quality, influence

disease risk, progression and severity [19, 20]. As a result, incorporating gene-environment interac-

tions (G×E) has become crucial in the study of complex traits. Genome-wide association studies

(GWAS) have successfully identified many genetic variants associated with human diseases. Nev-

ertheless, the estimated effects of these variants are modest and account for only a small portion of

the heritability observed in complex diseases [21]. Several studies have indicated that G×E might

partially account for the missing heritability. Detecting such interactions could offer meaningful
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implication in the field of public health and personalized medicine [21, 22].

Traditional G×E analyses have typically involved evaluating interactions with genetic individually

[23, 24, 25]. Potential limitations in such approaches include the burden of multiple hypothesis

testing and a failure to account for joint effects shared by multiple variants with similar biological

functions, resulting in decreased statistical power [18]. In recent years, genome-wide search for

G × E has been emerging [22, 26]. Several studies have explored G × E using multiple genetic

variants within a marker set [18, 27, 28, 29, 30, 31, 32, 33, 34]. For common genetic variants, a

gene-environment set association test (GESAT) was developed using a generalized linear model

and ridge regression [18]. For rare variants, Chen et al. proposed INT-FIX and INT-RAN to test

G × E effect, along with a joint test, JOINT, to detect the effects of a set of genetic variants and

their interactions with an environmental factor simultaneously [29]. Genetic effects were modeled

using a beta density function to account for larger contributions from rare genetic variants. In

their tests, the genetic main effects when the environmental factor is absent were treated as fixed

in INT-FIX and as random in INT-RAN. To assess rare variants by environment interactions,

Lin et al. developed the interaction sequence kernel association test (iSKAT), where the main

effects of rare variants were modeled using weighted ridge regression, and the interactions with the

environment across genetic variants were considered to be correlated [28]. These tests are all vari-

ance component-based, ensuring robustness when many variants in a genetic region are non-causal

and/or exhibit mixed beneficial and detrimental variants [30, 35, 36, 37]. Subsequently, Su et al.

developed a mixed effects score test for interaction (MiSTi), providing a unified regression frame-

work for testing interaction effects between a set of rare variants and an environmental factor [30].

Many existing methods can be derived from MiSTi by constraining certain parameters to be zero.

Additionally, apart from the regression-based G × E tests mentioned above, Lin et al. proposed
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the adaptive combination of Bayes factors method (ADABF), a polygenic test of G×E effect using

Bayes factors [27]. This method assumes that G×E effects follow a normal distribution. Variants

in a genetic region were ranked by Bayes factors, and p-values were calculated using a resampling

procedure. While ADABF considers both common and rare variants within a genetic region, it

does not distinguish between the effects of these two types of variants in model fitting, potentially

overlooking the relatively larger contribution from rare variants [35, 38].

1.2.2 Statistical methods based on MoM and GMM

The analysis of GWAS and G×E have traditionally relied on linear mixed models (LMMs), utiliz-

ing maximum likelihood estimation (MLE) and restricted maximum likelihood estimation (REML)

for parameter estimation. Recently, the MoM and the GMM have emerged as robust alternatives,

offering novel approaches to parameter estimation [39, 40, 41, 42, 43]. In recent years, statistical

methodologies in GWAS have increasingly leverage estimation based on the method of moments

and LD score regression (LDSC) [44] is a notable example. Rooted in the method of moments,

LDSC addresses the challenges associated with the lack of availability of individual-level geno-

type data and widespread sample overlap among meta-analyses by requiring only GWAS summary

statistics and it is shown to be not biased by sample overlap. Similarly, GNOVA [45] employs

a MoM framework to estimate annotation-stratified genetic covariance between traits, also using

GWAS summary statistics. A benchmark study [42] compares their performance, demonstrating

that GNOVA performs similarly to LDSC in terms of effectiveness and robustness. Additionally,

the MQS method [46] represents a significant advancement in MoM-based approaches by integrat-

ing the Haseman–Elston regression and LDSC into a unified framework. This integration not only

broadens the application of summary statistics but also yields more efficient statistical estimates

than traditional LDSC.
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Compared to MoM, GMM distinguishes itself in its approach to solving parameter estimation prob-

lems, which minimizes a quadratic form of the differences between theoretical population moments

and empirical sample moments [47, 48]. This distinction allows GMM to provide a more flexible

and reliable tool for analyzing complex interactions within GWAS and G × E studies. Recent

studies have introduced methods such as the penalized LMM with generalized method of mo-

ments pLMMGMM [41] and MpLMMGMM [49] which are based on the GMM. These methods are

designed for high-dimensional data analysis, efficiently detecting predictive markers and offering

improved prediction accuracy across various disease models. Compared to existing penalized linear

mixed models, these methods adopt GMM estimators, making them more computationally efficient.

Compared to pLMMGMM, MpLMMGMM is designed for multi-omics data and is equivalent to

pLMMGMM when only genomic or methylation data are considered. Similarly, multi-trait analy-

sis of GWAS (MTAG) [50], another efficient GMM-based method, facilitates the joint analysis of

GWAS summary statistics from different traits, even those from overlapping samples. Furthermore,

the GMM has been applied to solve overly identified estimating equations, with simulation studies

highlighting the efficiency of this approach [51].

1.3 Outline of the dissertation

This dissertation delves into the complex interaction between genetic and environmental factors, a

key driver in the development of human diseases. It seeks to shed light on the unresolved issue of

unexplained heritability. The organization of the dissertation is as follows:

Chapter 1 begins with the background and literature review, focusing on gene-environment inter-
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actions and statistical methods based on the Method of Moments (MoM) and GMM. This chapter

presents an overview of the existing research landscape, enumerating existing methodologies and

underscoring their shortcomings, thus laying the foundation for the innovative techniques proposed

in the subsequent chapters.

In Chapter 2, we propose two groups of novel tests: the first group consists of MAGEIT RAN and

MAGEIT FIX, which are based on the MQS method, and the second group includes GEITGMM,

developed using the GMM method.

In Chapter 3, we conduct simulation studies for MAGEIT RAN, MAGEIT FIX, and GEITGMM.

Through these studies, we validate the robustness of MAGEIT RAN and MAGEIT FIX, demon-

strate their effective control of type I error, and reveal that MAGEIT RAN exhibits higher power

than other compared methods in certain scenarios. The performance of GEITGMM is also assessed

through simulation studies, offering insights into its effectiveness.

In Chapter 4, we apply MAGEIT RAN and MAGEIT FIX to the MESA dataset, conducting a

genome-wide analysis to investigate gene-alcohol interactions on hypertension. Employing a sug-

gestive significance threshold for the genome-wide scan, we identify two genes, CCNDBP1 and

EPB42. Furthermore, we identify two signal transduction pathways associated with hypertension.

Finally, Chapter 5 emphasizes the novel contributions made in the field of disease-related gene-

environment interactions. We summarize the methods proposed in Chapters 2 and discuss potential

future research directions in this field.
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CHAPTER 2

GENE-ENVIRONMENT INTERACTION TEST

2.1 Marginal gene-environment interaction test with random or
fixed genetic effects

Suppose a phenotype of interest, an environmental variable and genome-wide genetic variants are

available on n subjects. The genotype of a variant can be directly measured or can consist of

imputed values. Let yk, Ek,Gk = (Gk1, Gk2, . . . , Gkp)
T and Xk = (Xk1, Xk2, . . . , Xkm)T de-

note the phenotype, environmental variable, genotypes of p variants in a genomic region, and m

non-genetic covariates for the kth subject, respectively, for k = 1, 2, . . . , n, where Gkj = 0, 1 or

2 depending on whether subject k has 0, 1 or 2 copies of minor allele at the jth variant. We use

Sk =
(
EkGk1, EkGk2, . . . , EkGkp

)T
to denote the genetic variants by environment interaction for

the kth subject. Our goal is to test whether there are interactions between the variant set and

environment that influence the phenotype of interest.

2.1.1 Model for continuous phenotype

Let y = (y1, y2, . . . , yn)
T , E = (E1, E2, . . . , En)

T , and ε = (ε1, ε2, · · · , εn)T denote vectors of

the phenotype, environmental variable, and error term of length n. We further define an n × m

covariate matrix X = [X1,X2, · · ·,Xn]
T , an n × p genotype matrix G = [G1, G2, · · ·,Gn]

T ,

and an n× p matrix S = [S1,S2, · · · ,Sn]
T of the G× E. Then, the following model specifies the

relationship between a continuous phenotype Y and X,E,G and S

y = α01+Xα1 + α2E +Gβ + Sγ + ε, (2.1)

7



where 1 is an n × 1 vector of 1, α0 is an intercept term, α1 = (α11, α12, . . . , α1m)T , α2,

β = (β1, β2, . . . , βp)
T and γ = (γ1, γ2, . . . , γp)

T are regression coefficients for the covariates,

environmental factor, genetic variants, and G × E terms. We further assume that γ and ε follow

multivariate normal distributions with γ ∼ MVN(0, σ2

p W 2
2 ) and ε ∼ MVN(0, τ2In), where

W2 = diag(w21, w22, · · · , w2p) contains weights of the p G× E terms and In is an identity matrix

of dimension n.

2.1.2 Marginal gene-environment interaction test

We are interested in testing genetic variants by environment interactions in a genomic region, i.e.,

testing the null hypothesis H0 : γ = 0, which is equivalent to testing H0 : σ2 = 0. We develop two

G×E tests, in which the genetic main effects β are modeled as random or fixed effects, respectively.

When we treat the genetic main effects β as random, we assume that β ∼ MVN(0, ω2

p W 2
1 ),

where W1 = diag(w11, w12, · · · , w1p) are weights of the p variants. We use the MQS method [46] to

estimate the three variance components ω2, σ2 and τ2. In order to eliminate the fix effects α0,α1

and α2 in Model (2.1), we multiply both sides of the model, from left, by a projection matrix M ,

where M = I − b(bTb)
−1

bT with b = [1,X,E]. Then Model (2.1) becomes

y∗ = g∗ + s∗ + ε∗,

where y∗ = My, g∗ = MGβ, s∗ = MSγ, and ε∗ = Mε. It follows that g∗ ∼ MVN(0, ω2G∗)

with G∗ = (MGW1)(MGW1)
T

p , s∗ ∼ MVN(0, σ2S∗) with S∗ = (MSW2)(MSW2)
T

p , and ε∗ ∼

MVN(0, τ2M). Consequently, we have y∗ ∼ MVN
(
0, ω2G∗ + σ2S∗ + τ2M

)
.

We estimate the variance components using the method of moments based on the following set of

8



second moment matching equations,

E
(
y∗TAy∗) = tr

(
A

(
ω2G∗ + σ2S∗ + τ2M

))
= ω2tr (AG∗) + σ2tr (AS∗) + τ2tr (AM) , (2.2)

where A is an arbitrary symmetric non-negative definite matrix [46]. Since there are three unknown

parameters (ω2, σ2, τ2), three different A’s are required to obtain parameter estimates. In the

method of moments, the expectation of Eq. (2.2) is usually replaced with the realized value y∗TAy∗.

Let A1 = G∗, A2 = S∗ and A3 = M [46], then, the resulting estimates of the variance components

are given in a matrix form as ω̂2

σ̂2

τ̂2

 = Λ−1

 y∗TG∗y∗

y∗TS∗y∗

y∗Ty∗

 =

 tr(G∗G∗) tr(G∗S∗) tr(G∗)
tr(S∗G∗) tr(S∗S∗) tr(S∗)
tr(G∗) tr(S∗) n− (m+ 2)

−1  y∗TG∗y∗

y∗TS∗y∗

y∗Ty∗

 ,

where we used tr (G∗M) = tr (MG∗) = tr (G∗), tr (S∗M) = tr (MS∗) = tr (S∗), tr (MM) =

tr (M) = n−(m+2), and y∗TMy∗ = y∗Ty∗. The variance component estimator σ̂2 is considered as

the test statistic, which we named as MArginal Gene-Environment Interaction Test with RANdom

genetic main effects (MAGEIT RAN). Specifically, the MAGEIT RAN test statistic is

σ̂2 = y∗T {(
Λ−1

)
21
G∗ +

(
Λ−1

)
22
S∗ +

(
Λ−1

)
23
I
}
y∗ = y∗THy∗, (2.3)

where H =
(
Λ−1

)
21
G∗ +

(
Λ−1

)
22
S∗ +

(
Λ−1

)
23
I.

Under H0 : σ2 = 0, y∗ ∼ MVN
(
0, ω2G∗ + τ2M

)
, suggesting that y∗ has the same distribution

as (ω2G∗ + τ2M)
1
2Z with Z ∼ MVN(0, In). Therefore, the method of moments estimator σ̂2

follows the same distribution as ZT ((ω̂2
0G

∗ + τ̂20M)
1
2 )

T
H(ω̂2

0G
∗ + τ̂20M)

1
2Z, which has a mixture

of χ2distribution σ̂2 ∼
∑n

i=1 λiχ
2
1,i. Here, (ω̂

2
0, τ̂

2
0 ) are estimates of (ω2, τ2) under the null hypothe-

sis, (λ1, · · · , λn) are eigenvalues of the matrix ((ω̂2
0G

∗ + τ̂20M)
1
2 )

T
H

(
ω̂2
0G

∗ + τ̂20M
) 1

2 , and χ2
1,i are

independent χ2
1 variables [46]. The p-value of σ̂2 can be evaluated by the Davies method [35, 52]

and Liu-Tang-Zhang approximation [53].
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If we treat the genetic main effects β as fixed, we use the MQS method [46] to estimate the two

variance components σ2 and τ2. To eliminate the fix effect terms α0,α1, α2 and β in Model (2.1),

we left multiply the model by a projection matrix M = I − b(bTb)
−1

bT with b = [1,X, E,G].

Then the model becomes y∗ = s∗ + ε∗ and it contains two variance components σ2 and τ2. Using

the method of moments, we obtain the following estimates of the variance components,

[
σ̂2

τ̂2

]
=

[
tr(S∗S∗) tr(S∗)

tr(S∗) n− (m+ p+ 2)

]−1 [
y∗TS∗y∗

y∗Ty∗

]
.

The variance component estimator σ̂2 is considered as the test statistic, which we named as

MArginal Gene-Environment Interaction Test with FIXed genetic main effects (MAGEIT FIX).

Specifically, the MAGEIT FIX test statistic is

σ̂2 =
y∗T {(n− (m+ p+ 2))S∗ − tr(S∗)I}y∗

(n− (m+ p+ 2)) tr (S∗S∗)− tr(S∗)2
. (2.4)

Under H0 : σ2 = 0, σ̂2 follows a mixture of χ2 distribution σ̂2 ∼
∑n

i=1 λiχ
2
1,i with (λ1, · · · , λn)

being the eigenvalues of the matrix ((τ̂20M)
1
2 )

T
H

(
τ̂20M

) 1
2 .

2.1.3 Model for binary phenotype

We consider a liability threshold model and assume the binary outcome yk of the kth subject is

determined by an unobserved continuous liability variable zk, i.e.,

yk =

{
1, zk ≥ 0
0, zk < 0

for k = 1, . . . , n, (2.5)

where the underlying liability vector z = (z1, z2, · · · , zn)T is specified using Model (2.1). The

full likelihood of the liability threshold mixed effects model is intractable due to an n-dimensional

integration over the liability variable z. Following the previous studies [54, 55, 56, 57, 58], the

liability threshold mixed effects model can be approximated by a linear mixed effects model on
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ẑ = E(z|y), an estimated posterior mean of the liabilities,

ẑ = α01+Xα1 + α2E +Gβ + Sγ + ε. (2.6)

The posterior mean ẑ can be obtained by approximation under certain assumptions based on the

properties of GWAS data [58]. Specifically, we assume that (i) subjects are unrelated, and (ii) both

the genetic main effects and interaction effects are small such that the terms Gβ and Sγ can be

ignored. Under these assumptions, the distribution of the liability variable can be approximated

by z ∼ MVN(α01 +Xα1 + α2E, In) and ẑ is computed as the mean of the following truncated

normal distribution [58]:

zk|yk ∼
{

N
(
α0 +XT

k α1 + α2Ek, 1
)

with zk ≥ 0 if yk = 1
N

(
α0 +XT

k α1 + α2Ek, 1
)

with zk < 0 if yk = 0
for k = 1, 2, . . . , n .

The parameters α0,α1 and α2 are estimated using a probit model on the phenotype y.

To test the interaction effects between a set of genetic variants and an environmental variable on

the binary phenotype y, we implement MAGEIT RAN and MAGEIT FIX on the estimate of the

liability variable ẑ. To construct MAGEIT RAN, the liability threshold mixed effects model spec-

ified in Eqs (2.5) and (2.6) contains three variance components (ω2, σ2, τ2), where σ2 represents a

measure of interactions between the p genetic variants and the environmental variable. In order for

the model to be identifiable, we put a constraint on the variance of z, e.g., ω2 + σ2 + τ2 = 1 [59].

Similarly, we set σ2 + τ2 = 1 for MAGEIT FIX.

2.2 Gene-environment interaction test based on GMM

In last section, we employ the MQS method [46], which, despite its advantages, occasionally pro-

duces negative estimates for variance components and necessitates methodologies capable of gener-
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ating non-negative estimates. This issue aligns with ongoing research efforts that investigate test-

ing variance components on the boundary of the parameter space [60, 61]. To address this crucial

need, our study progresses by incorporating Wang’s innovative approach [41] into the development

of GEITGMM. This method, rooted in the principles of GMM, is applied to gene-environment

interaction analyses, ensuring nonnegative variance component estimates.

In Model (2.1), we center the response variable y by subtracting its sample mean from every

observation. This adjustment aligns the mean of y to zero. We assume that the parameters

β, γ and the error term ε follow multivariate normal distributions with β ∼ MVN(0, ω
2

p W1),

γ ∼ MVN(0, σ2

p W 2
2 ) and ε ∼ MVN(0, τ2In). Here, W1 = diag(w11, w12, · · · , w1p) and

W2 = diag(w21, w22, · · · , w2p) represent the diagonal matrices containing weights for the p terms

associated with G and G × E, respectively, and In is the identity matrix of dimension n. As in

Section 2.1, we define the projection matrix M = I−b
(
bTb

)−1
bT with b = [1, X, E]. This matrix

M possesses several key properties: (1)MT = M , (2)M2 = M , and (3) its eigenvalues are either 0

or 1. We then perform the decomposition ofM = EDET , whereE = [v1,v2, . . . ,vn−(m+2), . . . ,vn]

is orthogonal, and D is a diagonal matrix with n− (m+ 2) 1s and (m+ 2) 0s on its diagonal. We

define matrix A as the first n− (m+2) columns of E, which leads to A having the properties: (1)

ATA = In−(m+2), (2) AAT = M , and (3) ATb = 0. For Model (2.1), we left multiply the model

by AT , then the model becomes:

ATy = ATGβ +ATSγ +ATε

whereGβ ∼ MVN(0, ω2

p GW1G
T ), var(Gβ) = ω2GW1GT

p = ω2KG. Similarly, Sγ ∼ MVN(0, σ
2

p SW2S
T ),

var(Sγ) = σ2SW2ST

p = σ2KS . Consequently, the variance of ATy is independent of the covari-

ates X, and we express it as: var
(
ATy

)
= var

(
ATGβ

)
+ var

(
ATSγ

)
+ var(ATε). Given that

y is centered, var(y) = E(yyT ). We use yyT to replace E(yyT ), leading to var
(
ATy

)
= ATyyTA.
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Following previous work [41], we formulate the GMM estimator by minimizing the squared Frobe-

nius norm of the difference between the observed and expected variance matrices: ω̂2

σ̂2

τ̂2

 = argmin
δ2≥0

||ATyyTA− ω2ATKGA− σ2ATKSA− τ2In−(m+2)||
2

F
,

where || • ||2F denotes the square of Frobenius norm and δ2 =
(
ω2, σ2, τ2

)T
. Similarly as in [41],

to facilitate estimation, we re-parameterize the optimization problem as: argmin
δ2≥0

||V − Tδ2||2F ,

V = vec(ATyyTA), T = (T1,T2,T3), and T1 = vec(ATKGA), T2 = vec(ATKSA), T3 =

vec(In−(m+2)), vec(•) is a vectorization of a matrix. This optimization problem can be solved

using standard statistical software packages [41].

For hypothesis testing of H0 : σ2 = 0, we employ resampling techniques to compute p-values, uti-

lizing the efficient sequential resampling procedures [27, 62, 63] to enhance computational speed.

This process involves permuting the G matrix for each individual to compute null statistics. The

p-value is then calculated as the proportion of null statistics that are greater than or equal to

the observed statistic. Additionally, we adapt an alternative approach for calculating the p-value:

when a null statistic is exactly equal to the observed statistic, we count it as half. The number of

resamplings is dynamically decided. Initially, we permute G for 103 times. If the p-value derived

from these 103 null statistics falls below 0.1, the number of resamplings is increased 10-fold to

enhance the p-value’s accuracy. This procedure is iterated until the p-value exceeds 100/B, where

B represents the total number of resamplings, or until the maximum number of resamplings 107 is

reached, ensuring a balance between precision and computational feasibility.

13



CHAPTER 3

SIMULATION STUDIES

3.1 Simulation studies for MAGEIT RAN and MAGEIT FIX

We conducted simulation studies to evaluate the performance of MAGEIT RAN and MAGEIT FIX

to detect set-based G × E effects for both continuous and binary phenotypes, where the vari-

ant set contains both common and rare variants. We assessed type I error and empirical power

of MAGEIT RAN and MAGEIT FIX, and compared them with three set-based G × E tests,

GESAT-W [18], aMiSTi [30], and ADABF [27]. These three existing methods are popular for

G × E analysis and have well-developed R packages. For fair comparisons, the same weights for

rare and common variants were used in all methods except ADABF which does not distinguish

common and rare variants and hence no weights were used in the implementation.

3.1.1 Simulation settings

To generate genotypes, we first simulated 100,000 chromosomes over a 5 Kb region using a coales-

cent model that mimics the linkage disequilibrium (LD) structure and recombination rates of the

European population [64, 65]. Then we randomly selected 10 common variants with minor allele

frequency (MAF) > 0.05 and 40 rare variants with 0.005 < MAF < 0.05 to compose a set of 50

genetic variants.

We simulated a continuous phenotype using the following trait model,

yk = 0.05Xk1 + 0.057Xk2 + 0.64Ek +

10∑
j=1

w1jβjGkj +

10∑
l=1

w2lγlEkGkl + εk,
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where Xk1 ∼ N
(
62.4, 11.52

)
mimicking age and Xk2 ∼ Bernoulli (0.52) mimicking sex [18]. The

10 genetic variants with main effects and the 10 variants with interaction effects were randomly

selected from the set of the 50 variants, independent of E. The environmental variable E is a

Bernoulli random variable taking values of 0 or 1 with a probability of 0.5. The weight of a rare

variant in w1j or w2l is set to Beta (MAF; 1, 25), the beta density function with parameters 1 and

25 evaluated at the variant’s MAF, and the weight of a common variant in w1j or w2l is set to

cBeta(MAF; 0.5, 0.5) with c = Beta(0.05; 1, 25)
Beta(0.05; 0.5, 0.5) [66, 67]. The error term εk ∼ N(0, 1.52) indicates

independent noise.

For a binary trait, we use the following logistic regression model,

logit (P (yk = 1)) = −6.2 + 0.05Xk1 + 0.057Xk2 + 0.64Ek +

10∑
j=1

w1jβjGkj +

10∑
l=1

w2lγlEkGkl,

where all parameters are the same as those used in the continuous phenotype model. In all simu-

lation settings, each simulated dataset contains 5,000 subjects (2,500 cases and 2,500 controls for

binary phenotype).

In the Type I error assessment, we set all γl to be 0, i.e., no G × E effects, and generated 106

datasets each containing 50 genetic variants (10 common and 40 rare variants) randomly picked

for each dataset. We considered three scenarios as stated in Table 3.1: (1) no genetic main ef-

fect, i.e., βj = 0 for j = 1, 2, . . . , 10; (2) for continuous/binary phenotype, assigning βj ∼

U(0.07, 0.11)/U (0.08, 0.12) to two randomly selected common variants and βj ∼ U(0.15, 0.19)/U(0.18, 0.22)

to eight randomly selected rare variants; (3) similar to scenario (2) except that half of the com-

mon/rare variants have negative effects.
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Table 3.1: The 3 simulation scenarios for Type I error assessment

SNP main effects G×E effects

Scenario Common SNPs Rare SNPs Common SNPs Rare SNPs

# + # - # + # - # + # - # + # -

(1) 0 0 0 0 0 0 0 0

(2) 2 0 8 0 0 0 0 0

(3) 1 1 4 4 0 0 0 0

In the power comparison, we designed eight simulation scenarios (Table 3.2) that differ in three key

factors that represent different considerations in the simulation design. The first factor pertains

to the presence or absence of genetic main effects; the second factor focuses on the allocation

of contributions from common and rare variants; and the third factor considers the direction of

genetic main effects and G× E effects, either all positive effects or half positive and half negative

effects. We considered ten variants with G×E effects, either two common and eight rare variants,

or four common and six rare variants. The G × E effect γl was generated from U (0.17, 0.21)

and U (0.57, 0.61) for common and rare variants, respectively, for continuous phenotype; and from

U (0.28, 0.32) and U (0.86, 0.90) for common and rare variants, respectively, for binary phenotype.

The first four simulation scenarios have no genetic main effect and they are as follow: (1) two

common and eight rare variants with positive G × E effects; (2) two common and eight rare

variants with G × E effects, 50% of γj > 0 and 50% of γj < 0; (3) four common and six rare

variants with positive G×E effects; and (4) four common and six rare variants with G×E effects,

50% of γj > 0 and 50% of γj < 0. The remaining four simulation scenarios have two common and

eight rare variants with genetic main effects: (5) βj was specified the same as in scenario (2) in

the type I error assessment, two common and eight rare variants with positive G × E effects; (6)

βj was specified the same as in scenario (3) in the type I error assessment, two common and eight

rare variants with G × E effects, 50% of γj > 0 and 50% of γj < 0; (7) βj was specified the same
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as in scenario (2) in the type I error assessment, four common and six rare variants with positive

G× E effects; and (8) βj was specified the same as in scenario (3) in the type I error assessment,

four common and six rare variants with G × E effects, 50% of γj > 0 and 50% of γj < 0. Power

was evaluated using 1,000 simulated datasets in each scenario.

Table 3.2: The 8 simulation scenarios for power comparison

SNP main effects G×E effects

Scenario Common SNPs Rare SNPs Common SNPs Rare SNPs

# + # - # + # - # + # - # + # -

(1) 0 0 0 0 2 0 8 0

(2) 0 0 0 0 1 1 4 4

(3) 0 0 0 0 4 0 6 0

(4) 0 0 0 0 2 2 3 3

(5) 2 0 8 0 2 0 8 0

(6) 1 1 4 4 1 1 4 4

(7) 2 0 8 0 4 0 6 0

(8) 1 1 4 4 2 2 3 3

3.1.2 Simulation results

Empirical type I error rate was calculated at the nominal level α, for α = 0.01, 0.001 and 0.0001,

based on 106 replicates, under three simulation scenarios, for both continuous and binary pheno-

types (Table 3.3). In most simulations, the type I error of MAGEIT FIX was within the 95%

confidence interval of the nominal level, while the type I error of MAGEIT RAN was lower than

the nominal level in all simulation settings, especially for binary phenotype, suggesting that the

MQS-based testing procedure tends to produce conservative p-values due to the approximation we

used to handle binary phenotype [58, 68].
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Table 3.3: Empirical type I error of MAGEIT RAN and MAGEIT FIX, based on 106 replicates

Continuous Binary

Test Level Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

0.01 9.66 × 10−3 8.85 × 10−3 8.62 × 10−3 9.51 × 10−3 7.77 × 10−3 8.47 × 10−3

MAGEIT RAN 0.001 8.17 × 10−4 6.09 × 10−4 5.30 × 10−4 7.90 × 10−4 4.92 × 10−4 5.04 × 10−4

0.0001 6.70 × 10−5 2.90 × 10−5 3.40 × 10−5 6.20 × 10−5 2.80 × 10−5 2.20 × 10−5

0.01 9.87 × 10−3 9.98 × 10−3 1.02 × 10−2 9.68 × 10−3 9.67 × 10−3 9.70 × 10−3

MAGEIT FIX 0.001 9.89 × 10−4 9.99 × 10−4 9.57 × 10−4 9.38 × 10−4 9.58 × 10−4 8.99 × 10−4

0.0001 1.01 × 10−4 9.80 × 10−5 8.80 × 10−5 9.00 × 10−5 8.70 × 10−5 9.20 × 10−5

The 95% confidence interval of a nominal level α was calculated as α± 1.96
√

α(1− α)/106. Specifically, the 95% confidence
intervals are

(
9.80× 10−3, 1.02× 10−2

)
for α = 0.01, (9.38× 10−4, 1.06× 10−3) for α = 0.001, and

(8.04× 10−5, 1.20× 10−4) for α = 0.0001. Rates outside of the 95% confidence interval are in bold.

Empirical power was calculated at the significant level of 10−4, based on 1,000 simulation repli-

cates. Figures 3.3 and 3.2 demonstrate the power results of the five methods, MAGEIT RAN,

MAGEIT FIX, GESAT-W, aMiSTi and ADABF, under eight simulation scenarios, for continuous

and binary phenotypes, respectively. MAGEIT RAN had comparable to higher power than the

other methods across all simulation scenarios. The high power of MAGEIT RAN may attribute to

its unbiased and statistically efficient estimates of the variance component. Additionally, the ge-

netic effects are treated as random in MAGEIT RAN, which aligns with a more realistic assumption

when the genetic region consists of both common and rare variants. We observed similar patterns

for continuous and binary phenotypes. MAGEIT RAN was much more powerful than other tests

when there was no genetic main effect (Scenarios 1-4). For continuous traits, MAGEIT FIX had

comparable power to GESAT-W and higher power than aMiSTi in all simulation scenarios. For

binary phenotypes, GESAT-W was comparable or more powerful than MAGEIT FIX and ADABF.

When the G× E effects had mixed positive and negative directions (Scenarios 2, 4, 6, 8), aMiSTi

had the lowest power for both continuous and binary phenotypes. Since aMiSTi is a combination of

burden and variance component test, it loses power when there are both protective and detrimental

variants in the genomic region being tested [69].
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Figure 3.1: Empirical power of MAGEIT RAN, MAGEIT FIX, GESAT-W, aMiSTi and ADABF
for a continuous phenotype. Error bars show the approximated 95% confidence interval for the
empirical power β, which is calculated as β ± 1.96

√
β(1− β)/1000.

Figure 3.2: Empirical power of MAGEIT RAN, MAGEIT FIX, GESAT-W, aMiSTi and ADABF
for a binary phenotype. Error bars show the approximated 95% confidence interval for the empirical
power β, which is calculated as β ± 1.96

√
β(1− β)/1000.
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3.2 Simulation studies for MAGEITGMM

We conducted simulation studies to evaluate the performance of GEITGMM in identifying set-based

G × E effects for continuous traits, incorporating both common and rare genetic variants within

the vairant set. We assessed the type I error rates and empirical power of GEITGMM, benchmark-

ing its performance against five alternative set-based G×E tests, MAGEIT RAN, MAGEIT FIX,

GESAT-W [18], aMiSTi [30], and ADABF [27]. As in Section 3.1, we ensured fair comparisons

across all methods being compared by applying the same weighting scheme for rare and common

variants except for ADABF.

3.2.1 Simulation settings

Following the procedures outlined in Section 3.1, we simulated 100,000 chromosomes within a 5

Kb region using a coalescent model that mimics the linkage disequilibrium (LD) structure and

recombination rates of the European population [64, 65]. Then, we randomly selected 10 common

variants, each with MAF > 0.05 and 40 rare variants with 0.005 < MAF < 0.05 to compose a set

of 50 genetic variants.

We simulated a continuous phenotype using the same trait model as in Section 3.1; i.e.,

yk = 0.05Xk1 + 0.057Xk2 + 0.64Ek +

10∑
j=1

w1jβjGkj +

10∑
l=1

w2lγlEkGkl + εk.

Here, Xk1 follows a normal distribution with a mean of 62.4 and a standard deviation of 11.5, Xk2

is distributed according to a Bernoulli process with a success probability of 0.52, E adheres to a

Bernoulli distribution with a probability of 0.5, and εk is normally distributed with a mean of 0

and a standard deviation of 1.5. Consistent with Section 3.1, we assign weights to variants using

the same criteria: rare variants in w1j or w2l are weighted by Beta(MAF; 1, 25), the beta density
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function with parameters 1 and 25 evaluated at the variant’s MAF. In contrast, common variants

receive a weight of cBeta(MAF; 0.5, 0.5), where c is calculated as the ratio of Beta(0.05; 1, 25)

to Beta(0.05; 0.5, 0.5), following the previous approach [66, 67]. As in Section 3.1, we randomly

selected 10 genetic variants to model main effects and another 10 for interaction effects from a pool

of 50 variants, ensuring that this selection was independent of E.

In evaluating type I error, we set all interaction effect coefficients, γl, as 0, indicating an absence

of G×E effects. This setup involved generating 5,000 unique datasets, each dataset containing 50

randomly selected genetic variants (10 common and 40 rare variants). We explored two distinct

scenarios (Table 3.4) for our analysis: (1) no genetic main effect, i.e., βj = 0 for j = 1, 2, . . . , 10;

(2) assigning βj ∼ U(0.07, 0.11) to two randomly selected common variants and βj ∼ U(0.15, 0.19)

to eight randomly selected rare variants.

Table 3.4: The 2 simulation scenarios for Type I error assessment

SNP main effects G×E effects

Scenario Common SNPs Rare SNPs Common SNPs Rare SNPs

# + # - # + # - # + # - # + # -

(1) 0 0 0 0 0 0 0 0

(2) 2 0 8 0 0 0 0 0

In the power analysis, we evaluated the statistical power of GEITGMM across four distinct simu-

lation scenarios (Table 3.5), delineated by two pivotal factors: the presence or absence of genetic

main effects and the direction of G × E effects, categorized either as all positive or as a mix of

half positive and half negative effects. Our simulations focused on a set of ten variants exhibiting

G×E effects, comprised of two common and eight rare variants. The G×E effect γl was generated

from U (0.113, 0.153) and U (0.393, 0.433) for common and rare variants, respectively. The first
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two simulation scenarios were constructed without any genetic main effects: (1) two common and

eight rare variants, all exhibiting positive G×E effects, i.e., all γj > 0; (2) two common and eight

rare variants with 50% of γj > 0 and 50% of γj < 0. The remaining two simulation scenarios

incorporate two common and eight rare variants with genetic main effects alongside the G × E

effects: (3) βj was specified same as in scenario (2) in the type I error assessment, two common

and eight rare variants with positive G× E effects; (4) βj was specified same as in scenario (2) in

the type I error assessment, two common and eight rare variants with 50% of γj > 0 and 50% of

γj < 0. To assess power, 200 simulated datasets were analyzed for each scenario, allowing for a

comparison across different simulation conditions.

Table 3.5: The 4 simulation scenarios for power comparison

SNP main effects G×E effects

Scenario Common SNPs Rare SNPs Common SNPs Rare SNPs

# + # - # + # - # + # - # + # -

(1) 0 0 0 0 2 0 8 0

(2) 0 0 0 0 1 1 4 4

(3) 2 0 8 0 2 0 8 0

(4) 1 1 4 4 1 1 4 4

3.2.2 Simulation results

The empirical type I error rate was calculated at the nominal levels of α = 0.05 and α = 0.01, uti-

lizing 5000 replicates across two distinct simulation scenarios. As detailed in Table 3.6, the method

denoted as GEITGMM full calculates the p-value by determining the proportion of null statistics

that are equal to or exceed the observed statistic. In contrast, the GEITGMM half method employs

an alternative p-value calculation strategy, wherein a null statistic precisely matching the observed

statistic is counted as half. In Scenario 1, the GEITGMM method has the type I error rate under

control. However, in Scenario 2, there is an observed inflation in the type I error rate, indicating a
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potential issue with the method’s performance under certain conditions.

Table 3.6: Empirical type I error of GEITGMM based on 5000 replicates

GEITGMM full GEITGMM half

Test Level Scenario 1 Scenario 2 Scenario 1 Scenario 2

GEITGMM
0.05 0.046 0.088 0.041 0.076

0.01 0.007 0.019 0.003 0.015

The 95% confidence interval of a nominal level α was calculated as α± 1.96
√

α(1− α)/5000. Specifically, the 95% confidence
intervals are (0.044, 0.056) for α = 0.05, and (0.007, 0.013) for α = 0.01. Rates outside of the 95% confidence interval are in

bold.

Empirical power was assessed at a significant level of 0.01, utilizing 200 simulation replicates.

The power outcomes for various methods: GEITGMM full, GEITGMM half, MAGEIT RAN,

MAGEIT FIX, GESAT-W, aMiSTi and ADABF across four distinct simulation scenarios are illus-

trated in Figures 3.3. Notably, GEITGMM (both GEITGMM full and GEITGMM half versions)

consistently exhibited superior power across all simulation scenarios. This robust performance

potentially attributable to the strong consistency of the GMM estimator [47]. Particularly, in Sce-

narios 3 and 4, which included genetic main effects, both GEITGMM full and GEITGMM half

outperformed the alternatives, however, this advantage may come at the cost of an inflated type I

error rate, hinting at a trade-off between power and Type I error rate control that warrants further

scrutiny. The performance trends for the other methods mirrored those discussed in Section 3.1.

MAGEIT RAN exhibits higher power than other methods compared after GEITGMM. In contrast,

aMiSTi’s performance was notably weaker in scenarios where the G× E have opposite directions,

which is likely because aMiSTi combines burden and variance component tests, leading to less

power in genomic regions harboring both protective and detrimental variants [69].
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Figure 3.3: Empirical power of GEITGMM full, GEITGMM half, MAGEIT RAN, MAGEIT FIX,
GESAT-W, aMiSTi and ADABF. Error bars show the approximated 95% confidence interval for
the empirical power β, which is calculated as β ± 1.96

√
β(1− β)/200.

24



CHAPTER 4

APPLICATION TO MESA DATA

To demonstrate the utility of our proposed methods MAGEIT RAN and MAGEIT FIX, we per-

formed a genome-wide analysis of gene-alcohol interaction on hypertension in MESA [70]. MESA

is a large longitudinal study of subclinical cardiovascular diseases including more than 6,800 par-

ticipants. We analyzed the hypertension outcome measured at the first physical examination of

6,403 participants, consisting of 2,851 subjects with hypertension and 3,552 subjects without hy-

pertension. The participants cover a diverse group of subjects including white (39.3%), African

American (26.1%), Hispanic (22.5%), and Asian (12.1%). Alcohol usage (consumption of alcoholic

beverages currently or formerly) was treated as an environmental variable, with 6,379 responses

including 5,058 YESs and 1,321 NOs.

Samples were genotyped using the Affymetrix Human SNP Array 6.0. After data cleaning, the

genotypes are then pre-phased using SHAPEIT [71], which estimates “best-guess” haplotypes by

efficiently inferring the combination of alleles inherited together. These estimated haplotypes are

subsequently imputed with IMPUTE2 [72], leveraging the comprehensive 1000 Genomes Project

Phase 3 as a reference panel to infer missing genotype data accurately. We excluded subjects whose

proportion of successfully imputed variants < 5% or empirical inbreeding coefficients > 0.05, result-

ing in 6,424 subjects for further analysis. The following quality-control criteria were applied: (1)

call rate > 95%, (2) MAF > 0.5%, and (3) Hardy-Weinberg χ2 statistic p-value > 10−6, resulting

in a final set of 8,540,864 variants. In the gene-based G × E analysis, we restricted analysis on

protein-coding regions based on the reference genome GRCh37 [73]. In total, there were 18,977
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genes on the 22 chromosomes and the number of variants in each gene region ranges from 2 to 5000,

with a medium number of 383. Upon integrating the hypertension, alcohol usage and genotype

data, a final set of 6,375 individuals are retained for downstream analyses.

4.1 Analysis of G× E effects

We performed genome-wide tests of gene-alcohol interaction effects on hypertension using all five

methods, MAGEIT RAN, MAGEIT FIX, GESAT-W, aMiSTi, and ADABF. In the analysis, along-

side age at the first exam and sex, we included the top ten principal components (PCs) of the genetic

relationship matrix to account for population structure. The top ten PCs were calculated using

the LD pruned variants with MAF > 0.05 to control for population structure.

MAGEIT RAN and aMiSTi showed no evidence of inflation, with the genomic control inflation

factors of 0.966 and 0.997, respectively. The G × E test assuming fixed genetic main effects,

MAGEIT FIX, and the Bayes factor-based test, ADABF, were conservative, with the genomic

control inflation factors of 0.822 and 0.826, respectively. The genomic control inflation factor was

1.403 for GESAT-W. Therefore, we further adjusted the results of GESAT-W using genomic control.

No genes reached genome-wide significance at the p-value threshold of 0.05
18,977 = 2.63 × 10−6,

commonly-used in gene-based analyses [74]. Table 4.1 lists the top genes for which at least one of

the five tests gives a p-value < 10−4. The gene CCNDBP1 had the smallest p-value, detected by

MAGEIT RAN (p-value = 2.80× 10−5) at a significance level of 1
18,977 = 5.27× 10−5, a suggestive

significance threshold in genome-wide scan [75]. The p-value of EPB42 (p-value = 5.98× 10−5) is

close to the suggestive significance threshold, generated by MAGEIT RAN. Both CCNDBP1 and
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EPB42 are located at 15q15.2. The cytogenetic region 15q15 has previously been reported to be as-

sociated with blood pressure [76]. Moreover, EPB42 was shown to be significantly down-regulated

in heavy drinkers after exposed to psychological stress [77, 78, 79].

Table 4.1: Genes with p-value < 10−4 in at least one of the tests in the MESA data

Chr Gene # SNP Region MAGEIT RAN MAGEIT FIX GESAT-W aMiSTi ADABF

15
CCNDBP1 237 15q15.2 2.80 × 10−5 2.03 × 10−3 6.28 × 10−3 3.32 × 10−2 4.90 × 10−2

EPB42 269 15q15.2 5.98 × 10−5 2.05 × 10−3 1.12 × 10−2 3.97 × 10−2 1.00 × 10−1

The smallest p-values among the five tests at the given genes are in bold.

4.2 Pathway analysis

Functional pathway analysis was conducted on genes that had G×E to identify enriched pathways

related to hypertension, using MetaCoreTM . The top genes for which at least one of the five tests

had a p-value < 0.001 were selected. Fisher’s exact test was used to determine whether the gene list

was enriched for a functional pathway. At the false discovery rate (FDR) < 0.01, there are two sig-

nificant pathways that were reported to be related to hypertension (Table 4.2).The first pathway is

related to ERK1/2 signaling (p-value = 1.72×10−5, FDR = 2.38×10−3). ERK1/2 is instrumental

in transmitting signals from surface receptor to the nucleus. Once activated, it induces cell prolifer-

ation, differentiation, and other processes [80]. It has reported that the ERK1/2-RSK-nNOS might

be crucial in the regulation of central blood pressure influenced by Ang II [81]. The second pathway

is a signal transduction pathway related to Adenosine A1 receptor signaling (p-value = 1.27×10−4,

FDR = 7.83× 10−3). Adenosine modulates cardiovascular function and produces bradycardia and

hypotension when mediated systematically [82, 83]. Activation of adenosine A1 receptor causes

contraction of vascular smooth muscle and the adenosine A1 receptor agonists produce decreases

in blood pressure and heart rate [84]. It has been observed that raised adenosine levels mediate
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the ataxic and sedative/hypnotic effects of ethanol through activation of A1 receptors in the cere-

bellum, striatum, and cerebral cortex [85]. A1 agonists have been shown to decrease anxiety-like

behavior, tremor, and seizures during acute ethanol withdrawal in mice [86].

Table 4.2: Pathways with FDR < 0.01 in the MESA data

Pathway P-value FDR

Signal transduction ERK1/2 signaling pathway 1.72 × 10−5 2.38 × 10−3

Signal transduction Adenosine A1 receptor signaling 1.27 × 10−4 7.83 × 10−3
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary and discussion

Human complex diseases are influenced by a combination of genetic variation and interactions

between genes and environmental factors. Many genes associated with diseases have been success-

fully identified. Therefore, the identification and comprehension of gene-environment interactions

have become essential in predicting disease risk [87]. In this research, we have developed inno-

vative statistical approaches to analyze gene-environment interactions, which play an important

role in unraveling the complexities of human diseases and addressing the “missing heritability”

challenge inherent in GWAS. Our contributions include development of three gene-environment

interaction tests: MAGEIT RAN and MAGEIT FIX, which are built upon the MQS method, and

GEITGMM, which is based on the GMM. These approaches are designed to capture the interplay

between genes and environmental factors, accommodating both common and rare variants within

gene sets, thereby providing new insights into the nature of gene-environment interactions.

In Chapter 1, we conduct a systematic review of the limitations and challenges encountered by

traditional GWAS. We introduce the concept of G×E as a promising avenue to solve the “missing

heritability” that GWAS has not yet fully explained. This chapter emphasizes the necessity of

integrating G×E into genetic research, highlighting their potential to reveal the intricate relation-

ships between genetic variants and environmental factors. Through literature review, we discuss

the current research landscape of gene-environment interactions and statistical methods based on

MoM and GMM. At the end of this chapter, we provid the outline of the dissertation.
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In Chapter 2, we develop two groups of tests to detect interactions between an environmental

factor and a set of genetic markers containing both rare and common variants. The first group

of test include two tests and are based on the variance component method MinQue for Sum-

mary statistics (MQS) [46], which has been applied in MAPIT (Marginal ePIstasis Test) [88] and

LT-MAPIT (liability threshold marginal epistasis test) [58] to detect gene-gene interactions. The

advantage of MQS lies in its ability to provide unbiased and statistically efficient estimate using

the method of moments and the minimal norm quadratic unbiased estimation criterion. We name

these two tests as MArginal Gene-Environment Interaction Test with RANdom or FIXed genetic

effects (MAGEIT RAN or MAGEIT FIX), where the genetic main effects are modeled as random

or fixed, respectively. Both tests can be applied to continuous and binary phenotypes. Compared to

existing methods, both MAGEIT RAN and MAGEIT FIX not only incorporate common and rare

variants within a genetic region but also differentiate their effects during model fitting. Moreover,

they produce unbiased estimators for the variance components. Our methods not only implement

the MQS estimation to identify gene-environment interaction but also extend this approach by

modeling genetic main effects as random in MAGEIT RAN. Given that variants within a genomic

region can have protective or detrimental effects and their effect sizes may differ, modeling genetic

effects as random, such as in MAGEIT RAN, enables the consideration of varying directions and

magnitudes of the genetic effects. The second group of test is based on the Generalized Method of

Moments (GMM) approach [41], leading to the Gene-Environment Interaction Test based on GMM

(GEITGMM).

In Chapter 3, we evaluate the performance of these tests in detecting G×E for a set of genetic vari-

ants. We compare the performance of MAGEIT RAN, MAGEIT FIX, and three set-based G× E
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tests through simulation studies. Our findings demonstrate that MAGEIT FIX maintains a well-

controlled type I error rate, whereas MAGEIT RAN is slightly conservative, especially for binary

phenotypes, due to the approximations applied when dealing with binary phenotypes. However,

across certain simulation settings, MAGEIT RAN has higher statistical power than other compared

methods. We also conduct simulation studies to check the type I error rate of GEITGMM and

compare its power with some existing G×E tests. The simulation results show its ability to achieve

higher power in detecting G× E in certain scenarios.

In Chapter 4, we conduct the genome-wide analysis investigating gene-alcohol interactions on hy-

pertension in the MESA dataset and no genes reach genome-wide significance. However, employing

a suggestive significance threshold in the genome-wide scan [75], we identify two genes, CCNDBP1

and EPB42, located at the cytogenetic region 15q15.2, a region previously reported to be associ-

ated with blood pressure. The EPB42 gene expression was found to be significantly downregulated

in heavy drinkers following exposure to psychological stress. Furthermore, we identify two signal

transduction pathways associated with hypertension, with one of them related to hypertension and

alcohol usage. Considering the established roles of the identified genes and pathways, our findings

suggest that MAGEIT effectively identifies biologically relevant genes that interact with environ-

mental factors to influence complex traits.

5.2 Limitations and future work

This dissertation underscores the critical role of G× E in the complexity of disease and addresses

the challenges inherent in their analysis. We introduce innovative methods based on moment es-

timation MAGEIT RAN, MAGEIT FIX, and GEITGMM, which provide tools for dissecting the
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interplay between genes and environmental factors. While these introduced methods mark advance-

ments in the analysis of G × E, they are accompanied by certain limitations. Specifically, while

moment-based estimators expedite the estimation process compared to likelihood-based methods,

they present challenges during the inference step. MAGEIT RAN and MAGEIT FIX require eigen

value decomposition of large matrices, which can be computationally intensive, and GEITGMM

relies on permutation tests necessitating extensive resampling, which slows down the computation.

Notably, existing literature on the asymptotic properties of GMM estimators [41, 89] suggests a po-

tential way for statistical inference. Moreover, in MAGEIT RAN, the regression coefficients of the

genetic main effects, βj , and the interaction effects, γj , are assumed to be independent. However, in

reality, these effects may be correlated in a genomic region. This restricted assumption might result

in a loss of statistical power, especially in scenarios where most variants in a gene interact with the

environmental factor, and their interaction effects are in the same direction. Considering the com-

plexities in linkage disequilibrium and haplotype effects, it becomes more appropriate to account

for potential correlations among these coefficients. Also, a notable limitation of GEITGMM is the

observed inflation of type I error rates in specific analytical scenarios when using GEITGMM. This

challenge underscores the imperative for ongoing refinement to ensure the method’s robustness and

precision. Furthermore, our model lacks consideration for sparsity, which is particularly noticeable

when dealing with long genes.

In our future work, we will focus on optimizing the computational efficiency of MAGEIT RAN

and MAGEIT FIX. Additionally, efforts will be made to integrate asymptotic distributions of the

GMM estimator and to account for variant correlations within genomic regions, aiming to enhance

the power of these methods. Furthermore, we intend to employ variable selection techniques to

more effectively manage scenarios involving long genes. We will also explore incorporating the
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correlation coefficient of the interaction effects between genetic main effects, βj , and interaction

effects, γj , which have previously been assumed to be independent, to better capture the realities

of genomic complexities where these effects are often correlated. By addressing these challenges,

this dissertation sets the stage for further research that moves us closer to fully understanding the

intricate relationship between genetics and environment in human health.

5.3 Code availability

R code implementing MAGEIT RAN and MAGEIT FIX can be found at

https://github.com/ZWang-Lab/MAGEIT2. R code implementing GEITGMM can be found at

https://github.com/slcxding/GEITGMM.

33



BIBLIOGRAPHY

[1] E. Uffelmann, Q. Q. Huang, N. S. Munung, J. De Vries, Y. Okada, A. R. Martin, H. C. Martin,

T. Lappalainen, and D. Posthuma, “Genome-wide association studies,” Nature Reviews Methods

Primers, vol. 1, no. 1, p. 59, 2021.

[2] P. M. Visscher, N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy, M. A. Brown, and J. Yang, “10

years of gwas discovery: biology, function, and translation,” The American Journal of Human

Genetics, vol. 101, no. 1, pp. 5–22, 2017.
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