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Abstract
STATISTICAL CLASSIFICATION USING SELECTION AND RANKING METHODOLOGIES

WITH STATISTICAL LEARNING

by

Jeong Jun Lee

Professor Hokwon Cho, Ph.D., Examination Committee Chair

University of Nevada, Las Vegas, USA

The subject of Statistical Classification is concerned with identifying and allocating future

observations into one of the pre-categorized classes based on the characteristics of the objects.

Typically, these decisions to classify and categorize the objects have been dependent on identifying

a system of classification, and from there, determining attributes for sorting.

In past decades, from discriminant analysis, various methods have been developed for clas-

sification. In particular, the rise of artificial intelligence (AI), machine learning, and statistical

learning theory has made it possible to consider improving the existing methods along with new

developments and more comprehensive schemes in conjunction with data-driven methods.

In this dissertation, we propose innovation using multiple decision-theoretic perspectives, such

as the Indifference-Zone (IZ) approach and the Subset Selection (SS) method, to improve and clarify

how these classification decisions can be made.
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Chapter 1

Introduction

In many fields of study, namely financial, educational, and social problems, we are faced with

assigning observations to one of two or more groups based on given information. For example,

a department of a college sends an admission or rejection letter to an applicant who submitted

the exam scores. The department already has data from previous years with all the test scores of

the applicants and the corresponding group information of either admitted or rejected. Based on

such data, the admission officer can make a rule to classify the applicants into one of two groups.

Any procedure related to the above problem is called classification. Classification is a statistical

procedure that identifies and allocates the observations into a known number of groups(or classes)

based on a classifying rule or a classifier. In a classification problem, we have observations that are

grouped and we want to classify a new observation into one of the known groups. Then, we need to

construct a rule from the given grouped data set and apply the rule to the new observation. When we

do so, we divide the data set into two parts; training data set and testing data set. After constructing

the classifying rule using the training data, the rule is evaluated by checking the classification

performance through the remaining data, the test data. Statistical learning takes place while finding

and improving classifying rules through training data and testing data.

Since the data set for statistical classification consists of both the response variable as a
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class and the explanatory variables, statistical classification is referred to as supervised learning.

An example of unsupervised learning is clustering, which identifies and groups data sets based on

similarities, regardless of specific outcomes. The main objective of statistical classification has been

focused on finding rules that assign individuals to the groups and finding better rules that improve

the accuracy of the process. Moreover, most of the various classification methods to achieve this

goal focus on reducing the dimensionality of the data set. Since Fisher’s linear discriminant analysis,

statistical classification has evolved towards finding better classifiers by reducing the dimensionality

of the variables.

1.1 Motivation of the Problem

Following the advent and rise of artificial intelligence (AI) and learning theory, statistical

classification can be viewed from the perspective of statistical decision theory. James O. Berger

(1989) states that ”Statistical decision theory is concerned with the making of decisions when in the

presence of statistical knowledge (data) which sheds light on some of the uncertainties involved in

the decision problem”(p. 217) [9]. The basic concept of statistical decision theory starts with an

action and we quantify the gain or loss as we take the action. When we have two possible actions,

we call it a binary decision problem, and when there are more than two possible actions, it is called

a multiple decision problem. To solve the multiple decision problems, we use a method of multiple

comparisons or the Selection and Ranking Methodologies. We will describe more about the Selec-

tion and Ranking Methodologies in Chapter 2. A statistical multiple decision-theoretic perspective

on classification did not come out of nowhere. A. Wald, known as a founder of statistical decision

theory, formulated to solve the classification problem of two groups by setting the hypotheses and

using the Neyman-Pearson lemma in his 1944 paper [66]. Bechhofer et al. (1968) [6] approached

and solved the selection problems as an identification problem using Wald’s sequential analysis.

Statistical multiple decision theory therefore has roots in statistical classification.
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Looking at statistical classification and statistical multiple decision theory, this is both an

identification process and a decision-making process. Thus, we want to combine the components of

two procedures. From the perspective of statistical multiple decision theory, assigning an object

to the group it belongs to will result in a correct decision, while assigning an object to the wrong

group will result in a wrong decision. We could say that improving statistical classification is

about finding some way to make the correct decision (correct classification) better by increasing

the probability of the correct decision. In this dissertation, we are interested in the methods of

improving statistical classification from a multiple decision-theoretic perspective and propose two

methods that contribute to statistical classification.

One approach we propose is to introduce new variables into the classification problem. In

various methods, statistical classification has been improved to find a better classifying function

by reducing the dimensionality of the variables or using existing variables to create higher-order

dimensions. Our first suggestion is not limited to finding such classifying functions. Instead of

creating higher-order classifying functions, we strive to find variables that help separate the groups

better, i.e., we add a new variable to the problem. If adding a new variable to the problem increases

the separability, which is a measure of how far apart the groups are, in a higher dimensional space,

one should include that variable in the problem rather than looking for a way to reduce dimen-

sionality. As the cost of storing and extracting data has become more affordable and, thanks to

the advancement of technology, incorporating a variable or vector of variables into a classification

process has become much more pragmatic. We also propose a method to improve statistical classifi-

cation by selecting the predictor variables that increase the separability among the existing variables.

Decision makers already have a large number of variables and want to select those that will increase

the relevance and decrease the redundancy. We apply the Selection and Ranking Methodologies for

this process and will select the variables with a high correlation to the response variable and a low

correlation to the predictor variables. The Indifference-Zone approach of the Selection and Ranking

Methodologies with the multiple correlation coefficients will be used for this method.

In addition, one of the most frequently discussed areas in recent statistical studies is statistical
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learning theory. As mentioned above, learning can be categorized into two big parts: supervised

learning and unsupervised learning. The most familiar problems in the supervised learning are the

classification and the regression. Then, clustering belongs to unsupervised learning. In light of the

statistical learning theory, the selection and ranking methodologies can be viewed as either super-

vised or unsupervised learning because the Indifference-Zone approach and the Subset Selection

method are related to the classification and clustering, respectively.

Thus, in this dissertation, we investigate the application of selection problems to statistical

classification and extend selection problems further to statistical learning theory. Eventually, we

will examine ways to increase the probability of correct decision in classification problem.

1.2 Outline of the Thesis

We begin by reviewing statistical classification, the Selection and Ranking Methodologies,

and statistical learning in Chapter 2. We review statistical classification by checking the various

techniques. The probabilities that measure the accuracy of the classification process are explained

along with the total probability of misclassification (TPM). A decision boundary to allocate a new

observation based on the minimum TPM rule is provided. Then, we review the selection and

ranking methodologies, which are the methodologies of selection in the field of statistical multiple

decision theory. Here, two approaches to the selection methods are presented and we describe

the formulations of both the indifference-zone approach and the subset selection method. The

probability requirements to guarantee a correct decision for both approaches are illustrated. Also, a

multivariate indifference-zone approach which is an extension of the univariate indifference-zone

approach is described. Then, a review of Statistical Learning is provided.

In Chapter 3 a new method to improve statistical classification is proposed. If we could find

a variable that separates the groups better and we examine whether the probability of a correct

decision gets improved. If we attain a higher probability, we call the variable the preferable predictor

vector. A simulated bivariate example is provided and the probability of correct classification and
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the accuracy from the confusion matrix are used to measure the performance of the classification

procedure. In addition, the conditions of the preferable predictor vector are examined. It is shown

that they are connected with the separability.

In Chapter 4 we investigate the indifference-zone approach from the point view of classification

and statistical learning. We update the discerning measure of distance, δ, in the indifference-zone

approach to improve the probability of a correct decision in the sense of statistical learning.

In Chapter 5 we suggest a method to improve statistical classification by selecting the predictor

variables among the existing ones based on relevance and redundancy. We will use the indifference-

zone approach using the correlation coefficients and the multiple correlation coefficients to select

appropriate variables.

In Chapter 6 we conclude this dissertation with a summary and discussion of the future

research.
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Chapter 2

Review of the Literature and Existing

Methods

2.1 Statistical Classification

In modern statistics, classification is of great interest to researchers and scientists who need to

analyze rich data and make predictions based on it. Reflecting such needs, various classification

methods have been developed since it was discussed by R.A. Fisher (1938) [24]. R.A. Fisher

introduced a function that maximizes the separation of observations from two populations through a

linear combination of their features. This linear combination transforms multivariate observations

to univariate observations by maximizing the ratio of
(squared distance between sample means

sample variance
)
.

He assumed that both populations had the same covariance matrix and the function was called linear

discriminant.

The goal of statistical classification is to allocate a new observation to one of the groups based

on the features (input variables) that are associated with observation. The groups are either known

or sorted by the practitioner. The practitioner already has the data from experience and it includes

the information about the group to which an observation belongs. When the group information

is included, the practitioner does not need to sort them into groups and the group information is
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considered a response variable. Otherwise, there are data consisting of only input variables without

response variable, and the practitioner needs to group them. There are data consisting of only input

variables without response variables, and practitioners need to group them. The former situation can

be represented by classification, and the latter is well-known as clustering or pattern recognition.

The process of allocating the observations can be divided into two steps. In the first step, one uses a

part of the data, the training data set, to build a rule to assign the observations from the experience

to one of the known groups. The rule called a classifier (like Fisher’s discriminant), is built based on

the input variables through the learning process. Thus, this rule is the target function of the learning

process. In the second step, we want to validate the optimized target function in the first step using

the rest of the data, called the testing data set. This learning process is called supervised learning

because the response variable (as the group information) exists in the data set. If the data set does

not have any response variable like in the clustering case, it is categorized as unsupervised learning.

In the second step of validation, the performance of classification (i.e. the accuracy of the rule)

must be assessed and the misclassification rate is used as a measure of accuracy.

From Fisher’s discriminant, the techniques of statistical classification have been expanded.

Linear Discriminant Analysis (LDA) finds a projection to maximize the ratio of the between group

variances to the within group variances under the assumption of the normal distributions and the

same covariance matrix structures. Quadratic Discriminant Analysis (QDA) loosens the assumption

of the identical covariance structures from LDA. K-Nearest Neighbor (KNN) classifies the data with

distribution free model only depending on the distance measures. Classification and Regression

Trees (CART) and Random Forest are popular Decision Tree Learning methods. Neural Networks

or Artificial Neural Networks (ANNs) is based on the dynamics of connections between the nodes

as the input and the output.
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2.1.1 Existing Methods of Classification

Discriminant Analysis (Linear or Quadratic Discriminant Analysis)

Discriminant Analysis classifies the observations into two or more known categories with no

overlapping parts. It is very similar to regression except that the response variable is categorical. It

started with Fisher’s idea to separate two groups by making the spread within groups small and the

mean difference between groups big. Suppose fi(x) is the p-variate normal density with a mean

vector of µi and the covariance matrix of Σi, i = 1, 2. Then, the goal is to maximize the ratio of

the between-groups variance to the within-groups variance. The result shows that w′x = c is the

decision boundary, where w′x is the dot product, and c is a threshold of the dot product, given by

c = w′ 1
2
(µ1 +µ2). The w that maximizes the above ratio is w = (Σ1 +Σ2)

−1(µ1 −µ2). Here, w

is the projection vector onto which x is transformed and where the mean difference of transformed

values is maximized. Also, w is orthogonal to the decision rule.

Linear Discriminant Analysis (LDA) assumes the same covariance matrix, Σ1 = Σ2 = Σ, and

then w = Σ−1(µ1 − µ2).

The decision rule on a new observation, x0, becomes:

Allocate x0 to group 1 if (µ1 − µ2)
′Σ−1x0 > 1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2), otherwise allocate to

group 2.

This result is the same as the one using the minimum expected cost of misclassification (ECM) rule

under the same cost and the same prior, that is, the classification rule of LDA is identical to the

allocation rule from the minimum ECM rule, where

ECM =
∑
all

misclassified
points

P(misclassification)× P(prior)×(cost of misclassification).

If we assume non-homogeneity of the variance-covariance matrices, using the minimum ECM

rule, we get the decision rule as:

Allocate x0 to group 1 if

8



−1
2
x′(Σ−1

1 − Σ−1
2 )′x+ (µ′

1Σ
−1
1 − µ′

2Σ
−1
2 )x > 1

2
(µ′

1Σ
−1
1 µ1 − µ′

2Σ
−1
2 µ2) +

1
2
log

(
|Σ1|
|Σ2|

)
.

Allocate x0 to group 2 otherwise.

This rule is calculated from the ratio of joint densities of x of group 1 and group 2, f1(x)/f2(x),

and has the form of quadratic function of x. That is why this classification rule is called a quadratic

discriminant analysis (QDA).

Support Vector Machines

Support Vector Machines (SVMs) were invented and developed by Vladimir N. Vapnik in

1963 [65]. There are three different types of classifiers depending on the situation. One of the

most popular techniques as a classifier is the Maximal Margin Classifier (MMC), which uses the

separating hyperplane. The other classifier is the Support Vector Classifier (SVC) and the third

one is Support Vector Machine (SVM). The MMC is used when the groups are strictly linearly

separable. The SVC is used when the classes are not linearly separable. In both cases, the classifier

is still a linear hyperplane of the feature space. If the boundary of the groups cannot be linear, then

the Support Vector Machine is appropriate. First, let’s focus on the case when the decision boundary

is linear.

When the classes are linearly separable, we can imagine a separating hyperplane between

classes as a decision boundary. The dimension of the separating hyperplane is 1 less than the

dimension of the data space. For example, if the process has two variables, the separating hyperplane

will be a line, and if the model has three variables, the separating hyperplane will be a two-

dimensional plane. The linear decision boundary separates the groups completely and if a new point

falls on one side of the decision boundary, the point can be assigned to that group.

Then, how can we decide the decision boundary? There are plenty of hyperplanes between

two groups when they are linearly separable. Among those hyperplanes, the one that creates the

furthest distance to each group as a classifier or a decision boundary is the maximal margin classifier

(MMC). The distance is defined as the perpendicular distance from the hyperplane to the nearest

data point of the group and this distance is called the Margin. Here, the MMC depends only on
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the nearest data points of each group and those data points are called Support Vectors. Then, the

margin is the perpendicular distance from the separating hyperplane to support vectors. In a linearly

separable case, the margin is positive and called a hard margin. To find the MMC we first draw

two parallel hyperplanes passing through the support vectors of each group. Then, we choose the

orientation of the hyperplane to maximize the perpendicular distance between parallel hyperplanes.

The hyperplane located right in the middle of two parallel hyperplanes is the MMC. In the two-group

case, we have paired p-dimensional data points x and y = either 1 or −1 depending on the group.

Then, the problem reduces to finding a separating hyperplane such that w′x+ c = 0, where w is

the normal vector to the hyperplane and c is a constant. Therefore, finding such a hyperplane is

solving an optimization problem under some constraints for n data points as

min
1

2
||w||2 s.t. yi(w

′xi + c) ≥ 1, i = 1, 2, . . . , n,

where ||w|| is L2 norm.

When it comes to the linearly inseparable groups, the points located on the wrong side of

the linear decision boundary seem inevitable and it becomes impossible to get the MMC. We

need to consider whether we still want to create the linear separator keeping some misclassified

points that generate negative margins. A soft margin occurs in this situation. To create the linear

separator, we sacrifice some points as misclassified and still maximize the margin. There is a

trade-off between maximizing the margin and minimizing the number of misclassified points. The

problem is modified by adding a new variable (slack variable) as the penalty for the misclassified

points. Under the constraints of the slack variable, a linear decision boundary is the solution to the

following optimization problem.

min
1

2
||w||2 +M

∑
ξi s.t. yi(w

′xi + c) ≥ 1− ξi , i = 1, 2, . . . , n,

where ξi is the distance of xi as a margin if it is on the wrong side of the decision boundary,

otherwise, it’s zero. Here, M is a parameter for the trade-off above. If M is large, the optimization
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puts more weight on avoiding misclassification, even if the margins are kept small. When M is

small, the optimization focuses more on maximizing the margin rather than on misclassification. If

M is large, it is close to the hard margin case. We use Lagrange Multiplier to solve this problem to

fit the separating hyperplane. This decision boundary is the Support Vector Classifier (SVC).

Another way to solve the linearly inseparable problem is to use Support Vector Machine(SVM).

In this method, data are mapped into a higher dimension and, when mapped, data are transformed

using kernel function since it transforms the dot product of data. This procedure is called Kernel

Trick. Then, we find the decision boundary in the transformed data space. This decision boundary

is the hyperplane of the transformed data space and is linear in the transformed data space. In the

original data space, however, the decision boundary becomes nonlinear. There are 3 widely used

kernel functions.

• Polynomial Kernel : k(xi, xj) = (xi · xj + a)b

• Radial basis Kernel : k(xi, xj) = e−
||xi−xj ||

2

2σ2

• Sigmoidal Kernel : k(xi, xj) = tanh(axi · xj − b),

where k(xi, xj) is a kernel function, xi · xj is a dot product, and a and b are the parameters defining

kernel’s behavior.

K-Nearest Neighbor

K-Nearest Neighbor is an algorithm to classify the observations based on the distance from the

observation to its neighbors and was developed by Thomas M. Cover and Peter E. Hart in 1967 [17].

In two groups case, for an observation to be classified, we measure the distance of the observation to

all neighbors and order them. All neighbors are already classified as one of two groups so KNN is a

supervised learning. We allocate the observation to the group with a majority among the K nearest

neighbors. Here, one needs to make the decision on K and the distance measure. A bias-variance

tradeoff for observational prediction (or classification) may occur depending on K. When K is too

small, the model is affected by outliers and it is less stable. The model has a smaller bias but shows
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a higher variance in prediction. On the other hand, when K is too large, the model is more stable

with less variance but the bias in prediction happens. In practice, K =
√

(n), n is the number of

observations, is the rule of thumb. Euclidean distance, Manhattan distance, and Minkowski distance

are used as distance metrics.

Decision Tree Learning

A decision tree is a non-parametric supervised learning procedure for prediction, i.e., clas-

sification or regression, and was proposed by James N. Morgan and John A. Sonquist in 1963

[49]. It has several advantages in that it is easy to understand and interpret and does not require

distributional assumptions. Nodes and branches make tree-shaped decision flow. On each node, a

test on a variable is run and the results of the test follow the branches which connect to the next

nodes. The initial node is the root of the tree and the terminal node(leaf) indicates the class of the

input data. In each node, the variable to be tested is determined by the calculation of Gini Impurity

or Information Gain. Gini Impurity is a number between 0 and 1, where 0 means all data points are

assigned to one class and 1 means randomly assigning the data to classes.

Gini impurity(D) = 1−
∑
c∈C

p(c)2,

where D is any variable in the data set with C classes and p(·) is the probability that an observation

belongs to class of c.

Information Gain uses the entropy of variables at the given node. Entropy ranges from 0 to

1. When all the data points fall in one class, the entropy is 0. If half of the data points are in one

class and the other half are in the other class, then the entropy equals 1. On top of the tree, the first

variable tested is the variable with the smallest entropy. Then, a variable with a higher Information

Gain is tested on the next node. To choose this variable, Information Gain from the current variable

to the next each variable needs to be calculated. Repeat this process to the final variable. Again, D

is any variable in the data set, C represents the classes in the variable of D, and A is the variable
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with class a.

Entropy(D) = −
∑
c∈C

p(c) log2 p(c)

Information Gain(D, a) = Entropy(D)− Entropy(D|a)

= −
∑
c∈C

p(c) log2 p(c)−
∑
c∈C

−p(c|a) log2 p(c|a).

On average,

Information Gain(D,A) = Entropy(D)− Entropy(D|A), where a ∈ A,

and

Entropy(D|A) =
∑
a∈A

p(a)
∑
c∈C

−p(c|a) log2 p(c|a).

The performance of a Decision Tree can be measured by accuracy, precision, or sensitivity

from the confusion matrix that is explained in Table 2.1. Classification and Regression Tree (CART)

and Random Forest are popular algorithms.

Neural Networks

Neural networks are a series of decision-making algorithms or non-linear statistical data

modeling similar in structure to neurons in the human brain. McCulloch and Pitts (1943) [46] first

introduced neural network with neurons and layers. A neural network has many different layers and

each layer consists of interconnected neurons. On the one hand, the input layer receives the data and,

on the other hand, there is an output layer. In between, there could be multiple hidden layers. If the

data are given to the neurons of the input layer, the weighted sum of neurons of the input layer added

by some constant, a bias, produces the output to the neuron in the next layer(hidden layer). It has

the form of
∑

(weight× input) + bias. Then, a nonlinear function called an activation function

evaluates the output of the previous layer which is the input to the neuron of the current layer, and

determines whether the current neuron will be included for the calculation of the output to the next

layer. The sigmoid function, f(x) = (1+ ex)−1, is one of the most widely used activation functions.
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Other choices are Tanh function, f(x) = tanh(x), and ReLU function, f(x) = max(0, x). A

weighted sum of the activated neurons and the activation function passes the data to the next layer

again.

In this process, the data propagates forward from the input layer to the output layer. In the

learning process, based on the results of the classification of the test data, the system adjusts the

weights and biases of each layer backward to minimize the misclassification rate. The gradient

descent method using the backpropagation algorithm is used to adjust the weights and biases.

Through the learning process, this propagation forward and backpropagation iterate until the system

classifies data correctly.

2.1.2 Probabilities of Correct Classification and Incorrect Classification

Suppose there are two populations, G1 and G2, representing each class. An observation X

of the p-variate vector comes from one of these two groups. Let f1(·) and f2(·) denote the pdf of

observations from G1 and G2, respectfully. All observations belong to one of two sets, Ω1 or Ω2,

which consists of Ω, the sample space. When we need to allocate a new observation, we assign this

new observation to population G1 if it belongs to Ω1 or if it is included in the set of Ω2, then it is

classified to population G2. In case Ω1∩Ω2 exists and we need to allocate the observations to one of

two classes based on a certain classification rule, chances are that we will allocate the observations

incorrectly, that is, we will assign an observation from G1 to G2, or assign an observation from G2

to G1. We want to construct a rule, a classification function, that minimizes the chance of making

such mistakes, i.e., the probability of misclassification.

The rule divides the sample space into two regions, R1 and R2 which are disjoint. If the

observation belongs to R1, we assign the observation to G1. If the observation belongs to R2 =

Ω−R1, we classify the observation as G2. The other factor we can consider is the prior probability

of occurrence. Also, the cost of misclassification may be taken into account. If allocating an

object from G1 as G2 costs much more than allocating an object from G2 as G1, this allocation

must be decided with greater caution. We can express the probability of misclassification or
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correct classification of an object from G1 in terms of the conditional probabilities, P (·|G1). The

probability of misclassification of an object from G1 can be written as the conditional probability

of P (G2|G1) and the probability of correct classification of an object from G1 is the conditional

probability of P (G1|G1). If we use the density functions,f1(x) or f2(x), and the integration over

the corresponding set, R1 or R2, the probabilities of correct classification are

P (G1|G1) = P (X is allocated to G1|X is from G1)

= P (X ∈ R1|X ∼ f1(x)) =

∫
R1

f1(x)dx

P (G2|G2) = P (X is allocated to G2|X is from G2)

= P (X ∈ R2|X ∼ f2(x)) =

∫
R2

f2(x)dx.

Likewise,

P (G1|G2) = P (X ∈ R1|X ∼ f2(x)) =
∫
R1

f2(x)dx and

P (G2|G1) = P (X ∈ R2|X ∼ f1(x)) =
∫
R2

f1(x)dx are for the case of incorrect classifications.

If we consider the prior probability to draw the unconditional probabilities, we can express the

probability of correct classification of an observation that is assigned to G1 is as follows.

P ( X is correctly classified as G1)

= P ( X is from G1 and allocated to G1)

= P (X is from G1)× P (X is allocated to G1|X is from G1)

= P (G1)P (X ∈ R1|G1)

= p1P (G1|G1)
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The unconditional probability of incorrect classification of an observation that is assigned to G1 is

P ( X is incorrectly classified as G1)

= P ( X is from G2 and allocated to G1)

= P (X is from G2)× P (X is allocated to G1|X is from G2)

= P (G2)P (X ∈ R1|G2)

= p2P (G1|G2)

Then,

P ( X is correctly classified as G2) = p2P (G2|G2)

P ( X is incorrectly classified as G2) = p1P (G2|G1).

Here, P (G1) = p1 and P (G2) = p2 are the prior probabilities and p1 + p2 = 1.

Taking the cost of misclassification into consideration, let c(G1|G2) be the cost when we

incorrectly assign X as G1 and c(G2|G1) be the cost when we incorrectly assign X as G2. There

is no cost when the classification is correct (c(G1|G1) = c(G2|G2) = 0). Then, we can calculate

the expected cost of misclassification (ECM) from 2.1.1 as

ECM =
∑

all misclassified
points

P(misclassification)× P(prior)×(cost of misclassification)

= P (G2|G1)× p1 × c(G2|G1) + P (G1|G2)× p2 × c(G1|G2)

and we find a classifying rule by minimizing the ECM.
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2.1.3 Total Probability of Misclassification and Apparent Error Rate

Total Probability of Misclassification

The total probability of misclassification (TPM) given any classification rule can be calculated

when the distribution of the population is known and the prior probability also is known. Suppose

again G1 ∼ f1(·), G2 ∼ f2(·), P (G1) = p1, and P (G2) = p2. From Figure 2.1, area A and area

B are the cases where the misclassifications happen if the blue line is the classification rule.

Figure 2.1: Bivariate Classification Example

Thus, the TPM is the probability for the area of A and B. Then, the TPM using the conditional
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probabilities for the bivariate case can be expressed as follows.

TPM = P (from G1 and misclassified ) + P ( from G2 and misclassified)

= P ( from G1 )× P ( assigned to G2 | from G1 )

+ P ( from G2 )× P ( assigned to G1 | from G2 )

= p1P (G2|G1) + p2P (G1|G2)

= p1

∫
B
f1(x)dx+ p2

∫
A
f2(x)dx,

(2.1)

where x is the observation vector, i.e., x = (x1, x2). The penultimate equality is simply the sum of

two incorrect classification probabilities from the last section.

When we find the classifying criteria by minimizing the total probability of misclassification (TPM),

it is the same problem as we minimize the ECM with identical costs. Then, we have a rule to

allocate a new observation, x0 as:

Allocate x0 as G1 if
f1(x0)

f2(x0)
≥ p2

p1
.

Otherwise, we allocate x0 as G2.

If we have equal prior probabilities for populations, i.e., p1 = p2 =
1
2
,

TPM =
1

2

(∫
B
f1(x)dx+

∫
A
f2(x)dx

)
. (2.2)

Then, the corresponding classifying rule becomes “classify x0 as G1 if
f1(x0)

f2(x0)
≥ 1”.

Apparent Error Rate

The calculation of TPM depends on the distributions of the populations. If we don’t know the

distributions of the populations, we still can measure the probability of misclassification. From

the ratio of the frequencies by simply counting the number of observations classified correctly or
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incorrectly, we can. The below show the confusion matrix for calculating the ratio.

Assigned to Total

G1 G2

Observations from
G1 NG1cor NG1mis NG1

G2 NG2mis NG2cor NG2

Table 2.1: Confusion Matrix

• NG1 = number of observations from population 1, G1

• NG2 = number of observations from population 2, G2

• NG1cor = number of observations correctly assigned to G1

• NG1mis = number of observations incorrectly assigned to G2

• NG2cor = number of observations correctly assigned to G2

• NG2mis = number of observations incorrectly assigned to G1

• NG1mis = NG1 −NG1cor and NG2mis = NG2 −NG2cor

The apparent error rate(APER) can be expressed as a ratio of the number of misclassified observa-

tions to the total number of observations,

NG1mis +NG2mis

NG1 +NG2

.
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If we apply the relationship of counts between correctly classified and incorrectly classified,

APER =
NG1mis +NG2mis

NG1 +NG2

=
NG1 −NG1cor +NG2 −NG2cor

NG1 +NG2

= 1− NG1cor +NG2cor

NG1 +NG2

= 1− Accuarcy.

2.1.4 Classifying Multivariate Normal Populations with Minimum TPM Rule

Let f1(x), f2(x) be p-variate normal densities with mean vectors µ1 and µ2 and the covari-

ance matrices Σ1 and Σ2, respectively. For simplicity, let’s assume the covariance matrices are

identical(Σ1 = Σ2 = Σ) and is positive definite. Then, the density of X from population G1 is

f1(x) =
1

(2π)
p
2 |Σ| 12

e−
1
2
(x−µ1)′Σ−1(x−µ1), (2.3)

where |Σ| is the determinant of Σ. The joint density of X from population G2 is likewise.

If we use the minimum TPM rule from 2.1.3, a new observation of x0 is allocated to G1 if

f1(x0)

f2(x0)
≥ p2

p1
,

where p1 and p2 are prior probabilities. Then, the rule can be written as follows taking logarithm on

both sides of the above inequality.

(µ1 − µ2)
′Σ−1x0 −

1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2) ≥ log

(
p2
p1

)
(2.4)
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The rule is a linear function of x0. Also, if we assume the same prior, p1 = p2, this rule becomes

identical to the decision rule of LDA in 2.1.1.

(µ1 − µ2)
′Σ−1x0 ≥ 1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2) (2.5)

When µ1, µ2, and Σ are unknown, we estimate those parameters and plug x̄1, x̄2, and Spooled in,

where Spooled =
S1(n1 − 1)

(n1 − 1) + (n2 − 1)
+

S2(n2 − 1)

(n1 − 1) + (n2 − 1)
since we assume the same covariance

matrices. S1 and S2 are the sample covariance matrices. Then, we get

(x̄1 − x̄2)
′S−1

pooledx0 ≥ 1

2
(x̄1 − x̄2)

′S−1
pooled(x̄1 + x̄2). (2.6)

2.2 The Selection and Ranking Methodologies

The selection and ranking methodologies (SRM) have long historical roots. The methodologies

were introduced by several prominent statisticians through the publications of Bechhofer(1954)

[4], Bechhofer and Sobel (1954) [8], and Gupta (1956) [31]. Since then, the results of more than

two decades of research are summarized in two books; Gibbons et al (1977) [27] and Gupta and

Panchapakesan (1979) [33]. The goal of the selection and ranking methodologies is to select

the “best” population among many alternatives. In the problem of multiple comparisons of k(≥

2) populations, the methodologies provide more diversified approaches than the conventional

approaches such as the analysis of variance (ANOVA) or investigating the least significant difference

(LSD). Following those books, many research papers and books were published and the selection

and ranking methodologies contributed great impacts on the development and advancement of the

statistical multiple decision theory.

In classical statistics, the researchers conducted hypothesis tests to compare the multiple

populations. The null hypothesis is set such that the values in which the researcher is interested

are common for all populations. Then, the null hypothesis may or may not be rejected against

alternatives when samples are taken to test it. Depending on the test results (rejecting or failing to
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reject the hypothesis) a decision can be made as to whether the values of interest are homogeneous or

there exist differences among them. One of the most widely used methods of comparing problems of

multiple populations was ANOVA. When the ANOVA test rejected the null hypothesis of common

value of interest, the researchers were confronted with new questions such as “If the difference

among populations exists, then which population is different from which other populations?” or

“Which one could we select as the best(or worst) population?” After deciding to reject the null

hypothesis, it was natural for those questions to follow. This is because the purpose of statistical

tests for the null hypothesis of homogeneity is generally not to indicate homogeneity of population

values, but to determine whether differences exist. For example, when a pharmaceutical company

launches a new medical pill, the company wants to show that the new pill performs better than

the existing products on the market. Moreover, when an investor is trying to decide about a stock

portfolio to invest money in, she wants to find the best performing stock portfolio among several

stock portfolios.

To address these problems, the multiple comparison procedures performed a pair(or more than

a pair) of hypothesis tests. The multiple comparison procedures could efficiently answer the question

of verifying the differences between the populations or the degree of the difference between the

populations. Meanwhile, the selection and ranking methodologies were introduced and developed

to answer the problem of selecting the “best” population. Since R. Bechhofer’s pioneering work on

the selection and ranking methodologies, it has been developed in two directions. One approach is

to select a fixed number of best populations and the other approach is to select a (randomized) group

of populations that contains the best population. The former uses the indifference-zone approach

and was developed by R. Bechhofer and M. Sobel, while the latter is called the subset selection

method and was introduced by S. Gupta and M. Sobel and developed by S. Gupta [31]. Since both

approaches have the main goal of selecting several populations such that the number is either fixed

or random, the selection and ranking methodologies can be considered as selection problems.

Suppose that there are k populations, G1,G2, . . . ,Gk, where Gi has the distribution function,

Fθi(·), i = 1, 2, . . . , k(k < ∞) and θi is an unknown real valued parameter, θ ∈ Θ. Also, θi is
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associated with Gi and the ordered θi is denoted by θ[1] ≤ · · · ≤ θ[k]. We assume no prior knowledge

concerning the association between Gi and θ[i]. The primary goal of the selection and ranking

methodologies is to attempt to formulate the decision problem of selecting the best population out

of k populations or selecting a non-empty subset of the k populations so that the subset contains

the best population with a minimum of the prespecified probability level. The best population

could be defined as the one with the largest(or smallest) mean or depending on the problems or

the situations. These formulations are formally known as the following two main approaches; the

Indifference-Zone (IZ) approach developed by Bechhofer [4] and the Subset Selection (SS) method

developed by Gupta [33].

2.2.1 Indifference-Zone Approach

In the indifference-zone approach, the goal is to select the best population [4] (Bechhofer,

1954). Let θ̂ denote the quantity from the sample by which corresponds to θ in the population. The

ordered quantities are denoted by θ̂[1] ≤ θ̂[2] ≤ · · · ≤ θ̂[k] and the population which is associated

with θ̂[k] becomes the best population if we prefer the larger value of the parameter. Then, two

kinds of decisions are available in this selection problem. If the selected population is the true best

population, the correct selection is made. If the selected population is not the true best population,

we commit a wrong decision. In this procedure, we want to maintain a certain level of probability of

making a correct decision, just as we controlled for the error rate in the hypothesis test. We prefer

this probability to be as high as possible, and under some conditions, it is bounded by a specific

value. Then, we define and range the probability of correct selection as follows. The guaranteed

probability of making a correct selection whenever the difference between the best value of θ and

the second best value of θ is at least some fixed amount is at least P ∗.

P (CS) ≥ P ∗ whenever θ[k] − θ[k−1] ≥ δ∗ for prespecified P ∗ and δ∗, (2.7)

23



where CS denotes “correct selection”. Then, the parameter space can be divided into a part where

the difference, δ = θ[k] − θ[k−1], is less than the prespecified δ∗, and the rest of the parameter

space where δ ≥ δ∗. Thus, a k-dimensional parameter space is reduced to 2-dimensional space

since selecting the best population only concerns the populations with the two largest values of

parameters, θ[k] and θ[k−1] . In the reduced parameter space, the region where δ < δ∗ is called the

indifference-zone (IZ) and the region where δ ≥ δ∗ is called the preference-zone (PZ). In the PZ,

we have a strong preference to make a correct selection because there exists a gap between the

largest and the second largest population and in the IZ we are indifferent about making a selection.

Since the probability of the correct selection, P(CS), must be guaranteed only in the PZ, we are

only interested in the configuration of PZ. There exist many different configurations of parameter

space within PZ which make P(CS) at least P*. Among those configurations, we can find the

configuration for which the P(CS) is minimum over the preference-zone and we call it the least

favorable configuration(LFC). If the P(CS) at LFC can be equal to P*, then we can attain the

probability requirement of (2.7) above. For the problem of the population mean where we prefer

the larger mean, the LFC happens when

θ[1] = θ[2] = · · · = θ[k−1] = θ[k] − δ

and the minimum sample size to meet the probability requirement can be calculated given prespeci-

fied P* and δ∗ later.

Selection of the Best Population; Normal Distribution with Common Known Variance

Consider k(≥ 2) independent normal populations with unknown means, µi, i = 1, 2, . . . , k

(k < ∞) and a known common variance, σ2. When we want to find the best population regarding

the population mean, if a larger mean is considered better, the best population is defined as the

population with the largest mean. Then, we collect samples from each population of size N . Now,

X denotes the observation from the sample, then X1,1 stands for the first observation from the first
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population. Also, X1,N is the N th observation obtained from the first population. Then, X1,j follows

a normal distribution with mean µ1 and the variance σ2, j = 1, 2, . . . , N , and each observation

is not correlated to others. If we set X̄1 =
∑N

j=1X1,j/N , then E(X̄1) = µ1. For the second

population, X2,j ∼ N(µ2, σ
2), j = 1, 2, . . . , N and X̄2 =

∑N
j=1 X2,j/N , then E(X̄2) = µ2. Thus,

Xi,j ∼ N(µi, σ
2), X̄i =

∑N
j=1Xi,j/N , and E(X̄i) = µi, for i = 1, 2, . . . , k, and j = 1, 2, . . . , N .

We assume no correlation within the sample from each population as well as no correlation between

the samples. Then, the goal is to select a population with the largest µ, denoted by µ[k], where

µ[k] ≥ µ[k−1] ≥ µ[k−2] ≥ · · · ≥ µ[2] ≥ µ[1].

A rational way to select the population with µ[k] is to find a sample with X̄[k] and select the

corresponding population as the best population. However, when the largest mean and the other

means are close to each other, it is difficult to select a population as the best one. Therefore, we

need a rule that guarantees the selected one is with the largest mean. A measure used in this rule

is the distance between the highest mean and the second highest mean, µ[k] − µ[k−1] = δ, i.e., the

discerning measure of distance. At the same time, we want to preserve the probability of making

a correct decision to select a population associated with the sample producing X̄[k] as the best

population as long as the distance defined above is greater than or equal to some value, δ∗. The

probabilistic condition can be written as follows:

P (CS) ≥ P ∗ whenever µ[k] − µ[k−1] = δ ≥ δ∗ for prespecified P ∗ and δ∗,

where CS stands for “correct selection” and δ∗ is a discerning threshold. To make the problem

meaningful, the value of P ∗ has the range of 1
k
< P ∗ < 1 since the probability of 1

k
can be attained

by a random selection. The minimum of P(CS), P ∗, happens when

µ[1] = µ[2] = · · · = µ[k−1] = µ[k] − δ∗

and we call this parameter configuration the least favorable configuration (LFC). When this prob-

ability requirement is set with a pair (P ∗, δ∗), we can choose the sample size, N, using a table
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provided by R. Bechhofer [4]. Then, the selection procedure given (P ∗, δ∗) is

1. Select a sample of size N from each population.

2. Calculate X̄[1], X̄[2], X̄[3], . . . , X̄[k−1], X̄[k].

3. Select the population associated with X̄[k] as the best.

N is determined by the probability requirement, P (CS) ≥ P ∗, where

P (max(X̄1, X̄2, . . . , X̄k−1) < X̄[k]) =

∫ ∞

−∞
F (y + d)k−1f(y)dy = P ∗,

d =
√
N δ∗

σ
, F(·) and f(·) are cdf and pdf of the standard normal random variable, and d is found

from the table by R. Bechhofer (1954) [4].

Selection of t Best Populations

Suppose we want to find t best populations, where 1 < t < k, under the same situa-

tion as the previous section, 2.2.1, with normal distributions and a known common variance.

Xi,j ∼ N(µi, σ
2), for i = 1, 2, . . . , k, and j = 1, 2, . . . , N . Then, the populations we need to

select are those corresponding to µ[k], µ[k−1], µ[k−2], . . . , µ[k−t+1]. However, the order of the popula-

tions is not required. Consequently, the discerning measure of distance is defined as the difference

between the smallest mean of the t best populations and the largest mean of the remaining (k-t)

populations, i.e., δ = µ[k−t+1] − µ[k−t] from Gibbons et al (1977) [27]. The least favorable configu-

ration from R. Bechhofer (1954) [4] can be expressed as follows:

µ[k] − µ[k−t+1] = 0,

µ[k−t+1] − µ[k−t] = δ,

µ[k−t] − µ[1] = 0.
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Given P ∗ and δ∗ for the probability requirement, the probability of correct selection is greater than

or equal to P ∗ whenever the discerning measure of distance, δ, is greater than or equal to δ∗.

P (CS) ≥ P ∗ whenever µ[k−t+1] − µ[k−t] = δ ≥ δ∗.

If the sample of size N is taken from each population and sample means are calculated, we can

order them as X̄[1] ≤ X̄[2] ≤ · · · ≤ X̄[k].

Then, the t best populations are the populations that produce the t largest sample means, X̄[k],

X̄[k−1], . . . , X̄[k−t+1] with guaranteed probability of P ∗.

To determine the sample size N given P ∗ and δ∗, refer the table from [4]. Given P ∗ and δ∗, we get

the sample size from the equation below.

P ∗ = tP (max(X̄1, . . . , X̄k−t) < X̄k−t+1 < min(X̄k−t+2, . . . , X̄k))

= t

∫ ∞

−∞
F (y + d)k−t(1− F (y))t−1f(y)dy,

where d =
√
N δ∗

σ
, F(·) and f(·) are cdf and pdf of Standard Normal random variable, and d is found

from the table by R. Bechhofer [4].

2.2.2 Subset Selection Method

The subset selection method is a procedure for selecting a group of populations that includes

the best population without identifying the best population. Here, a very distinctive aspect of subset

selection is that the size of the selected group is determined randomly and not predetermined as in

the indifference-zone approach. In this method, the correct selection occurs if the best population is

included in the selected subset. If the best population is contained in the other set of populations, an

error occurs. Under the same setting as above, 2.2, we calculate θ̂[1], θ̂[2], . . . , θ̂[k]. Then, place the

population whose associated θ̂ is included in the interval of [θ̂[k] − d, θ̂[k]] as the selected subset.

Here, d is determined by the condition that the infimum of the P(CS) over the whole parameter

27



space is at least P ∗. Unlike the indifference-zone approach, the probability is calculated over the

whole parameter space. P ∗ in the indifference-zone approach is the probability calculated over the

configuration of the preference-zone in the parameter space. However, P ∗ in the subset selection

method is the probability calculated over the entire parameter space and it has the meaning of the

minimum probability such that the selected subset contains the population with the largest mean

value [27] (Gibbons et all, 1977). Also, since θ̂[k] is always included in the interval above, the

selected subset cannot be empty.

The main difference between the indifference-zone approach and the subset selection method

is that the subset selection method has no indifference zone. In addition, we do not identify the

best population among the selected subset once the subset is determined, thus the subset selection

method is less precise.

Suppose we have the same situation as the previous two cases in 2.2.1, where we have k(≥ 2)

normal populations with a known common variance. Now, we want to select a subset of random

size that includes the population with the largest mean. The sample from each population is

collected with a fixed size of n. Xi,j ∼ N(µi, σ
2), X̄i =

∑n
j=1Xi,j/n, and E(X̄i) = µi, for i =

1, 2, . . . , k, and j = 1, 2, . . . , n. As we did in the indifference-zone approach, we need to determine

P ∗ as the probability requirement in advance.

The rule of selection is to allocate the population as the selected subset if the population

produces the sample mean greater than or equal to the value of X̄[k] − d σ√
n

, where d is obtained

from the table of R. Bechhofer (1954) [4] given P ∗ and k. That is, for any i = 1, 2, . . . , k, the ith

population is located in the subset if and only if X̄i ≥ X̄[k] − d σ√
n

, where X̄i is the sample mean

from the ith population. By rearranging the inequality, we can get the interval of selection procedure

as
[
X̄[k] − d σ√

n
, X̄[k]

]
and thus, the subset can’t be empty.

There are two different types of problems in the subset selection method. One is comparing to

an unknown control population and the other is comparing to a known standard value of θ, θ0. For

these two types of the selection problems, however, the selected subset could be empty.
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2.2.3 Multivariate Indifference-Zone Approach

Bivariate Normal Populations

Suppose we have populations that follow bivariate normal distributions. Each population

has two variables as measurements and the collected samples are recorded as X1 and X2 for each

variable. X1 and X2 are jointly normally distributed with the mean vector and covariance matrix

shown below:

X1

X2

 ∼ N2


µ1

µ2

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


,

where µ1 is the mean of X1, µ2 is the mean of X2, σ1 is the standard deviation of X1, σ2 is

the standard deviation of X2, and ρ is the correlation coefficient of (X1, X2).

Suppose there are 3 populations with bivariate normal distribution.

Pop1 :

X11

X12

 ∼ N


µ11

µ12

 ,Σ1



Pop2 :

X21

X22

 ∼ N


µ21

µ22

 ,Σ2



Pop3 :

X31

X32

 ∼ N


µ31

µ32

 ,Σ3

 ,

where Σ1,Σ2, and Σ3 are the variance-covariance matrices and they are positive definite.

Let’s assume marginally, µ31 > µ21 > µ11 and µ12 > µ32 > µ22. Then, we can have the following

scatter plot.
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Figure 2.2: Bivariate Example with 3 Populations

If we select the best population by considering the population means marginally and prefer the

population with a larger mean, Population 3 becomes the best population when we only consider

the variable X1 because µ31 > µ21 > µ11. On the other hand, if we select the best population in

terms of the variable X2, Population 1 is selected as the best population since µ12 > µ32 > µ22.

Therefore, the decision about the best population depends on the choice of the marginal variable

and the decisions are not identical in this example. To overcome the discrepancy, let’s consider the

means simultaneously and select the best population.

Selection of the Best Population Using a Linear Combination

Suppose there are k populations and each population follows a multivariate normal distribution.

For the population Gi, the mean is µi and the covariance is Σi, where µi is a column vector and Σi

is a positive definite square matrix, i = 1, 2, . . . , k. If the population has p variates, the dimension
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of µi is p×1 and

µi =



µi1

µi2

...

µip


.

The dimension of Σi is p×p and let’s assume Σi = Σ for all populations. Then, to find the best

population considering the means simultaneously, we compute θi, the linear combination of the

means of p-variates for population Gi, as

θi = Aµi = α1 ∗ µi1 + α2 ∗ µi2 + · · ·+ αp ∗ µip,

where A = (α1, α2, . . . , αp),
∑p

j=1 αj = 1 and αj > 0 for all j, j = 1, 2 , . . ., p. Here, αj’s are

known and then we can order the θi as

θ[1] ≤ θ[2] ≤ · · · ≤ θ[k].

If we define the best population as the one with the largest linear combination of means, the popula-

tion associated with θ[k] is selected as the best population.

If we want to select t best populations for a larger θ, the populations corresponding to

θ[k], θ[k−1], θ[k−2], . . . , θ[k−t+1] are selected. Then, the discerning measure of distance for this selec-

tion problem(selection of t best populations) is θ[k−t+1] − θ[k−t] and let the value be δ, δ > 0. The

probability requirement is

P (CS) ≥ P ∗ whenever θ[k−t+1] − θ[k−t] ≥ δ∗,

where P ∗ and δ∗ are predetermined. The discerning measure of distance and the probability require-

ment are very similar to those of the univariate population problem.

The different sets of αj, j = 1, 2, . . . , p (different weights) make different decision rules for finding
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the best population. On searching such set of αj’s, we can apply the statistical learning.

Selection of the Best Population Using Mahalanobis Distance

Assume again the same situation with k multivariate normal populations as in the previous section.

For the population Gi, the mean is µi and the covariance is Σi, where µi is a column vector and Σi is

a positive definite square matrix, i = 1, 2, . . . , k. In the linear combination method, the covariance

matrix was not included in the discerning measure of distance. Since the covariance term includes

additional information, it must be taken into account. To consider the means simultaneously with

information from covariance, the discerning measure of distance for this formulation includes the

form of θi = µ′
iΣ

−1
i µi, the Mahalanobis distance function, and we define Gi is better than Gj if

µ′
iΣ

−1
i µi > µ′

jΣ
−1
j µj . If the goal here is to select the t best populations, then we need to select

the populations corresponding to the t largest sample θ̂s such as θ̂[k], θ̂[k−1], . . . , θ̂[k−t+1], where

θ̂i = X̄ ′
iΣ

−1
i X̄i. In this problem, we have two discerning measures of distance, δ1 and δ2.

δ1 = θ[k−t+1] − θ[k−t], δ1 ≥ 0

δ2 =
θ[k−t+1]

θ[k−t]

, δ2 ≥ 1

The probability requirement is

P (CS) ≥ P ∗ whenever θ[k−t+1] − θ[k−t] ≥ δ∗1 and θ[k−t+1]/θ[k−t] ≥ δ∗2,

where P ∗, δ∗1 , and δ∗2 are predetermined.

The preference zone (PZ) for this selection problem is the intersection of the parameter space with

δ1 ≥ δ∗1 and δ2 ≥ δ∗2 . To find out the smallest sample size n to satisfy the probability requirement

given P ∗, δ∗1 , and δ∗2 , we can refer to the table from Milton and Rizvi (1989) [48].
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(1) Selecting t Best Population When Σi Is Known

If we take samples of size n from population i, Gi, we can denote the sample mean

vector as X̄i and the sample variance-covariance matrix as Si.

When we assume that Σi is known, we use X̄ ′
iΣ

−1
i X̄i and let Ui = X̄ ′

iΣ
−1
i X̄i, where nUi

has the non-central chi-square distribution with p degrees of freedom and non-centrality

parameter of n(µ′
iΣ

−1
i µi) [1]. The least favorable configuration can be expressed as

θ[1] = · · · = θ[k−t] = δ1(δ2 − 1)−1

θ[k−t+1] = · · · = θ[k] = δ1δ2(δ2 − 1)−1.

The sample size n given P∗ is calculated from

P ∗ = t

∫ ∞

0

Fp(x,
nδ1

δ2 − 1
)k−t{1− Fp(x,

nδ1δ2
δ2 − 1

)}t−1fp(x,
nδ1δ2
δ2 − 1

)dy,

where fp(x, θ) is the pdf of a noncentral chi-square random variable with p degrees of freedom

and non-centrality parameter of θ and Fp(x, θ) is the cdf of that [33]. We select the populations

associated with U[k−t+1], U[k−t+2], . . . , U[k] as t best populations.

(2) Selecting t Best Population When Σi Is Unknown

If Σi is unknown, we let Vi =
(X̄′

iS
−1
i X̄i)(n−p)

np
and nVi has the non-central F distribution

with p, (n − p) degrees of freedom and the non-centrality parameter of n(µ′
iΣ

−1
i µi). We

select the populations associated with V[k−t+1], V[k−t+2], . . . , V[k] as t best populations.

2.2.4 Example of Bivariate Population with k=3

We simulated 80 data points from 3 bivariate normal populations with a mean of (2,4), (5,1),

(10,3), and the common covariance matrix

1.5 1

1 1.5

as in 2.2.3. We select the best population for

means.
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Figure 2.3: Simulated 3 Populations

We have sample data as follows.

Sample mean of Pop1 : (2.1186, 3.7382), Sample covariance of Pop1 :

1.1466 0.8875

0.8875 1.3524



Sample mean of Pop2 : (5.3593, 1.3112), Sample covariance of Pop2 :

1.3223 0.8150

0.8150 1.3304



Sample mean of Pop3 : (10.1987, 3.1717 ), Sample covariance of Pop3 :

1.5712 1.0600

1.0600 1.4898


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Linear Combinations

If we set α1 = 0.4, α2 = 0.6, we have θi = 0.4 × µi1 + 0.6 × µi2 for i = 1,2,3. Then,

θ̂i = 0.4× X̄i1 + 0.6× X̄i2 and

θ̂1 = 0.4× 2.1186 + 0.6× 3.7382 = 3.0904,

θ̂2 = 0.4× 5.3593 + 0.6× 1.3112 = 2.9304,

θ̂3 = 0.4× 10.1987 + 0.6× 3.1717 = 5.9825.

Thus, we select Population 3 as the best population.

Mahalanobis Distance with known variance

If we assume P ∗ = 95%, δ1 = 1, and δ2 = 2, respectfully, the linear interpolation for k = 3

gives n= 43.148 from Table S.1 in [27]. We will use first the 44 data entries for calculation.

The common covariance matrix is known as Σ =

1.5 1

1 1.5

 and we have θi = µ′
iΣ

−1
i µi and

θ̂i = x̄′
iΣ

−1
i x̄i. Then,

θ̂1 = (2.0906, 3.6532)

1.5 1

1 1.5


−12.0906

3.6532

 = 9.0401

θ̂2 = (5.4502, 1.4546)

1.5 1

1 1.5


−15.4502

1.4546

 = 25.5003

θ̂3 = (10.2069, 3.0655)

1.5 1

1 1.5


−110.2069

3.0655

 = 86.2313

Thus, we select Population 3 as the best one.
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Mahalanobis Distance with unknown variance

Let’s assume we don’t know Σ. Then, we use the sample covariance matrix, S, to calculate the

θ̂i. θ̂i = x̄′
iS

−1
i x̄i. Given the same condition as the previous section, P ∗ = 95%, δ1 = 1, and δ2 = 2,

the sample size from Table 1 of [48] is 76.7. Then, we use the first 77 data entries for calculation.

θ̂1 = (2.1208, 3.7392)

1.1177 0.8388

0.8388 1.2974


−12.1208

3.7392

 = 10.9297

θ̂2 = (5.3416, 1.3598)

1.2918 0.8313

0.8313 1.2841


−15.3416

1.3598

 = 27.8495

θ̂3 = (10.15, 3.1203)

1.4744 0.9583

0.9583 1.4072


−1 10.15

3.1203

 = 85.2886

Thus, we select Population 3 as the best one.

2.3 Statistical Learning on Statistical Classification

2.3.1 Machine Learning and Statistical Learning

We already mentioned many times about the learning process. Statistical learning has origi-

nated from machine learning, which is a procedure that creates and develops algorithms to solve a

problem using the given data set and answers it when a new data set is given based on the algorithm.

From a given data set, when the training data set is entered into the machine, it returns the result.

The more data entering into the machine, the better the machine develops the algorithm and returns

improved results. This is where the learning takes place. In the learning process, if the data consists

of input data and output data(the output data are labeled), the learning is called supervised learning.

Based on the labeled output data, the machine learns and improves the algorithm. It’s like you

are preparing for the exam. You have a bunch of example problems with the answers. You solve
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the problem and check your answer with the given answer to see if it is correct or not. When you

have the wrong answer, you check your procedure and fix it to get the correct answer. You do this

process until you get all the correct answers and take the exam. This learning is supervised by

yourself or a teacher and it’s called supervised learning when you have input and output data. If

there is no output data, it is called unsupervised learning. The main goal of supervised learning is

to predict data, on the other hand, the goal of unsupervised learning is to find the associations or

the hidden patterns from the unlabeled data. Classification is supervised learning and clustering

is unsupervised learning. Then, what about the selection and ranking methodologies? We can

categorize the indifference-zone approach as supervised learning and the subset selection methods

as unsupervised learning.

Statistical learning theory is the field of machine learning with statistical inference involved.

There is a probability distribution in the data space and we want to find a function that explains the

association between the input variable and the output variable, in supervised learning. Then, we

compare the predicted output from the function to the actual output and measure the difference as

the loss. We find the best function that minimizes the loss, i.e., the difference between the predicted

output and the actual output and it’s where the learning takes place. This leads us to consider our

approach to classification, a supervised learning, from the perspective of multiple decision theory.

We will talk about the multiple decision theory in Chapter 4.
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Chapter 3

The Statistical Classification and High

Dimension

In this chapter, we propose one way to improve the performance of the classification process.

From the multiple decision theoretic point of view, we will focus on the correct decision, and thus

we want to increase the probability of correct classification. For two-dimensional data with two

groups, a scatter plot can show areas where the two groups overlap. If we use linear discriminant

analysis to find a classifier, there may be many misclassified points. To improve performance, we

first focus on the classifier itself. We can improve the classifier by increasing the degree of the

function to a polynomial function of degree 2 or higher. As a result, the classifier becomes more

complex. Also, this will reduce the bias but increase the variance. The bias is the measure of the

difference between the target value and the predicted value. The variance measures the expected

difference of deviation from the actual value. The bias results from the model selection that is

related to the assumptions. A higher bias model has more assumptions on the target function such

as linear function. The lower bias model has fewer assumptions that can build a nonlinear function.

High variance is observed by a huge inconsistency when changing the training data set. Overfitted

target function leads to a high variance. Linear discrimination analysis shows low variance and

decision trees, support vector machine, and k-nearest neighbor are with high variance. There exists
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the bias-variance tradeoff in the statistical learning procedure.

The above methods focused on improving the classifier to make fewer misclassified points and

the techniques of classification have improved in this direction. Then, how about changing the way

we approach this problem a bit? Instead of improving the classifier itself, let’s look at this problem

from a slightly different perspective. When there exist overlapping areas in given variables, can we

add more variable(s) to the current problem and better separate the groups in the end? In an era of

big data, finding new variables and adding them to a model is no longer that expensive. So adding a

new variable and comparing performance would be an uncomplicated alternative. In this approach,

we can improve classification performance by adding new variables rather than manipulating the

classifier or reducing the dimensionality of the variables. The space of the problem will be expanded

but we can have a hyperplane classifier that is still not too complicated to build. That is, what we

propose is to increase the dimensionality of the variables by introducing a new variable that better

discriminates groups in higher dimensions.

3.1 A Preferable Predictor Vector and The Probability of Cor-

rect Decision

We find the related variables using Data Mining or Machine Learning. Then, adding those

variables to the classification model results in good separation of the groups. This means that the

separability is improved and the probability of correct classification (or correct decision) is higher.

In this section, we want to focus on the probability of correct classification or the probability

of correct decision. Suppose there are two populations (or groups) G1 and G2 and we use two

variables X1 and X2 to classify the objects. Also, suppose there exists a linear classifying rule. Let’s

take a look at Figure 2.1 again. The blue line indicates the classifying rule. The correct decision

happens when the object is correctly classified to the population where it comes from. Then, A

and B are the areas where an incorrect decision could happen. Area A is where some objects are
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assigned to G1 even if they are from G2 by the given classification rule. In area B, some objects

are assigned to G2 but they are originally from G1. Then, if we can find a variable (or a series

of variables) that contributes separating the populations well and leads reducing such area in a

higher dimensional space, we include the new vector to the problem. As a result, we have a new

classification process that leads to a higher probability of a correct decision. Suppose, for example,

a new variable, X3, is added to the current object vector, (X1, X2), and this allows the overlapping

regions under the 2-variable plot to be well separated as Figure 3.1 shows below.

Figure 3.1: 3D Plot with X3 Added

Consequently, by adding a new variable, two populations do not share any common area, as an

extreme example, and the blue plane works as the classification rule. Here, we can notice that, as we

introduce a new variable, the dimension of the classification rule also increases and the classification

rule becomes a plane from a straight line. Then, we would like to compare the probability of correct

decision of both cases, before and after adding X3. If we can achieve a higher probability of correct

classification by adding X3, we need to find X3 and include it in the classification process. We

call such variables a Preferable Predictor Vector. It can be seen that observing fewer misclassified

points means a higher probability of correct classification. Thus, we will compare the probability of

40



misclassification, P(misclassification), for both cases and our goal is to have a smaller value for the

case with X3 added. Before checking the change of P(misclassification), we will take a look at the

numerical result from the generated data.

3.2 Numerical Studies

We generated two sets of data using R from multivariate normal populations (G1 and G2). For

simplicity, we start a multivariate normal distribution with two dimensions. There are 80 data points

for each group. Let X1 and X2 be two variables that make the observation vector X = (X1, X2)
′.

The mean vectors are µ1 and µ2 and we assume the covariance matrices are diagonal, Σ1 and

Σ2, for population 1 and population 2, respectively. The mean vector and covariance matrix for

population 1, G1, are

µ1 =

5
2

 ,Σ1 =

3 0

0 2

 .

The mean vector and covariance matrix for population 2, G2, are

µ2 =

1
4

 ,Σ2 =

2 0

0 4

 .

Within each population, two variables (X1 and X2) are independent of each other. Based on the

generated data, we first create a scatter plot: see Figure 3.2. Red points on the scatter plot are the

data from G1 and blue points represent the data from G2. A solid black line is the example of the

classifier and the misclassified observations are marked with observation numbers.

There are 19 misclassified observations altogether. There are 8 observations (9, 17, 30, 32, 41, 45,

52, 61 in red) from G1 but classified as G2 and 11 observations (17, 18, 26, 30, 55, 56, 58, 62, 72,

73, 77 in blue) from G2 but classified as G1.
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Figure 3.2: Scatter Plot of Multivariate Normal with Two Dimensions

Now, to increase the dimension of data, X3 for each population is generated from a normal

distribution. For G1, X3 is generated from the population with a mean of 1 and a standard deviation

of 1. For G2, the mean is 4 and the standard deviation is 1. Then, attach X3 to the existing vector

of X = (X1, X2) with the same order by assuming that X3 is independent of (X1, X2). The table of

generated data with X3 added is provided in the Appendix.

The sample covariance matrices for G1 and G2 are

S1 =


2.48763405 0.06649369 −0.02741130

0.06649369 1.87922785 0.01407858

−0.02741130 0.01407858 1.03841911

 ,

S2 =


1.80773779 −0.1651126 −0.07293863

−0.16511263 3.7808627 0.04513610

−0.07293863 0.0451361 1.04058013

 .
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From the sample covariance matrices, X3 looks independent of X1 and X2.

The 3D plot of the data is shown below in Figure 3.3.

Figure 3.3: 3D Plot of Data

We observe that the data can be separated by a hyperplane classifier and the number of misclas-

sified points are reduced.
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Figure 3.4: 3D Plot of Data with a Classifier

Here is a 3D plot with an arbitrary hyperplane classifier.
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3D-plots of different angles are shown below.

Figure 3.5: 3D Plot of Data with a Classifier from a Different Angle

45



Figure 3.6: 3D Plot of Data with a Classifier with Another Angle
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Figure 3.7: 3D Plot of Data with a Classifier with a Better Angle

We observe the much less misclassified points from several different angles.
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Figure 3.8: 3D Plot of Data with a Classifier with a Better Angle 2

There are only two misclassified red points and there are about 5 misclassified blue points. By

introducing X3 to the model, two populations can be separated with fewer misclassified points.

Thus, we have no reason to hesitate to introduce a new variable to make a better classification. Now,

we will compare the probabilities of misclassifications before and after adding X3 using the total

probability of misclassification (TPM) and the apparent error rate (APER).
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Figure 3.9: Animated 3D Plot of Data
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3.3 View Point of Multiple Decision Theory

3.3.1 The Probability of Correct Decision from the Total Probability of Mis-

classification or the Apparent Error Rate

Multiple Decision Theory is concerned with making of decisions in the presence of statistical

knowledge (data) which sheds light on some of the uncertainties involved in the decision problem.

Statistical classification can be viewed as a decision-making procedure about allocating the ob-

servation to the correct group. When we classify the observation to the correct group, we make a

correct decision. If we assign the observation to the group where it did not belong, we commit a

wrong decision. Then, the probability of making a correct decision can be calculated from the total

probability of misclassification when the distributions are provided or from the APER when we

have no distributional information. The total probability of misclassification is the probability of

making a wrong decision. Then, the probability of a correct decision can be calculated by 1 − TPM.

Also, 1 − APER can be the probability of a correct decision.

3.4 A Preferable Predictor Vector and Calculation of TPM and

APER

3.4.1 Calculation of TPM when Σ1 = Σ2 = Σ

We want to calculate a TPM of (2.1) to compare TPMs with or without the X3 variable to

check if adding X3 improves classification. Under the same setup as Section 2.1.3, G1 ∼ f1(·),

G2 ∼ f2(·), P (G1) = p1, and P (G2) = p2.

TPM = P (from G1 and misclassified ) + P ( from G2 and misclassified)

= p1P (G2|G1) + p2P (G1|G2)

= p1

∫
B
f1(x)dx+ p2

∫
A
f2(x)dx.
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In (2.4), the classification rule for the multivariate normal distribution case was stated as a new

observation of x0 is allocated to G1 if

(µ1 − µ2)
′Σ−1x0 −

1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2) ≥ log

(
p2
p1

)
, (3.1)

where we assume the common covariance matrix under the multivariate normal distribution and p1

and p2 are prior probabilities. If we have equal prior probability, the right-hand side of the inequality

(3.1) becomes 0. Then, we can calculate the probability of misclassifications from G1, P (G2|G1),

as follows because we assign x0 to G2 if

(µ1 − µ2)
′Σ−1x0 −

1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2) < 0. (3.2)

P (G2|G1) = P ((µ1 − µ2)
′Σ−1X <

1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2)) (3.3)

The left hand side of inequality, (µ1 − µ2)
′Σ−1X is a linear combination of p random variables, l′X,

so let’s denote it as W, W = l′X = (µ1 − µ2)
′Σ−1X. Then,

P (G2|G1) = P (W <
1

2
(µ1 − µ2)

′Σ−1(µ1 + µ2)), (3.4)

where W= (µ1 − µ2)
′Σ−1X = l′X and X∼ MVN(µ1,Σ).

Since X∼ MVN(µ1,Σ), we calculate and denote the mean and the variance of W as follows.

E(W ) = (µ1 − µ2)
′Σ−1µ1 = l′µ1.

V ar(W ) = V ar(l′X) = l′Σl = (µ1 − µ2)
′Σ−1(µ1 − µ2) = σ2

W = M2.
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Both are scalars and W follows a normal distribution. Thus,

P (G2|G1) = P

(
W − l′µ1

σW

<
1
2
(µ1 − µ2)

′Σ−1(µ1 + µ2)− l′µ1

σW

)
= P

(
W − l′µ1

σW

<
1
2
(µ1 − µ2)

′Σ−1(µ1 + µ2)− (µ1 − µ2)
′Σ−1µ1

σW

)
= P

(
Z <

1
2
(µ1 − µ2)

′Σ−1(µ1) +
1
2
(µ1 − µ2)

′Σ−1(µ2)− (µ1 − µ2)
′Σ−1µ1

σW

)
= P

(
Z <

−1
2
(µ1 − µ2)

′Σ−1(µ1) +
1
2
(µ1 − µ2)

′Σ−1(µ2)

σW

)
= P

(
Z <

−1
2
(µ1 − µ2)

′Σ−1(µ1 − µ2)

σW

)
= P

(
Z <

−1
2
M2

σW

)
= Φ(−M

2
),

(3.5)

where Φ(·) is the CDF of N(0,1) random variable and M=
√

(µ1 − µ2)′Σ−1(µ1 − µ2).

In the same way, P (G1|G2) = Φ(−M

2
). Thus, the corresponding TPM, when the prior probabili-

ties are equal, p1 = p2 = 1/2, is

TPM =
1

2
Φ(−M

2
) +

1

2
Φ(−M

2
) = Φ(−M

2
), (3.6)

where M =
√
(µ1 − µ2)′Σ−1(µ1 − µ2). Thus, we need a bigger M to have less TPM.

If we use the example above with an assumption of a common Σ,

µ1 =

5
2

 , µ2 =

1
4

 , and assume that Σ =

2 0

0 4

 .

If X3 which is assumed to be independent of X1 and X2 is added,

µ31 =


5

2

1

 , µ32 =


1

4

4

 ,Σ3 =


2 0 0

0 4 0

0 0 1

 .
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Then, M2
1 = (µ1 − µ2)

′Σ−1(µ1 − µ2) = 9 and M2
3 = (µ31 − µ32)

′Σ−1
3 (µ31 − µ32) = 18.

TPM for (X1, X2)
′ is 0.0668 and TPM for (X1, X2, X3)

′ is 0.01695. Thus, adding X3 improves the

probability of misclassification by almost 74.6%.

If we let the probability of correct classification be (1-TPM), we can derive the following rate

to measure the improvement of the probability of correct classification.

Suppose we have TPM1 > TPM2.

The rate of improvement on TPM(%) =
TPM1 − TPM2

TPM1

x 100.

The rate in terms of the probability of correct classification(%)

=
(1− TPM2)− (1− TPM1)

(1− TPM1)
x 100

=
TPM1 − TPM2

(1− TPM1)
x 100.

There is a 5.34% improvement in probability of correct classification.

Then, we change the variance of the new variable from 0.1 to 20 to check whether the new

TPM is still less than the TPM before adding X3 and the plot is shown below. When the variance is

20, the TPM is 0.0621 and it is at least improved after adding X3.
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Figure 3.10: Changing the Variance from 0.1 to 20: At 10, TPM = 0.0578. At 20, TPM = 0.0621

3.4.2 Calculation of TPM when Σ1 ̸= Σ2

From the density function (2.3) with Σ1 and Σ2 for two multivariate normal populations, the

classification rule for a new observation, x0, is that x0 is allocated to G1 if

f1(x0)

f2(x0)
≥ p2

p1
, i.e.,

−1

2
x0

′(Σ−1
1 − Σ−1

2 )x0 + (µ′
1Σ

−1
1 − µ′

2Σ
−1
2 )x0 − β ≥ log

(
p2
p1

)
, (3.7)

where β =
1

2
log

(
|Σ1|
|Σ2|

)
+

1

2

(
µ′
1Σ

−1
1 µ1 − µ′

2Σ
−1
2 µ2

)
by the minimum TPM rule. If the prior

probabilities are the same, the right-hand side of the inequality (3.7) is 0 again. Then, the probability

of misclassifications from G1, P (G2|G1), can be calculated as follows since we allocate x0 to G2
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if

−1

2
x0

′(Σ−1
1 − Σ−1

2 )x0 + (µ′
1Σ

−1
1 − µ′

2Σ
−1
2 )x0 − β < 0. (3.8)

Thus,

P (G2|G1) = P (X′(Σ−1
1 − Σ−1

2 )X− 2(µ′
1Σ

−1
1 − µ′

2Σ
−1
2 )X > −2β), (3.9)

where X ∼ MVN(µ1,Σ1) and β as above in (3.7).

In the same way,

P (G1|G2) = P (X′(Σ−1
1 − Σ−1

2 )X− 2(µ′
1Σ

−1
1 − µ′

2Σ
−1
2 )X ≤ −2β), (3.10)

where X ∼ MVN(µ2,Σ2) and β as above in (3.7).

The probability here involves the quadratic functions of X. The first term is the quadratic form of

a multivariate normal random variable and the second term is the linear combination of normal

random variables, i.e., the random variable in this probability is the sum of noncentral chi-squared

random variables and normal random variables and it follows the generalized chi-squared distri-

bution. We will use the generalized chi-squared distribution to calculate the TPM for the case of

(X1, X2)
′ and the case of (X1, X2, X3)

′ by using the numerical result above.

Calculation of P (G2|G1)

From (3.9),

P (G2|G1) = P (X′(Σ−1
1 − Σ−1

2 )X− 2(µ′
1Σ

−1
1 − µ′

2Σ
−1
2 )X > −2β)

= P ((X− h)′(Σ−1
1 − Σ−1

2 )(X− h)− h′(Σ−1
1 − Σ−1

2 )h > −2β)

= P ((X− h)′(Σ−1
1 − Σ−1

2 )(X− h) > h′(Σ−1
1 − Σ−1

2 )h− 2β),

(3.11)

where h = −1
2
(Σ−1

1 − Σ−1
2 )−1(−2(µ′

1Σ
−1
1 − µ′

2Σ
−1
2 ))′ = (Σ−1

1 − Σ−1
2 )−1(µ′

1Σ
−1
1 − µ′

2Σ
−1
2 )′ and

let C = h′(Σ−1
1 − Σ−1

2 )h − 2β. The second equality holds because we make a complete square
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form in terms of X. Then,

P (G2|G1) = P ((X− h)′(Σ−1
1 − Σ−1

2 )(X− h) > C).

Here, we denote (X− h) as Q and (Σ−1
1 − Σ−1

2 ) as A. Then,

P (G2|G1) = P (Q′AQ > C), where Q ∼ MVN(µ1 − h,Σ1)

because X is from G1.

Q′AQ is the quadratic form of X and can be written as the linear combination of the noncentral

chi-squared variables. Let Y = Σ
− 1

2
1 (X − h) = Σ

− 1
2

1 Q. Then, E(Y) = Σ
− 1

2
1 (µ1 − h). Also, let

Z = Y − Σ
− 1

2
1 (µ1 − h) = Y − E(Y). Then, E(Z) = 0 and V ar(Z) = V ar(Y) = I .

Then,

Z = Y − Σ
− 1

2
1 (µ1 − h) = Σ

− 1
2

1 (X− h)− Σ
− 1

2
1 (µ1 − h) and

(X− h) = Σ
1
2
1 (Z+ Σ

− 1
2

1 (µ1 − h)).

Thus,

Q′AQ = (X− h)′(Σ−1
1 − Σ−1

2 )(X− h)

= (Z+ Σ
− 1

2
1 (µ1 − h))′Σ

1
2
1AΣ

1
2
1 (Z+ Σ

− 1
2

1 (µ1 − h)),

(3.12)

By spectral theorem, Σ
1
2
1AΣ

1
2
1 = P ′ΛP , where P is an orthogonal matrix and Λ is a diagonal matrix

of the eigenvalues, λi. Then,

Q′AQ = (Z + Σ
− 1

2
1 (µ1 − h))′P ′ΛP (Z + Σ

− 1
2

1 (µ1 − h))

= (PZ + PΣ
− 1

2
1 (µ1 − h))′Λ(PZ + PΣ

− 1
2

1 (µ1 − h)).

(3.13)

Let U = PZ and b = PΣ
− 1

2
1 (µ1 − h). Then, U ∼ MVN(0, In) because P is the orthogonal

matrix, i.e., PP ′ = P ′P = I. E(PZ)=PE(Z) = 0
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Then,

Q′AQ = (U + b)′Λ(U + b) =
n∑

j=1

λi(Uj + bj)
2.

Q′AQ is a linear combination of noncentral chi-squared variables, and thus

P (G2|G1) = P (Q′AQ > C) = P ((U + b)′Λ(U + b) > C). (3.14)

Calculation of P (G1|G2)

In a similar way, P (G1|G2) = P (Q′AQ ≤ C), where Q ∼ MVN(µ2 − h,Σ2) because X is from

G2. Then,

P (G1|G2) = P ((U + b)′Λ(U + b) ≤ C)

but b and Λ here are different from those in (3.14).

Here, Y = Σ
− 1

2
2 (X− h). Then, E(Y) = Σ

− 1
2

2 (µ2 − h) and Z = Y − Σ
− 1

2
2 (µ2 − h) = Y −E(Y).

From Spectral Theorem, Σ
1
2
2AΣ

1
2
2 = P ′ΛP. Thus, Λ and P are from this decomposition and U = PZ

and b = PΣ
− 1

2
2 (µ2 − h).

Suppose we have a similar example in Section 3.2 with different covariance matrices

µ1 =

5
2

 ,Σ1 =

3 0

0 2

 , µ2 =

1
4

 ,Σ2 =

2 0

0 4

 .

Also, if X3 which is assumed to be independent of X1 and X2 is added, we have

µ31 =


5

2

1

 ,Σ31 =


3 0 0

0 2 0

0 0 1

 , µ32 =


1

4

4

 ,Σ32 =


2 0 0

0 4 0

0 0 0.5

 .

Here, we set the new variance for population 2 as 0.5 (not 1) to avoid a singular problem in

the calculation. For (X1, X2)
′ case, P (G2|G1) = 0.08611 and P (G1|G2) = 0.0737, then TPM

= 0.5(0.0861 + 0.0737) = 0.0799. When X3 is added, P (G2|G1) = 0.01367 and P (G1|G2) =
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0.01018, then TPM = 0.5(0.01367 + 0.01018) = 0.011925. Thus, by adding X3, the total probability

of misclassification(TPM) significantly decreases. It improves the probability of misclassification

by 85.1%. The rate in terms of the probability of correct classification is (0.0799− 0.0119)/(1−

0.0799) = 0.0739 and there is a 7.39% improvement. Also, we change the variance of population 2

to check how the TPM changes as the variance differs. The plot is shown below.

Figure 3.11: Changing the Variance from 0.1 to 10: At 10, TPM = 0.0467.

3.4.3 Calculation of APER

The APERs are calculated from the numerical result in Section 3.2.
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X1 and X2 Assigned to

G1 G2

Observations from
G1 72 8 80

G2 11 69 80

Table 3.1: Confusion Matrix Before Adding A Preferable Predictor Vector

The apparent error rate (APER) = 8+11
80+80

= 19
160

= 0.11875

X1, X2 and X3 Assigned to

G1 G2

Observations from
G1 78 2 80

G2 5 75 80

Table 3.2: Confusion Matrix After Adding a Preferable Predictor Vector

The apparent error rate (APER) = 2+5
80+80

= 7
160

= 0.0438

There is a 63.12% drop in APER by adding X3. The Accuracy has increased by 8.51% from

0.88125 to 0.95625. The probability of a correct decision has been increased by adding a preferable

predictor vector.

Below are the confusion matrices when LDA and QDA are applied before and after adding the

preferable predictor vector from data in Section 3.2. lda and qda functions in R are used to make

the confusion matrices.
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Assigned to

Pop1 Pop2

Observations from
Pop1 71 9 80

Pop2 7 73 80

Table 3.3: Confusion Matrix of 2D LDA

Assigned to

Pop1 Pop2

Observations from
Pop1 76 4 80

Pop2 1 79 80

Table 3.4: Confusion Matrix of LDA with Preferable Predictor Vector

Assigned to

Pop1 Pop2

Observations from
Pop1 71 9 80

Pop2 8 72 80

Table 3.5: Confusion Matrix of 2D QDA

Assigned to

Pop1 Pop2

Observations from
Pop1 75 5 80

Pop2 0 80 80

Table 3.6: Confusion Matrix of QDA with Preferable Predictor Vector

The table below shows APERs calculated from four confusion matrices above.
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2D 3D

LDA 0.1 0.031

QDA 0.106 0.031

Table 3.7: Table of APERs

In both cases of LDA and QDA, by adding a preferable predictor vector, there are almost 70%

drops in APER. The accuracy increases by 7.67% and 8.39% each for LDA and QDA, respectively.

We can notice that classification performance is improved. However, there is almost no improvement

when the classification method was changed from LDA to QDA for this example.

Figure 3.12: Figure 3.2 Added by LDA Classifier (Green Line)

3.4.4 Summary

We used the TPM and the APER when we showed the improvement in correct classification

by adding a new variable, a preferable predictor vector. When we calculate the TPM under the
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assumptions of distribution with homogeneous variance, the classification rule becomes a linear

combination of predictor variables. So, it uses the values on a projected line and it means the

calculation is always reduced to 1-dimension. We also calculated TPMs under the assumption of a

non-homogeneous variance structure. When we use APER without the distribution assumptions,

however, we created the hyperplane as a classifying rule and counted the incorrectly classified

observations. So, there is a difference in the dimension of the classifying rule between the two

methods. We can use SVM to find the hyperplane classifier for APER calculation. We also used

LDA and QDA, under the assumption of the distribution, to create the confusion matrix and calculate

APERs. In all cases, the preferable predictor vector helps to increase the probability of correct

classification.

3.5 Conditions of the Preferable Predictor Vector.

We can suggest a few ways to search for the preferable predictor vector. First, we use the

neighboring data set. From the existing variables, we extract some features and characteristics,

then look for a variable that possesses the related information. Second, we do data mining from

the big data. By setting some conditions on the data set, we can collect the variables that seem

to be useful for our classification. Once we are ready with potential preferable predictor vectors,

try each vector in turn and label one as a preferable predictor vector if the vector improves the

probability of misclassification or as an inferior vector otherwise. In the following section, we will

investigate the conditions of the preferable predictor vector when minimizing the total probability

of misclassification (TPM) is used as the rule for classification.

3.5.1 Preferable Predictor Variable chosen by Statistical Learning

Suppose we have two populations as the picture shows below.

62



Figure 3.13: Two Populations with Overlapped Area in 2D

We assume that two populations have the same covariance structure. If there exists X3 that makes

the following graph, the separation becomes easier and we want to find such a variable(variables).
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Figure 3.14: Two Populations Separated by X3

To get the above plot, we need to add an X3 variable to the model and we need to consider

two parts when we choose X3. The variance of the X3 variable and the difference in means of X3

between two populations. For example, if there is no variation within the X3 variable, i.e., X3 is a

constant, then it is not too difficult to separate two populations with a small difference in means of

the X3 variable between two populations. The picture below shows the case with no variation in the

X3 variable and the mean difference of 3 between the two populations.
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Figure 3.15: Variance of X3 is Zero

Even when the difference of means is 1, it is still easy to find the separating hyperplane. The

following picture shows the cases with the difference of 1 through 4.
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Figure 3.16: Two Populations Separated by Various Mean Differences

Thus, if the X3 variable has no variation at all, we can add X3 to the model and find the

separating hyperplane with a slight difference in means of X3 between two populations. If we

add X3 with a variance of 1 and mean of 4 and 7 for each population, respectively, we have the

following picture.
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Figure 3.17: Two Populations with Variance = 1 and Mean Difference =3

Plots of different variances given the same mean difference is shown below.
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Figure 3.18: Various Variances with Mean Difference = 3

Therefore, finding an appropriate variable X3 involves the variance of the X3 and the mean

difference in X3 between the two populations. We can find such variable X3 by statistical learning.

We want to investigate further on the conditions in the next section. We also need to check the

correlation between X3 and X1 or X2, the new variable, and the existing variable(s).
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3.5.2 Conditions of the Preferable Predictor Vector With Calculation of TPM

Now, we need to compare the TPM of the bivariate normal case to the TPM of a mul-

tivariate normal with X3 added. The TPM of bivariate normal is Φ(−M

2
) from (3.6), where

M=
√

(µ1 − µ2)′Σ−1(µ1 − µ2) when we assume the common covariance matrix. Then, we denote

the TPM with X3 as Φ(−M3

2
) and need to have

Φ(−M3

2
) ≤ Φ(−M

2
)

or M3 ≥ M to attain a higher probability of correct classification by adding X3.

Suppose X = (X1, X2) and T = (X1, X2, X3). Let µ1 be the mean of X for G1 and µ2 be the

mean of X for G2 with cov(X) = Σ. The mean of T for G1 is µ13 and the mean of T for G2 is µ23

with cov(T) = Σ3. Both covariance matrices are positive definite. Then, M2 = σ2
W = l′Σl, where

W =(µ1 − µ2)
′Σ−1X and l′ = (µ1 − µ2)

′Σ−1 as in (3.3). In a similar way, M2
3 = σ2

W3
= l′3Σ3l3,

where W3 = (µ13 − µ23)
′Σ−1

3 T and l′3 = (µ13 − µ23)
′Σ−1

3 . Thus, M2
3 ≥ M2 can be rewritten as

(µ13 − µ23)
′Σ−1

3 (µ13 − µ23) ≥ (µ1 − µ2)
′Σ−1(µ1 − µ2).

To calculate M2 and M2
3 , we set the following;

(µ1 − µ2) =

u
v

 , (µ13 − µ23) =


u

v

w



Σ =

σ11 σ12

σ21 σ22

 ,

Σ3 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .
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Here, u, v, w, σ12, σ13, σ23, σ21, σ31, and σ32 are constants. Also, σ11, σ22, and σ33 are positive

constants. Now,

M2 = [u, v]

σ11 σ12

σ21 σ22


−1 u

v


and

M2
3 = [u, v, w]


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


−1 

u

v

w

 .

Then, using the symmetric matrix of Σ and Σ3,

M2 = [u, v]

σ11 σ12

σ12 σ22


−1 u

v

 =
1

(σ11σ22 − σ2
12)

(
[u, v]

 σ22 −σ12

−σ12 σ11


u
v

)

and

M2
3 = [u, v, w]


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


−1 

u

v

w



=
1

|Σ3|

(
[u, v, w]


σ22σ33 − σ2

23 σ13σ23 − σ12σ33 σ12σ23 − σ22σ13

σ13σ23 − σ12σ33 σ11σ33 − σ2
13 σ12σ13 − σ11σ23

σ12σ23 − σ22σ13 σ12σ13 − σ11σ23 σ11σ22 − σ2
12



u

v

w


)
,

where |Σ3| = σ11σ22σ33 − σ11σ
2
23 − σ2

12σ33 + 2σ12σ13σ23 − σ22σ
2
13, the determinant of Σ3.

Then,

M2 =
1

(σ11σ22 − σ2
12)

(u2σ22 − 2uvσ12 + v2σ11), (3.15)
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M2
3 = w

(u(σ12σ23 − σ22σ13)

|Σ3|
+

v(σ12σ13 − σ11σ23)

|Σ3|
+

w(σ11σ22 − σ2
12)

|Σ3|
)

+ v
(u(σ13σ23 − σ12σ33) + v(σ11σ33 − σ2

13) + w(σ12σ13 − σ11σ23)

|Σ3|
)

+ u
(u(σ22σ33 − σ2

23) + v(σ13σ23 − σ12σ33) + w(σ12σ23 − σ22σ13)

|Σ3|
,

(3.16)

where |Σ3| = σ11σ22σ33 − σ11σ
2
23 − σ2

12σ33 + 2σ12σ13σ23 − σ22σ
2
13.

To compare M2 to M2
3 , we suppose 4 different cases according to the dependence of X3 to X1 and

X2.

(1) X3 is not correlated with both X1 and X2, i.e., σ13 = σ23 = 0.

(i) X1 and X2 are not correlated, i.e., σ12 = 0. Then, the off-diagonal elements of the

covariance matrix are all zero.

Thus, Σ and Σ3 become diagonal matrices and M2, M2
3 are simplified as

M2 =
σ11v

2 + σ22u
2

σ11σ22

=
v2

σ22

+
u2

σ11

(3.17)

M2
3 =

w2σ11σ22 + v2σ11σ33 + u2σ22σ33

σ11σ22σ33

=
w2

σ33

+
v2

σ22

+
u2

σ11

= M2 +
w2

σ33

. (3.18)

Since σ33 is positive and w2 is nonnegative, M2 ≤ M2
3 . As w is larger and σ33 is smaller,

M2
3 gets greater. Then, we need X3 with a small variance and a big difference in means

between G1 and G2. Also, we want to make that ratio larger.

(ii) X1 and X2 are correlated, i.e., σ12 ̸= 0.

From (3.15) and (3.16),

M2 =
1

(σ11σ22 − σ2
12)

(u2σ22 − 2uvσ12 + v2σ11)
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M2
3 =

w2(σ11σ22 − σ2
12) + v(u(−σ12σ33) + v(σ11σ33)) + u(uσ22σ33 + v(−σ12σ33))

σ11σ22σ33 − σ2
12σ33

=
1

σ33(σ11σ22 − σ2
12)

(
w2(σ11σ22 − σ2

12) + v2σ11σ33 + u2σ22σ33 − 2uvσ12σ33

)
=

w2

σ33

+
v2σ11 + u2σ22 + 2uvσ12

σ11σ22 − σ2
12

=
w2

σ33

+M2

(3.19)

Since
w2

σ33

≥ 0, M2
3 ≥ M2. Thus, when X3 is not correlated to X1 and X2, all we need

for the new variable is to make the ratio of the mean difference to the variance large.

(2) X3 is uncorrelated with X1 but correlated with X2, i.e., σ13 = 0 and σ23 ̸= 0.

(i) X1 and X2 are not correlated, i.e., σ12 = 0.

Then,

Σ =

σ11 0

0 σ22

 ,Σ3 =


σ11 0 0

0 σ22 σ23

0 σ23 σ33

 .

Then, from (3.15),

M2 =
σ11v

2 + σ22u
2

σ11σ22
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and

M2
3 = [u, v, w]


σ11 0 0

0 σ22 σ23

0 σ23 σ33


−1 

u

v

w



=
1

σ11σ22σ33 − σ11σ2
23

(
[u, v, w]


σ22σ33 − σ2

23 0 0

0 σ11σ33 −σ11σ23

0 −σ11σ23 σ11σ22



u

v

w


)

=
u2(σ22σ33 − σ2

23) + v2(σ11σ33) + w2(σ11σ22)− 2vw(σ11σ23)

σ11σ22σ33 − σ11σ2
23

=
v2(σ11σ33) + u2(σ22σ33)

σ11σ22σ33 − σ11σ2
23

+
w2(σ11σ22)− u2(σ2

23)− 2vw(σ11σ23)

σ11σ22σ33 − σ11σ2
23

=
σ11v

2 + σ22u
2

σ11σ22 − σ11

σ33
σ2
23

+
w2(σ11σ22)− u2(σ2

23)− 2vw(σ11σ23)

σ11σ22σ33 − σ11σ2
23

.

Here, the first term is greater than M2 because the denominator is less than that of

M2 with the same numerator. Thus, we need to have a positive value on the second

term to ensure that M2
3 ≥ M2. Then, we need the same signs of the numerator

and the denominator in the second fraction. Since the denominator of the second

term is the determinant of the matrix, it’s always positive due to the positive definite

matrix. So, we only consider both positive values, i.e., σ11σ22σ33 − σ11σ
2
23 > 0 and

w2(σ11σ22) − u2(σ2
23) − 2vw(σ11σ23) > 0. Also, since σ11 > 0, the first inequality

becomes σ22σ33 − σ2
23 > 0. Here, we can get the range of σ23 as

−
√
σ22σ33 < σ23 <

√
σ22σ33

given σ33. This doesn’t help much about the range of σ23 because it indicates the range

of correlation coefficient between −1 and 1 when dividing the inequality by
√
σ22σ33.

We can get the range of σ33 given σ23 instead. σ33 >
σ2
23

σ22
. Then, from the second
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inequality, we can get the range of w, the mean difference of X3. Given σ23,

w > σ23

(σ11v +
√

(σ11v)2 + σ11σ22u2

σ11σ22

)
or w < σ23

(σ11v −
√

(σ11v)2 + σ11σ22u2

σ11σ22

)
by solving the quadratic equation for w.

We found the range of the variance of X3 and the corresponding mean difference of X3

given the covariance of (X2,X3).

(ii) X1 and X2 are correlated, i.e., σ12 ̸= 0.

Then,

Σ =

σ11 σ12

σ12 σ22

 ,Σ3 =


σ11 σ12 0

σ12 σ22 σ23

0 σ23 σ33

 ,

M2 =
σ11v

2 + σ22u
2 − 2uv(σ12)

σ11σ22 − σ2
12

,

and

M2
3 = [u, v, w]


σ11 σ12 0

σ12 σ22 σ23

0 σ23 σ33


−1 

u

v

w



=
1

Det

(
[u, v, w]


σ22σ33 − σ2

23 −σ12σ33 σ12σ23

−σ12σ33 σ11σ33 −σ11σ23

σ12σ23 −σ11σ23 σ11σ22 − σ2
12



u

v

w


)

=
1

Det

(
u2(σ22σ33 − σ2

23) + v2(σ11σ33) + w2(σ11σ22 − σ2
12)

− 2uv(σ12σ33) + 2uw(σ12σ23)− 2vw(σ11σ23)

)
=

σ33(σ11v
2 + σ22u

2 − 2uv(σ12))

Det

+
−u2σ2

23 + w2(σ11σ22 − σ2
12) + 2uwσ12σ23 − 2vwσ11σ23

Det
,

(3.20)
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where Det = σ11σ22σ33 − σ2
12σ33 − σ11σ

2
23. The first term is greater than M2 because

the same numerator with a smaller denominator. Then, we want to make the second

fraction positive again. Since the matrix is positive definite, the denominator that is the

determinant of M2
3 is positive, i.e., σ33(σ11σ22 − σ2

12)− σ11σ
2
23 > 0. Thus, we need to

have −u2σ2
23 + w2(σ11σ22 − σ2

12) + 2uwσ12σ23 − 2vwσ11σ23 > 0. Then, we have the

range of σ33 from the first inequality given σ23 as

σ33 >
σ11σ

2
23

σ11σ22 − σ2
12

.

If we solve the second inequality for w given σ23 with σ11σ22 − σ2
12 > 0, w has the

range of

w > σ23

(
−(σ12u− σ11v) +

√
(σ12u− σ11v)2 + (σ11σ22 − σ2

12)u
2

σ11σ22 − σ2
12

)

or

w < σ23

(
−(σ12u− σ11v)−

√
(σ12u− σ11v)2 + (σ11σ22 − σ2

12)u
2

σ11σ22 − σ2
12

)
.

We can rewrite the range of w as

w > σ23

(
−B +

√
B2 +Du2

D

)

or

w < σ23

(
−B −

√
B2 +Du2

D

)
,

where B = σ12u− σ11v and D = σ11σ22 − σ2
12.

If both the numerator and denominator are negative, it is not appropriate because the

matrix is positive definite.

(3) X3 is correlated with X1 and uncorrelated with X2, i.e., σ13 ̸= 0 and σ23 = 0. The result is

similar to (2).
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(i) X1 and X2 are not correlated, i.e., σ12 = 0.

Then,

Σ =

σ11 0

0 σ22

 ,Σ3 =


σ11 0 σ13

0 σ22 0

σ13 0 σ33

 .

Then, from (3.15),

M2 =
σ11v

2 + σ22u
2

σ11σ22

and

M2
3 = [u, v, w]


σ11 0 σ13

0 σ22 0

σ13 0 σ33


−1 

u

v

w



=
1

σ11σ22σ33 − σ22σ2
13

(
[u, v, w]


σ22σ33 0 −σ22σ13

0 σ11σ33 − σ2
13 0

−σ22σ13 0 σ11σ22



u

v

w


)

=
u2(σ22σ33) + v2(σ11σ33 − σ2

13) + w2(σ11σ22)− 2uw(σ22σ13)

σ11σ22σ33 − σ22σ2
13

=
v2(σ11σ33) + u2(σ22σ33)

σ11σ22σ33 − σ22σ2
13

+
w2(σ11σ22)− v2(σ2

13)− 2uw(σ22σ13)

σ11σ22σ33 − σ22σ2
13

=
σ11v

2 + σ22u
2

σ11σ22 − σ22

σ33
σ2
13

+
w2(σ11σ22)− 2u(σ22σ13)w − v2(σ2

13)

σ11σ22σ33 − σ22σ2
13

.

As in (2) (i), the first term is greater than M2 and we need to have both positive values

of the second fraction, i.e., σ11σ22σ33 − σ22σ
2
13 > 0 and w2(σ11σ22)− 2u(σ22σ13)w −

v2(σ2
13) > 0. Since σ22 > 0, the first inequality becomes σ11σ33 − σ2

13 > 0, which is

always true. Now, we get the range of σ33 given σ13 as

σ33 >
σ2
13

σ11

.
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Then, from the second inequality, we can get the range of w, the mean difference of X3.

Given σ13,

w > σ13

(σ22u+
√

(σ22u)2 + σ11σ22v2

σ11σ22

)
or w < σ13

(σ22u−
√

(σ22u)2 + σ11σ22v2

σ11σ22

)
by solving the quadratic equation for w. Both negative signs case is inappropriate

because the denominator can’t be negative. We found the range of the variance of X3

and the corresponding mean difference of X3 given the covariance of (X1,X3).

(ii) X1 and X2 are correlated, i.e., σ12 ̸= 0.

Then,

Σ =

σ11 σ12

σ12 σ22

 ,Σ3 =


σ11 σ12 σ13

σ12 σ22 0

σ13 0 σ33

 ,

M2 =
σ11v

2 + σ22u
2 − 2uv(σ12)

σ11σ22 − σ2
12

,
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and

M2
3 = [u, v, w]


σ11 σ12 σ13

σ12 σ22 0

σ13 0 σ33


−1 

u

v

w



=
1

Det

(
[u, v, w]


σ22σ33 −σ12σ33 −σ22σ13

−σ12σ33 σ11σ33 − σ2
13 σ12σ13

−σ22σ13 σ12σ13 σ11σ22 − σ2
12



u

v

w


)

=
1

Det

(
u2(σ22σ33) + v2(σ11σ33 − σ2

13) + w2(σ11σ22 − σ2
12)

− 2uv(σ12σ33)− 2uw(σ22σ13) + 2vw(σ12σ13)

)
=

σ33(σ11v
2 + σ22u

2 − 2uv(σ12))

Det

+
−v2σ2

13 + w2(σ11σ22 − σ2
12)− 2uwσ22σ13 + 2vwσ12σ13

Det
,

(3.21)

where Det = σ11σ22σ33−σ2
12σ33−σ22σ

2
13. The first term is greater than M2 because of the

less denominator with the same numerator. Then, we want to make the second fraction

positive again. If both the numerator and the denominator are positive, σ33(σ11σ22 −

σ2
12) − σ22σ

2
13 > 0 and −v2σ2

13 + w2(σ11σ22 − σ2
12) − 2uwσ22σ13 + 2vwσ12σ13 > 0.

Then, we have the range of σ33 from the first inequality given σ13 as

σ33 >
σ22σ

2
13

σ11σ22 − σ2
12

.

If we solve the second inequality for w given σ13 with σ11σ22 − σ2
12 > 0, w has the

range of

w > σ13

(
−(σ12v − σ22u) +

√
(σ12v − σ22u)2 + (σ11σ22 − σ2

12)v
2

σ11σ22 − σ2
12

)
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or

w < σ13

(
−(σ12v − σ22u)−

√
(σ12v − σ22u)2 + (σ11σ22 − σ2

12)v
2

σ11σ22 − σ2
12

)
We can rewrite this as

w > σ13

(
−C +

√
C2 +Dv2

D

)
or

w < σ13

(
−C −

√
C2 +Dv2

D

)
,

where C = σ12v − σ22u and D = σ11σ22 − σ2
12.

(4) X3 is correlation with X1 and X2, i.e., σ13 ̸= 0 and σ23 ̸= 0. From (3.15) and (3.16),

M2 =
1

(σ11σ22 − σ2
12)

(u2σ22 − 2uvσ12 + v2σ11), (3.22)

M2
3 = w

(u(σ12σ23 − σ22σ13)

|Σ3|
+

v(σ12σ13 − σ11σ23)

|Σ3|
+

w(σ11σ22 − σ2
12)

|Σ3|
)

+ v
(u(σ13σ23 − σ12σ33) + v(σ11σ33 − σ2

13) + w(σ12σ13 − σ11σ23)

|Σ3|
)

+ u
(u(σ22σ33 − σ2

23) + v(σ13σ23 − σ12σ33) + w(σ12σ23 − σ22σ13)

|Σ3|
,

(3.23)

where |Σ3| = σ11σ22σ33 − σ11σ
2
23 − σ2

12σ33 + 2σ12σ13σ23 − σ22σ
2
13.

Then,

M2
3 =

u2σ22σ33 − 2uvσ12σ33 + v2σ11σ33

|Σ3|

+
−u2σ2

23 − v2σ2
13 + w2(σ11σ22 − σ2

12)

|Σ3|

+
2uw(σ12σ23 − σ22σ13) + 2vw(σ12σ13 − σ11σ23) + 2uvσ13σ23

|Σ3|
.

(3.24)
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We can rewrite the determinant of Σ3 as

|Σ3| = σ11σ22σ33 − σ11σ
2
23 − σ2

12σ33 + 2σ12σ13σ23 − σ22σ
2
13

= σ33

(
σ11σ22 − σ2

12 −
σ11σ

2
23 + σ22σ

2
13 − 2σ12σ23σ13

σ33

) (3.25)

Since the determinant is positive, we get the range of σ33 as

σ33 >
σ11σ

2
23 + σ22σ

2
13 − 2σ12σ23σ13

σ11σ22 − σ2
12

.

Here, the numerator of the fraction part of the last term in (3.25),

0 ≤ (
√
σ11σ23 −

√
σ22σ13)

2

= σ11σ
2
23 + σ22σ

2
13 − 2

√
σ11σ22σ23σ13

< σ11σ
2
23 + σ22σ

2
13 − 2σ12σ23σ13.

(3.26)

The last inequality holds because σ11σ22 − σ2
12 > 0 or −√

σ11σ22 < σ12 <
√
σ11σ22. Thus,

the first term of (3.24) is bigger than M2 because the denominator is smaller since both

σ33 > 0 and σ11σ
2
23 + σ22σ

2
13 − 2σ12σ23σ13 > 0 from (3.26).

Then, we get the range of w from the second and third terms of (3.24) given the denominator

of those are positive. We solve the inequality for w.

(σ11σ22 − σ2
12)w

2 + 2w
(
u(σ12σ23 − σ22σ13) + v(σ12σ13 − σ11σ23)

)
+ 2uvσ13σ23 − u2σ2

23 − v2σ2
13 > 0

(3.27)

or

(σ11σ22 − σ2
12)w

2 + 2w
(
u(σ12σ23 − σ22σ13) + v(σ12σ13 − σ11σ23)

)
− (uσ23 − vσ13)

2 > 0.

Then,

w >
−F +

√
F 2 +DG

D
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w <
−F −

√
F 2 +DG

D
,

where D = (σ11σ22 − σ2
12), F = u(σ12σ23 − σ22σ13) + v(σ12σ13 − σ11σ23), and G =

(uσ23 − vσ13)
2.

3.5.3 Summary

In this section, we investigated the conditions of the preferable predictor vector, especially

for 2-dimensional problems. We first suggested using statistical learning method to search for the

variable. Then, we use the bivariate normal case with TPM. In both ways, it reduced to the values of

the mean differences between two populations and the variance of the new variable or the covariance

with the existing variables. Below is the summary of the conditions from the TPM calculation. In

summary, let D = (σ11σ22 − σ2
12),

(1) σ13 = σ23 = 0

(i) σ12 = 0: Make
w2

σ33

big.

(ii) σ12 ̸= 0: Make
w2

σ33

big.

(2) σ13 = 0, σ23 ̸= 0

(i) σ12 = 0

σ33 >
σ2
23

σ22

,

w > σ23

(σ11v +
√

(σ11v)2 + σ11σ22u2

σ11σ22

)
or w < σ23

(σ11v −
√

(σ11v)2 + σ11σ22u2

σ11σ22

)
(ii) σ12 ̸= 0

σ33 >
σ11σ

2
23

D
,

w > σ23

(
−(σ12u− σ11v) +

√
(σ12u− σ11v)2 +Du2

D

)
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or

w < σ23

(
−(σ12u− σ11v)−

√
(σ12u− σ11v)2 +Du2

D

)
.

(3) σ13 ̸= 0, σ23 = 0

(i) σ12 = 0

σ33 >
σ2
13

σ11

w > σ13

(σ22u+
√

(σ22u)2 + σ11σ22v2

σ11σ22

)
or w < σ13

(σ22u−
√

(σ22u)2 + σ11σ22v2

σ11σ22

)
(ii) σ12 ̸= 0

σ33 >
σ22σ

2
13

D
,

w > σ13

(
−(σ12v − σ22u) +

√
(σ12v − σ22u)2 +Dv2

D

)
or

w < σ13

(
−(σ12v − σ22u)−

√
(σ12v − σ22u)2 +Dv2

D

)
(4) σ13 ̸= 0 and σ23 ̸= 0.

σ33 >
σ11σ

2
23 + σ22σ

2
13 − 2σ12σ23σ13

D
,

w >
−F +

√
F 2 +DG

D

or

w <
−F −

√
F 2 +DG

D
,

where F = u(σ12σ23 − σ22σ13) + v(σ12σ13 − σ11σ23) and G = (uσ23 − vσ13)
2.

When the new variable is independent of the two existing variables, we only need to make the

ratio
w2

σ33

larger. Thus, to increase the probability of a correct decision, we have to select a new

variable that is independent of the existing variables with a small variance and a big difference

in means. If the new variable is independent of only one of the existing variables, adding a new

variable does not always guarantee in the probability of a correct decision, but we can get the range
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of the variance of X3, σ33, along with the range of the mean difference of X3, w, given covariances.

If we can fix the covariances either 0 or not zero, all we need to do is to maximize
w2

σ33

. Then, in

any given range of σ33, we take the smallest value for it and take w as big as possible.

Example 1

We check the condition of X3 with examples. Suppose there are two bivariate normal popula-

tions. Population 1 has the mean vector of (5, 2)′ and Population 2 has the mean vector of (1, 4)′.

The covariance matrix is common but we only set the variances as 2 and 4, respectively. Then, the

covariance matrix is  2 σ12

σ12 4

 .

To check the condition of X3, the mean difference becomes (4,−2, w)′ and the covariance matrix is

set as 
2 σ12 σ13

σ12 4 σ23

σ13 σ23 σ33

 .

Then, let’s check the example for each case above. We will generate 80 data points for each popula-

tion given the mean vector and the covariance matrix. We use lda from R to find the classifying

rule and create the confusion matrices.

Let’s calculate the ranges of w and σ33.

(1) σ13 = σ23 = 0

(i) σ12 = 0.

(ii) σ12 ̸= 0. In both cases, we just need to make the ratio,
w2

σ33

, big.

(2) σ13 = 0, σ23 ̸= 0 and let σ23 = 2.
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(i) σ12 = 0. We have σ33 > 1 and w > 2.

(ii) σ12 ̸= 0 and let σ12 = 1. We have σ33 > 1.1428 and w > 1.5047.

(3) σ13 ̸= 0, σ23 = 0 and let σ13 = 1.5.

(i) σ12 = 0. We have σ33 > 1.125 and w > 4.835.

(ii) σ12 ̸= 0 and let σ12 = 1. We have σ33 > 1.2857 and w > 7.877.

(4) No zero entry in covariance matrix.

Let Σ =


2 0 1.5

0 4 2

1.5 2 2.5

, Σ =


2 1 1.5

1 4 2

1.5 2 2

 for σ12 = 0 and σ12 ̸= 0, respectively. Since

we have σ33 > 2.125 and w > 2.1514 when σ12 = 0. Also, we have σ33 > 1.5714 and

w > 2.873 when σ12 ̸= 0.

Thus, to create the confusion matrices, let’s first fix σ33 then, change w to increase the ratio,
w2

σ33

.

(1) σ13 = σ23 = 0 and σ33 = 2. w takes 3 and 6 by (4,1) and (7,1), respectively.

(i) σ12 = 0. Then, the confusion matrices before and after the preferable predictor vector are

Before To

G1 G2

From
G1 77 3 80

G2 5 75 80

w=3 To

G1 G2

From
G1 79 1 80

G2 1 79 80

w=6 To

G1 G2

From
G1 80 0 80

G2 1 79 80

Table 3.8: Confusion Matrices before/after the Preferable Predictor Vector

when σ12 = σ13 = σ23 = 0

(ii) σ12 ̸= 0, then make σ12 = 1.
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Before To

G1 G2

From
G1 78 2 80

G2 3 77 80

w=3 To

G1 G2

From
G1 76 4 80

G2 1 79 80

w=6 To

G1 G2

From
G1 80 0 80

G2 0 80 80

Table 3.9: Confusion Matrices before/after the Preferable Predictor Vector

when σ12 = 1 and σ13 = σ23 = 0

(2) σ13 = 0, σ23 ̸= 0, then, make σ23 = 2.

(i) σ12 = 0. Then, σ33 = 2 and w takes 3 and 6.

Before To

G1 G2

From
G1 77 3 80

G2 5 75 80

w=3 To

G1 G2

From
G1 79 1 80

G2 0 80 80

w=6 To

G1 G2

From
G1 80 0 80

G2 0 80 80

Table 3.10: Confusion Matrices before/after the Preferable Predictor Vector

when σ12 = σ13 = 0 and σ23 = 2

(ii) σ12 ̸= 0 and let σ12 = 1. Then, σ33 = 2 and w takes 3 and 6.

Before To

G1 G2

From
G1 78 2 80

G2 3 77 80

w=3 To

G1 G2

From
G1 80 0 80

G2 0 80 80

w=6 To

G1 G2

From
G1 80 0 80

G2 0 80 80

Table 3.11: Confusion Matrices before/after the Preferable Predictor Vector

when σ12 = 1, σ13 = 0, and σ23 = 2

(3) σ13 ̸= 0, σ23 = 0, then make σ13 = 1.5.

(i) σ12 = 0. Also, σ33 = 2 and w takes 5.
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Assigned to

Pop1 Pop2

Observations
from

Pop1 77 3 80

Pop2 5 75 80

Assigned to

Pop1 Pop2

Observations
from

Pop1 79 1 80

Pop2 1 79 80

Table 3.12: Confusion Matrices before/after the Preferable Predictor Vector

when σ12 = 0, σ13 = 1.5, and σ23 = 0

(ii) σ12 ̸= 0, then σ12 = 1. Let σ33 = 2 and w takes 8.

Assigned to

Pop1 Pop2

Observations
from

Pop1 78 2 80

Pop2 3 77 80

Assigned to

Pop1 Pop2

Observations
from

Pop1 80 0 80

Pop2 0 80 80

Table 3.13: Confusion Matrices before/after the Preferable Predictor Vector

when σ12 = 1, σ13 = 1.5, and σ23 = 0

(4) No zero entry in covariance matrix.

Let Σ =


2 0 1.5

0 4 2

1.5 2 2.5

 or Σ =


2 1 1.5

1 4 2

1.5 2 2

. Take w= 3 for both cases. Then, confusion

matrices are

Assigned to

Pop1 Pop2

Observations
from

Pop1 78 2 80

Pop2 3 77 80

Assigned to

Pop1 Pop2

Observations
from

Pop1 78 2 80

Pop2 1 79 80

Table 3.14: Confusion Matrices with the PPV when σ13 = 1.5 and σ23 = 2
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Summary

When the conditions for the preferable predictor vector are met, the probability of correct

decision is at least improved based on the calculation of APER for all examples. However, the

location of the means of X3 affects the rate of improvement and it needs to be further investigated.

In this example, the mean of X3 of the second group was fixed as 1 and calculated the mean of

the first group depending on the given w. When we change the fixed mean to a different value and

change the corresponding other mean, we observe a different number of misclassified points. It

must be related to the dispersion of the group and the location of the mean of new variable.

87



Chapter 4

Multiple Decision Procedures and Statistical

Classification

4.0.1 The Indifference-Zone Approach as a Statistical Classification

One way to explain the classification process is that it is one of the identifying processes and

the selection and ranking methodologies are identifying processes, too. The indifference-zone

approach results in two groups of populations, one with the best population and the other without

the best population. When we have the result of the indifference-zone approach, we can look it

from the statistical classification viewpoint and propose to update the procedure by applying the

statistical learning.

4.1 The Indifference-Zone Approach with Statistical Learning

When we consider the indifference-zone approach with statistical learning , we can focus

on the discerning measure of distance, δ. We can think of it in two ways. First, we update the

discerning measure of distance after adding a new population. Second, we update the discerning

measure of distance by increasing the required probability of correct selection.
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Updating δ When A New Population Is Added

Let’s take a look at the first way to update the discerning measure of distance. In the

indifference-zone approach, we select the best population by the samples whose size is calcu-

lated given δ∗ and P ∗ with known variance. Suppose we take t best populations from k populations.

From the Table A.1 in GOS book, the value τ was calculated, where τ =
√
n δ∗

σ
. We notice that

there is a positive relationship between δ and the probability of a correct decision if you keep the

other values (sample size and variance) the same. After selecting the best population, if we add one

more population, the number of populations goes from K to K + 1 in the table, so we need a new

discerning measure of distance that should be larger than before. Then, a new discerning measure

of distance, δk+1 = Aδ∗, is required and, at least to keep the same probability of correct selection

level, we need to have a new larger δ between the best and the second best population since the

number of population is increased. A’s(A > 1) are calculated by taking ratio of τ(k+1)
τ(k)

under the

same P ∗ level and a table for A is provided below.

Figure 4.1: Table A.1 from GOS book(left) and a Table of A Calculated(right)

When the new sample mean is greater than the new δk+1 from the old largest sample mean,

where δk+1 = X̄[k+1] − X̄[k], we select the new population as the best population with at least the

same probability of correct selection.
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Figure 4.2: Location of X̄New and the Selection Rule

If we want to select 2 best populations after you add one population, the number of populations

becomes k + 1 from k and the discerning measure of distance becomes δk+1,

δk+1 = X̄[k] − X̄[k−1] given

δk = X̄[k] − X̄[k−1].

(4.1)

When we use the same way as above, δk+1 = Aδk, we have the following table for A below.

Figure 4.3: A for Selecting Two Best Populations

From the relationship between δk and δk+1 above, they share the same location for the discerning

measure of distance, X̄[k] − X̄[k−1]. For example, τ(3) from Table A.1, 1.4338, and τ(4) Table N.1,

1.9037, include the same discerning measure of distance under the same column. However, τ(k)
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from Table A.1 is always smaller than τ(k + 1) from Table N.1 given the same P ∗. Thus, if we

let δk+1 = Aδk and A > 1, A can be calculated from
τ(k + 1) in TableN.1

τ(k) in TableA.1
as the right table from

Figure 4.3. So, when we need to select 2 best populations after adding one more population with

the same level of probability of correct selection, we need δk+1 > δk, which is unattainable even

when the new sample mean is greater than X̄[k] because δk+1 = δk already in (4.1). Then, other

values being equal, the probability of correct selection should decrease, P ∗(k + 1) < P ∗(k) if we

want to select the two best population after adding one new population. We can’t achieve the higher

probability of correct selection for this case.

Figure 4.4: δk+1 > δk is Required.

Updating δ When Increasing P*

The next approach is to increase the probability of correct selection, P ∗. We keep the same

number of populations and have the same variances. From Table A.1 of the GOS book, it’s moving

one column to the next or the other on the right. If we increase P ∗ to the next level provided, i.e.,

from 0.75 to 0.9 or from 0.975 to 0.99, we can create a table of A for δ(new) = Aδ(old) and can

be calculated from the ratio of
τ(P ∗

new)

τ(P ∗
old)

, where τ(P ∗
new) > τ(P ∗

old).
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Figure 4.5: Increasing P ∗ to the Next Level and Updating δ∗

Figure 4.6: Increasing P ∗ from 0.75 to a New P ∗ (a different column) and Updating δ∗

We can improve the selection procedure with a higher probability of CS by updating the discerning

measure of distance.

Now, we combine the previous two methods by adding one more population after increasing

the probability of correct selection. We make the product of A’s of Figure 4.6 and Figure 4.1. Figure

4.7 below shows the multiplier, A, when we increase the probability (from P=0.75 to a new column)

and a new population is added. We select one best population when k→k+1 with a new probability

of correct selection.
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Figure 4.7: Increase the Probability and Add one more Population

(P ∗= 0.75 to a new column and k → k+1)

In this section we update δ, the discerning measure of distance of the indifference-zone approach,

based on the situation, either adding one population or increasing the probability of a correct

selection. To have at least the same level of probability of correct selection, we need to have a larger

value of δ than before. After the selection has been done, if we add one more population, we only

can select one best population with the same level of probability. If the two best populations are

selected, then the probability level must decrease.
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Chapter 5

The Statistical Classification Utilizing the

Indifference-Zone Approach

5.1 Variable Selection with the Indifference-Zone approach

In recent studies in classification, researchers have huge data to deal with, especially, many

variables as predictors. Including all the variables when modeling classification makes the model

complex, takes time in computation, makes it difficult to understand (or interpret) after the model

is set, and sometimes decreases the accuracy of the model. Thus, reducing the dimensionality of

predictor variables is one of the most studied fields in classification and statistical learning. This

process is meaningless if reducing the dimensionality loses the important information the variables

have. Thus, we want to keep the information as equal as possible while reducing the number of

variables.

There are two approaches to dimension reduction methods; variable (feature) extraction and

variable (feature) selection. Variable extraction uses the projection of the variables into a new

variable space with lower dimensionality. Variable selection selects a subset of the variables

that optimize the relevance and redundancy. Principle Component Analysis (PCA) and LDA are

examples of variable extraction. Variable selection includes the techniques of Information Gain,
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Fisher Score, and Lasso. We focus on variable selection because variable selection retains the

original variables and is easier to interpret than variable extraction.

Also, since variable selection is the learning using the training data, there are supervised

variable selection and unsupervised variable selection depending on the labeled target variable.

Supervised variable selection, then, can be categorized into filter methods, wrapper methods, and

embedded methods. Filter methods happen before the classification process using some properties

such as distance, correlation, or information. Filter methods choose the best subset of variables

by evaluating them based on certain criteria. So, variables are evaluated individually. Wrapper

methods consist of a series of steps; select a subset of variable, continue to finish the classification

process, evaluate the performance of classification, and select a new subset to iterate the procedure.

Since filter methods do not proceed to classification, they are computationally faster and less

expensive than wrapper methods. Wrapper methods predict more accurately than filter methods.

Embedded methods combine the advantages of filter methods and wrapper methods by including

interactions of variables with the classification process with reasonable computational costs. Filter

methods use Information Gain, Fisher Score, Chi-square test, and correlation coefficient as variable

selection techniques. Wrapper methods’ algorithms are forward variable selection, backward

variable selection, and recursive variable selection. In embedded methods, there are techniques such

as Lasso Regularization, Bridge regularization, and Random Forest Importance.

Among filter methods, the correlation coefficient evaluates the relevance between the variable

and the target variable at the same time it measures the correlation among predictor variables. So it

can evaluate the relevance and the redundancy together unlike the other filter methods. If a variable

is highly correlated with the target variable and uncorrelated with other predictor variables, it should

be a good variable to be selected. For this selection method, we incorporate the selection and

ranking methodologies, especially, the indifference-zone approach using the correlation coefficient

and multiple correlation coefficients.
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5.1.1 IZ approach using Correlation Coefficients

When there are k pairs of variables, (Y,X1), (Y,X2), . . . , (Y,Xk), and each pair has the bi-

variate normal distributions with correlation coefficients, ρ1, ρ2, . . . , ρk, we can select the pair

with the largest ρ, ρ[k] with a probability condition from the indifference-zone approach methods.

Also, we can select t pairs of variables from the largest correlation coefficients as the t most

highly correlated pairs. We can order the correlation coefficients from the smallest to the largest

as ρ[1] ≤ ρ[2] ≤ · · · ≤ ρ[k]. If we apply this setup to a classification problem, Y is the response

variable and Xis are the predictor variables, i = 1, 2, . . . , k. This selection procedure based on

the indifference-zone methods yields the same results as the variable selection process for pre-

dictors in classification. If we assume that we have a multivariate normal distribution for X =

(X1, X2, . . . , Xk)
′ and the response is the linear combination of these, then the pair between the

response variable and one of the predictor variables follows the bivariate normal distribution. Since

the higher correlation between the response variable and the predictor variable means a higher

relevance between them, we prefer the variable with a higher correlation coefficient. For a selection

problem of the largest ρ, the probability requirement is

P (CS) ≥ P ∗ whenever ρ[k] − ρ[k−1] = δ ≥ δ∗,

where P ∗ and δ∗ are prespecified. In the same way, for the problem of selecting t largest ρ variables,

the probability requirement is

P (CS) ≥ P ∗ whenever ρ[k−t+1] − ρ[k−t] = δ ≥ δ∗,

where P ∗ and δ∗ are prespecified. Thus, by using the method of selecting t largest correlation

coefficients among k populations, we can select the variables to include the classification process.

Suppose there are 4 variables, (X1, X2, X3, X4), from a multivariate normal distribution with

mean (2, 4, 3, 7)′ and covariance matrix
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

2 0 0 0

0 3 0 0

0 0 5 0

0 0 0 4


. We assume the variables are independent. Let’s set the response variable as a sum

of these four variables, Y =(X1 +X2 +X3 +X4). Then, we calculate the correlation coefficients

between the response variable and four variables, cor(Y,Xi), i = 1,2,3,4. They are 0.378, 0.567,

0.945, 0.756, respectively. Thus, the first variable shows the lowest relevance and we can get rid

of this variable from our predictors for classification. When we generate 100 observations and

calculate the sample correlations, they are 0.345, 0.394, 0.682,0.458, respectively. It still shows

the least relevance between the first variable and the response variable. If we make two classes

for the response variable, we make one class if the response is greater than 15 and the other class

otherwise. From the same generated data, the correlations are 0.2785, 0.4274, 0.3230, 0.4241. The

first variable has the lowest correlation with the response again. Then, in the indifference-zone

approach, we can set the discerning measure of distance and the level of probability of a correct

decision and find the number of samples needed from Table I of [4]. Then, we can select a fixed

number of variables to use in the classification process.

5.1.2 IZ Approach Using Multiple Correlation Coefficients

The correlation between the response variable and the predictor variable represents the rel-

evance. We selected variables with a high correlation with the response variable in the previous

section. If there is a high correlation between two predictors, one of the variables overlaps with

the other and the second variable does not add much information to the model. These variables

are said to exhibit redundancy. Also, the presence of redundant variables overfits the classification

model and lengthens computations. Thus, we want to select variables with high relevance and low

redundancy. If we observe high redundancy, we do not include it in the subset of selected predictor

variables for classification. In other words, the multicollinearity represents the dependency among

the variables and can be measured by the variance inflation factor(VIF). The larger the VIF, the

97



higher the dependency. Since VIF and Multiple Correlation Coefficient(MCC) are related by the

following equation, V IF =
1

1−MCC2
, we use MCC for variable selection process based on the

indifference-zone approach. We remove the variables with MCC closer to 1. For MCC, the subset

selection method is also available by Gupta and Panchapakesan (1969).

The multiple correlation coefficient measures the relationship between one variable and the

others. Suppose there are k variables, X1, X1, . . . , Xk. Then, the multiple correlation coefficient,

ρi, measures the relationship between Xi and (X1, X2, . . . , Xi−1, Xi+1, . . . , Xk), i = 1, 2, . . . , k.

ρi =

√
1− |R(X)|

Ri(X)
=

√
−|R(X)| −Ri(X)

Ri(X)
,

where

R(X) =



1 ρ12 ρ13 . . . ρ1k

ρ21 1 ρ23 . . . ρ2k

ρ31 ρ32 1 . . . ρ3k
...

...
... . . . ...

ρk1 ρk2 ρk3 . . . 1


is the matrix with all correlations, | · | is the determinant of

the matrix and Ri(X) is the minor of R(X) with ith row and column are removed.

Suppose there are 4 variables from a multivariate normal distribution with mean vector of

(2, 4, 3, 7)′ and the covariance matrix,



2 0 1 2

0 2 0 0

1 0 4 1

2 0 1 4


. We generated 100 data for each variable and

calculated MCC for each variable.

ρ1 = 0.75895,

ρ2 = 0.12468,

ρ3 = 0.32115,

ρ4 = 0.74338.

The first variable has the highest MCC and the second variable shows the lowest. From the correla-

tion matrix below, we can verify that these numbers make sense. First of all, the second variable is
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independent of all other variables so it has a very low MCC, 0.1246. The first variable is highly

correlated with the fourth variable and still correlated with the third variable. Thus, it has the highest

MCC, 0.75895.

R(X) =



1.000 −0.110 0.321 0.742

−0.110 1.000 −0.031 −0.121

0.321 −0.031 1.000 0.225

0.742 −0.121 0.225 1.000


.

Example 2

We generate 1000 samples from two populations with a common covariance matrix for 10000 times.

The mean vectors and the covariance matrix are

µ1 =



3

4

3

5


, µ2 =



3

1

3

5


, and Σ =



2 1 1 2

1 2 0 0

1 0 4 1

2 0 1 4


.

We use LDA to classify and record the misclassified points by removing one variable each. Also,

MCC from the last sample is recorded.
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Total Misclassified Points

Full Model 1,192,012

Without X1 2,881,374

Without X2 9,717,441

Without X3 1,333,033

Without X4 2,090,249

MCC

X1 0.7983

X2 0.5061

X3 0.3763

X4 0.7495

Table 5.1: Results from Simulation: Misclassified Points (left) and MCC from the Last Simulation

(right)

From MCC, X1 needs to be removed from classification. However, when we check the cumu-

lative misclassified points with one of the variables removed, X3 is the one that can be removed.

Removing X1 increases the misclassified points almost three times. If we check the sample correla-

tion matrix among the input variables along with the response variable from the last sample, we can

notice why X3 shows the least changes but X2 shows the most changes.

R =



1.000 0.3234 0.3449 0.6965 0.0430

0.3234 1.000 −0.0285 −0.0361 −0.7138

0.3449 −0.0285 1.000 0.2630 0.0274

0.6965 −0.0361 0.2630 1.000 0.0352

0.0430 −0.7138 0.0274 0.0352 1.000


.

X3 has the smallest correlation with the response variable and X2 shows the largest correlation

with the response variable. Thus, we can remove X3 from the classification but need to keep X2.

Variable selection appears to be more influenced by correlation than MCC.

5.1.3 Summary

Using the indifference-zone approach, we select several variables that show high relevance with

the response variable and low redundancy among the input variables. The correlation coefficients
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for the relevance and the multiple correlation coefficients for the redundancy are used in the

indifference-zone approach.
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Chapter 6

Conclusion

6.1 Concluding Remarks

In this dissertation, we focused on improving statistical classification using the multiple

decision-theoretic perspective along with the probability of a correct decision. First, we showed that

the probability of correct decision got improved as we proposed a method of increasing dimensions

by introducing a preferable predictor vector to the classification problem when the populations

are not linearly separable in the current vector space. Adding a preferable predictor vector to

the 2-dimensional classification problem resulted in improving the separability of the populations

and causing a higher probability of correct decision in the case of either with Normal population

assumption or without the distribution assumptions. To show the improvement in the probability

of correct decision, the total probability of misclassification (TPM) was calculated in the case of a

normal distribution, and the apparent error rate (APER) was used in the case where the distribution

of the population was not considered. In both cases, we showed that the calculated TPM and APER

got smaller after adding a preferable predictor vector to the problem.

We investigated the conditions on the preferable predictor vector especially when we add

one variable to the 2-dimensional multivariate normal distribution case. The conditions depend

on the value that is called the separability, the ratio between the mean difference and the variance
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of the new variable. If the new variable makes the mean distance larger and the variance of itself

smaller, the performance of classification improves significantly. Also, we find the range of mean

difference of the new variable between the groups and the variance of the new variable depending

on the various situations of covariance. This helps to find a new variable by data mining or machine

learning.

Also, we updated the discerning measure of distance, δ, which works as the classifier in the

indifference-zone approach. The indifference-zone approach can be viewed as a classification

process and we update the classifier as we intend to improve the correct selection by updating δ.

We found a new decision rule (allocation rule) after we update δ. When you add a new population

once the indifference-zone approach classifies the populations into two groups, the mean of the new

sample needs to be greater than the value of updated δ added to the current largest sample mean to

be selected as the best population.

Lastly, we apply the indifference-zone approach to variable selection method. The variable

selection is one field of techniques that improves the performance of classification. We use the

correlation coefficient to select the variables in terms of relevance and the multiple correlation

coefficient (MCC) concerning the redundancy. In the former case, the correlations between the

response variable and predictor variables are used and the variables with high correlation are

selected. The MCC was calculated among the predictor variables and the variables with high MCC

are eliminated from the classification procedure in the latter case. The indifference-zone approach

was incorporated to variable selection process as a part of filter methods which is the supervised

learning process. The indifference-zone approach also can be viewed as supervised learning and

this would be the first step to improve classification with the help of multiple decision-theoretic

approaches.
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6.2 Future Research

We can apply the selection and ranking methodologies to clustering by using the subset selec-

tion method and extend to unsupervised learning. We investigated the indifference-zone approach

with classification as a supervised learning. The subset selection method chooses a random number

of subsets of populations based on the distance measure from the best population, and it seems very

similar to the approach of clustering that identifies the groups based on similarity.

When we searched for the preferable predictor vector, we mainly assumed no correlation in

the populations of a two-dimensional space. It can be extended to a model with correlated variables

in higher dimensions. The cases when the existing variables are correlated, i.e., the presence of

multicollinearity, or the new variable is also correlated to the existing variables need to be studied.

Also, if a correlation exists, the difference in the means of the new variable and the position of the

means according to the covariance structure must be considered.

Additionally, we can find the conditions of new variables under the assumption of different

covariance matrices, non-homogeneous variance structure, which results in using the quadratic

discriminant analysis (QDA).

In a variable selection, the subset selection method can be used. We used the indifference-zone

approach in selecting variables as a filter method. Then, the subset selection method using the

correlation coefficients or the multiple correlation coefficients can be suggested.

Finally, it is open to a different distribution than the normal distribution in the indifference-zone

approach such as multinomial distribution to select the best population and apply to classification.
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Appendix A

Table of Simulated Data
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Table A.1: Simulated Data in 3.2
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