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Abstract

Algorithms dealing with the construction of high clearance collision-free paths in the presence of

polygonal obstacles is an important problem in robotics and transportation engineering. Method

of extracting collision-free paths guided by triangulation of free space is examined. Two algorithms

for improving the standard triangulation guided algorithms are presented. The time complexities

of the presented algorithms are analysed. Finally, further applications of the proposed techniques

are discussed.
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Chapter 1

Introduction

Issues pertaining to point site distribution in the plane have been considered extensively in compu-

tational geometry [O’R98]. Computing the closest pair among point sites, finding nearest neighbor

for each point site have many applications. Such problems are commonly known as proximity prob-

lems. Geometric structures for computing proximity relationships between point sites is elegantly

captured by a structure known as the Voronoi Diagram [O’R98]. Once we have the Voronoi diagram

of points distributed in the plane, it is relatively easy to extract triangulation, Euclidean minimum

spanning tree, convex hull, and closest neighbors to each site.

A triangulation of point sites is extensively used in finite element analysis which in turn is used

for generating approximate solution for heat flow problems [PAZ03].

The dual of the Voronoi diagram is an special kind of triangulation called Delaunay triangula-

tion. Several intriguing features are satisfied by the Delaunay triangulation, and these include:

i) In-circle property which states that the circle through vertices of the triangle does not include

any other point sites.

ii) Point sites’ convex hull forms the border of the Delaunay triangulation’s external face.

iii) Euclidean minimum spanning tree of point sites is included in the Delaunay triangulation.

iv) Consider the two nodes, vi and vj , the shortest path among them in Delaunay triangulation

is not very far from the straight line separation between the nodes vi and vj . The shortest

distance among the two nodes vi and vj in Delaunay triangulation is no more than 5.08 times

the straight line distance [DFS90].
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In this thesis, we examine the quality of shortest collision-free paths guided by triangulation.

In chapter 2, we review important existing algorithms for constructing collision-free paths in the

presence of polygonal obstacles. In chapter 3, we describe the instances where the standard method

of constructing collision-free paths guided by triangulation of free-space may generate invalid paths.

We then propose two algorithms to modify the triangulation of free-space so that the path obtained

from the dual of the triangulation is valid. The first algorithm, called ’flipping method’, is based

on flipping carefully chosen edge sharing triangle pairs. This algorithm has the time complexity of

O(n2). The second algorithm we propose is based on constructing envelopes around obstacles and

constructing triangulation on the free space not including the envelop strips. This algorithm has

the time complexity of O(n2). In chapter 4, we discuss the limitation of the proposed algorithms

and approaches for further improvement and extensions. We discuss the viability of using cluster

of points rather than the individual points as the nodes for triangulation. We also discuss the

development of the methods for constructing collision-free paths that do not have sharp turns in

addition to having high clearance.

2



Chapter 2

Review of Collision-free Paths

Algorithms

In this chapter, we present a brief review of the algorithms for the collision-free paths with high

clearance.

2.1 Voronoi Diagram and High Clearance Path

The Voronoi diagram formed by a set of n point sites p1, p2, ..., pn in the plane is the decomposition

of the plane into convex regions. An example of the Voronoi diagram formed by 15 point sites is

shown in figure 2.1. Voronoi diagrams satisfy certain useful proximity properties for point sites.

Some of the properties of Voronoi diagrams used for developing efficient proximity algorithms can

be listed as follow [O’R98]:

a) Every region on the Voronoi Diagram is convex; some are bounded, while others are un-

bounded. The faces corresponding to the points inside the convex hull are bounded. The

faces corresponding to the sites on the convex hull are unbounded. In Figure 2.1, there are

seven unbounded faces corresponding to point sites p2, p4, p6, p3, p9, p5 and p7. The faces

corresponding to interior point sites are bounded.

b) The closest neighbor of point site pi is one of the sites corresponding to the faces adjacent to

the faces f(i), the face for pi.

c) The dual of the Voronoi diagram of point sites p1, p2, ..., pn gives the triangulation of the point

sites. Such a triangulation is called the Delaunay triangulation. An example of dual and the

3



Delaunay triangulation is shown in the figure 2.2.

Figure 2.1: Voronoi Diagram of 15 Point Sites

Figure 2.2: Delaunay Triangulation of 16 Point Sites

4



2.2 Review of Triangulation Algorithm

It is a partitioning of the polygon into triangles whose vertices are also the vertices of the polygon.

Figure 2.3 and 2.4 depicts valid and invalid triangulated polygon respectively.

Figure 2.3: Valid

Figure 2.4: Invalid

In most triangulation studies, valid triangulations are considered [O’R98]. It is known that in

any simple polygon ofn vertices, it admits (n− 2) triangles. The vertices vi−1, vi and vi+1 are the

three consecutive vertices of the polygon which forms an ’ear’ if vi−1, vi+1 is an internal diagonal.

In the figure 2.5(a), v3, v1 and v2 forms an ear whereas, v7, v8, v9 and v6, v7, v8 do not form ears.

5



Figure 2.5: Triangulation Using Ear Removal

A very simple algorithm for triangulating a polygon is based on repeatedly removing ears. When

a ear is removed from a polygon of n vertices, remaining part is a polygon of n− 1 vertices. This

process of repeatedly removing the ear generates a triangulation. For example in figure 2.5(a),

when ears are repeatedly removed from the polygon, it results a triangulation of the polygon as

shown in the figure 2.5(b). However, the time complexity of this algorithm is O(n2). Finding an

efficient algorithm for triangulating a polygon is a very important problem.

Computing collision free path based on by the placement of random nodes in free region has

been considered by Barun Thapa. The detail are available in [Tha23].

Another algorithm to triangulate a polygon is based on decomposing a simple polygon into

6



monotone parts. It is known that in linear time, a monotone polygon can be triangulated [dBvKOS00].

Figure 2.6 illustrates the decomposition of s simple polygon into three components. The time com-

plexity of such an algorithm is O(n log n) [dBvKOS00].

Figure 2.6: Monotone Components

Triangulating a simple polygon in linear time was considered by several researchers. For this

issue, Bernard Chazelle [Cha91] developed a linear time algorithm. The algorithm is very compli-

cated and its implementation needs sophisticated data structures.

7



Figure 2.7: Triangulation of Same Point Set

Triangulating a set of points in two dimensions has many practical applications. In 2D, there

are numerous methods for triangulating a set of points. Figure 2.7 illustrates several triangulations

of the same point set. It has been proven, in fact, that there are exponentially many ways to

triangulate a point set [O’R98]. The problem of triangulating a set of points has a lower bound of

Ω(n log n).

8



2.3 Triangulation by Segment Rotation

A straightforward method for triangulating the free-space in the presence of polygon obstacles is to

insert non-intersecting diagonals incrementally. The approach is to examine all candidate diagonals

formed by the vertices of polygon obstacles. If the candidate diagonal does not intersect with the

already selected diagonals then it is taken as the diagonal of the triangulation. This process of

examining/selecting candidate diagonals is repeated until the free-space is completely triangulated.

There are O(n2) candidate diagonals. Each candidate diagonal needs to be checked for possible

intersection which has execution time of O(n). This straightforward approach takes O(n3) time

and is a very slow algorithm.

A faster algorithm can be developed by considering rotating segment from a given vertex.

Imagine a line segment originating from a vertex a3 and extending to meet a vertex q10 on the

boundary wall as shown in figure 2.8. This segment (a3, q10) intersects with four edges (c2, c3),

(c4, c5), (d2, d3), (d3, d1). In a balanced search tree, these intersecting edges are maintained in the

priority of distance from origin a3. The search tree is updated as the segment rotates in clockwise

direction. The updating is done when the rotating segment passes through vertices as shown in

figure 2.9. The detail of this method is available in [Lee78]. The rotation procedure is done by

selecting all vertices as the origin. The time complexity of the rotating method is O(n2 log n).

The set of visibility segments in the presence of polygonal obstacles gives a structure called

Visibility Graph [O’R98]. Visibility graph contains edges of any triangulation. Hence a Visibility

Graph can be used to extract desired triangulation edges. It is established that the time required

to compute a visibility graph is proportional to its size [GM87]. Hence a triangulation algorithm

based on the visibility graph takes time O(n2).

9



Figure 2.8: Rotating 1

Figure 2.9: Rotating 2
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2.4 Doubly Connected Edge List Data Structure (DCEL)

A DCEL Data Structure is used to represent and store planar graphs. A triangulation of a set of

points is a restricted planar graph and hence DCEL data structure is used to store the triangulation

efficiently. We briefly describe below the DCEL data structure.

A planar graph consists of three entities - Faces, Edges and Vertices. Let us use the figures 2.10

and 2.11 to understand the detail of DECL properties.

Figure 2.10: Planar Graph Showing Faces and Vertices

Figure 2.11: Planar Graph Showing Faces, Edges and Vertices

Each edges is represented by a pair of directed half edges e1 and e2, directed in opposite

direction. The details are available in [dBvKOS00]. Table 2.1 demonstrates how to store the half

edges record in a table.

11



Half Edge Twin Next Previous Incident Vertex Incident Face

e1 e7 e5 e2 v2 f0
e2 e8 e1 e3 v3 f0
e3 e9 e2 e11 v4 f0
e4 e10 e12 e5 v5 f0
e5 e6 e4 e1 v1 f0
e6 e5 e7 e10 v5 f1
e7 e1 e8 e6 v1 f1
e8 e2 e9 e7 v2 f1
e9 e3 e10 e8 v3 f1
e10 e4 e6 e9 v4 f1
e11 e12 e3 e19 v6 f0
e12 e11 e13 e4 v4 f0
e13 e26 e27 e12 v6 f0
e14 e25 e15 e30 v12 f0
e15 e24 e16 e14 v11 f0
e16 e23 e17 e15 v10 f0
e17 e22 e18 e16 v9 f0
e18 e21 e19 e17 v8 f0
e19 e20 e11 e18 v7 f0
e20 e19 e21 e26 v6 f2
e21 e18 e22 e20 v7 f2
e22 e17 e23 e21 v8 f2
e23 e16 e24 e22 v9 f2
e24 e15 e25 e23 v10 f2
e25 e14 e26 e24 v11 f2
e26 e13 e20 e25 v12 f2
e27 e30 e28 e13 v12 f0
e28 e29 e29 e27 v13 f0
e29 e28 e30 e28 v14 f0
e30 e27 e14 e29 v13 f0

Table 2.1: A Table Showing the Half Record of Edges
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If a planar graph G is available in a DECL representation, it can be navigated very efficiently. It

is convenient to have classes for vertices, faces, and half-edges. Figure 2.12 depicts useful methods

for class HalfEdge.

Figure 2.12: Methods for the HalfEdge Class

With these methods, a function that returns the size of the face incident in half edge e1 can be

written conveniently as shown in figure 2.13.

Figure 2.13: Size of the Face Incident in a HalfEdge

It is straightforward to see that the size of a face can be determined in time proportional to the

size of the face.

The degree of a vertex v can be determined in time proportional to the degree value of the

vertex as shown in figure 2.14.
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Figure 2.14: Degree of a Vertex v

2.5 Collision-free Paths and Triangulation

A commonly used method for constructing collision-free path is based on the triangulation of free

space [Kal05]. The method is based on triangulating free space (space outside of obstacles) and

selecting nodes inside each triangle. The centroid of the triangle is commonly used to place nodes.

Let us explain this method with an example as shown in figure 2.15, which shows triangulation of

free space. In each triangle a node is placed in its centroid. Two centroid nodes are connected by

an edge if the corresponding triangles share an edge. When all connection of centroids is done, a

structure called the dual of the triangulation is formed as shown in figure 2.16. It is observed that

the dual lies outside obstacles and hence can be used for planning collision-free paths. Furthermore,

it can be observed that the dual does have good clearance from obstacles.

14



Figure 2.15: A Scene of Obstacles Inside a Box

Figure 2.16: Illustrating the Triangulation of Free Space and the Dual

15



Chapter 3

Modified Triangulations

In this chapter we present modifications to the standard triangulation method for extracting colli-

sion free paths. We discuss the cases where the dual of a triangulation becomes an invalid structure:

the dual could actually intersect with obstacles. We then present two methods for fixing this inter-

section problem. The first algorithm is based on modifying the given triangulation by the process

of ’flipping’. The second algorithm we present is based on embedding obstacles with envelopes and

generating a triangulation in the free-space outside the envelopes.

3.1 Difficulties with Standard Dual Method

As discussed in the previous chapter in the dual method, the free-space is triangulated by taking

obstacle vertices as the triangulation vertices. However, for some obstacle distribution, the dual

could actually intersect with obstacles which may result in generating an invalid path. This is

illustrated in figure 3.1. An example of obstacles enclosed in a rectangular box is shown in figure

3.1a. A triangulation of the free space by locating nodes on the centroids of triangles and the

corresponding dual are shown in figure 3.1b-c. As observed in figure 3.1d, the dual crosses an

obstacle, making this structure invalid: the path extracted from this dual could intersect with

obstacle D. This is stated in the following lemma.

16



Figure 3.1: Invalid Triangulation Dual

Lemma 3.1 The triangulation dual could intersect with obstacles.

3.2 Method of Flipping

Lemma 3.1 motivates us to seek for a triangulation so that its dual is free of intersection with

obstacles. We consider the process of ’triangle flipping’ for a pair of triangles that are adjacent to

each other (i.e. they share an edge). Let us examine a pair of adjacent triangles bgf and baf, that

share a common edge bf as shown in figure 3.2.

In the quadrilateral gbaf, diagonal ga is inserted and diagonal bf is removed. This process

transforms triangle pair (bgf and baf) into a new pair (afg and agb). Similar flipping is performed

in the quadrilateral afed.

Our approach for fixing the invalid dual is to flip the triangles in the neighborhood of the

17



Figure 3.2: Illustrating Triangle Flipping

obstacle vertex when the dual crosses or is very close to the obstacle.

Figure 3.3 illustrates the flipping process near the top vertex of obstacle D. It is observed that

after flipping, the dual does not intersect with obstacle and becomes valid.

18



Figure 3.3: Modifying Dual by Flipping

An algorithm for flipping a skinny pair of adjacent triangles can be described as follows. The free

space in the presence of polygon obstacles can be triangulated by using the standard triangulation

algorithms of polygons with holes [dBvKOS00, O’R98]. The triangulated space is represented in

a Doubly Connected Edge List (DCEL) data structure for convenient inspection of triangles. By

traversing the data structure, we can identify skinny pairs of adjacent triangles. For these identified

skinny pairs, we perform a flip operation as explained in figure 3.2. The resulting triangulation

(after all needed flipping) will have a dual that does not intersect with obstacles and has better

clearance. A formal sketch of the algorithm is listed as Algorithm 1.

19



Algorithm 1: Triangle Flipping

Input: Polygonal obstacles P1, P2, ... Pq enclosed in a rectangular box R
Result: Triangulation of free space with non-skinny triangles T1, T2, ... Tm

Step 1:
Triangulate the free region inside box R. Let the list of the triangles be T1, T2, ... Tm

Step 2:
Check the triangles T1, T2, ... Tm and mark all adjacent pair (Ti, Tj) that are skinny

Step 3:
for all adjacent skewed pair Ti = <a,f,b >and Tj = <b,f,g >marked in Step 2 do

a) replace Ti = <a,f,b >by <a,f,g >
b) replace Tj = <b,f,g >by <b,a,g >

end

Step 4:
Output T1, T2, ... Tm

Time Complexity Analysis: The time complexity of Algorithm 1 can be done in straightforward

manner. Triangulating a polygon with holes can be done in O(n2) time. Hence, Step 1 takes O(n2)

time. This triangulation can be represented in doubly connected edge list data structure with the

same time. Once the triangulation is available in DCEL form, it can be navigated smoothly and

skinny triangles can be identified efficiently in linear time. Hence, Step 2 can be done in O(n)

provided the triangulation is available in DCEL form. Flipping a pair of adjacent triangles can be

done in constant time. There can be at most O(n) skinny pair of triangles. Hence, Step 3 takes

O(n) time. Since the time of Step 1 is the dominant time, the total time complexity is O(n2).

3.3 Method of Expansion

One way to avoid the intersection of the dual with obstacles is to slightly move triangulation vertices

away from obstacles. When the vertices of triangles are not coinciding with obstacle vertices and

away from obstacles the chance of intersection between the dual and and obstacles is reduced

significantly. The idea is to put a small strip around the obstacles and have the vertices of triangles

on the strip away from obstacles. This can be better modeled by considering the expansion of

obstacles, similar to obstacle growing described in [O’R98].

An image is constructed for boundary edge such that the image edge is parallel to the boundary

edge and shifted distance δ away. This is illustrated in figure 3.4. Consider boundary edge (a1, a2)

of obstacle A. Edge (a1,2, a2,1) is the image edge for obstacle boundary edge (a1,a2). Similarly, the

image edge for boundary edge (a2, a3) is (a2,2, a3,1). It is noted that by following this scheme, each

20



obstacle vertex ai has its image vertex pair (ai,1, ai,2). When all image vertices are connected by

straight edges by following the boundary an envelop of width δ is formed which looks like expanded

obstacle.

Figure 3.4: Obstacle Expansion

Observe that if an obstacle has m vertices then its envelop will has 2m vertices. It is a simple

matter to construct image vertices for all obstacle vertices in constant time. Hence the envelop of

each of an obstacle with vertices m can be constructed in O(m) time.

Figure 3.5 shows the construction of dual by triangulating the free space by using vertices of

the expanded obstacle.

Algorithmic description of the method of expansion can be summarized as follows. A line

segment l can be shifted parallel to itself by a distance δ (away from the obstacle) by examining

co-ordinates of endpoints, and the slope of l. The line segment l
′
parallel to l can be created in

constant time. The shifted lines can be jointed together to create expanded obstacle. Algorithm 2

is a detailed description of the algorithm used for the expansion method.

21



Figure 3.5: Dual After Obstacle Expansion

Algorithm 2: Method of Expansion

Step 1:
for obstacle O1 do

Construct edges parallel to the edges of O1 and shifted by δ
end

Step 2:
Repeat Step 1 for all other obstacles O2, O3, ..., Om

Step 3:
Connect all shifted edges to construct expanded obstacles.

Step 4:
Triangulate free-space outside all expanded obstacles.

Step 5:
Construct dual of the triangulation obtained in Step 4.

Step 6:
Apply Dijkstra’s shortest path algorithm in the dual to obtain collision free path.

Time Complexity Analysis: The image edge of each obstacle edge can be done in O(1) time.

This implies that Step 1 and Step 2 can be done in O(n), where n is the number of vertices in

all obstacles. Connecting shifted edges to construct envelop can be done in O(n) time, which is

the time for Step 3. Triangulation of free space can be done in O(n2) time by using standard

22



visibility graph structure. Once triangulation is available dual can be constructed in O(n) time if

the triangulation is available in DCEL form. Dijkstra’s algorithm for Step 6 can be done in O(n)

time as the dual is a planar graph. Therefore, the total time complexity is O(n2).

Picking the value of δ:

How to pick the value of strip with δ is a critical question. The value of δ should be big enough

so that the dual does not close with the obstacles. Furthermore, the value of δ should not be very

large to keep envelops of neighboring obstacles not to intersect. One way to address this issue is to

examine the closest obstacle to each input obstacle. If min is the closest distance among all closest

pairs then we could pick the value of δ as one fourth of the value of min.

One way to find the closest obstacle pair is to construct an extended Visibility Graph [O’R98].

The visibility graph of a collection of obstacles is obtained by connecting all visible pairs of vertices.

Figure 3.6 shows an example of visibility graph.

The visibility edges can be extended by adding projection edges. Projection edges (Red line

in the figure 3.6 the bottom one) are essentially the line segments representing the perpendicular

distance between a vertex and an obstacle edge. Note that not all projection edges are shown in

this figure.
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Figure 3.6: Illustrating Extended Visibility Graph
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Chapter 4

Discussion

We reviewed algorithms for constructing collision free paths in the presence of polygonal obstacles.

We focused on the method of triangulation pairing for constructing collision-free path with high

clearance. We demonstrated that the standard method of the dual of triangulation can sometime

construct invalid paths: the paths could have very low clearance from obstacles or in some situation

intersect with obstacles. We next presented two algorithms for modifying triangulation of free space

so that the dual becomes valid. The first method is based on the technique of triangle flipping and

the second method is based on the expansion of obstacle boundaries.

This study gives us insight to explore further methods for modifying triangulation that would

increase clearance from obstacle. One such method could be the insertion of steiner vertices near

obstacle vertices having sharp turn. This is illustrated in figure 4.1, where an invalid branch of the

dual graph is lifted to avoid intersection. Let (c1, c2) be the edge of the dual that intersects with

obstacle D as illustrated in the figure.

Two steiner vertices (yellow nodes) are inserted near the top vertex of obstacle D. This results

in splitting two triangle into four. The centroids of newly created triangles are denoted as g1 and

g2. Now, if we replace edge (c1, c2) by path (c1, g1, g2, c2), shown by yellow edges, the modified

portion of the dual lifts up and the clearance is increased. It would be interesting to explore this

lifting mechanism in detail.

It would also be interesting to examine the performance of the proposed algorithms by actual

implementation in high level language like Java and/or C++.
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Figure 4.1: Lifting of Intersecting Edge
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