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ABSTRACT 

 

This thesis presents a comprehensive analysis of the thermal and spectral characteristics of 

Las Vegas Valley (LVV). The first objective examines the effects of artificial turf on the urban 

thermal environment in the LVV by analyzing the impact of Land Surface Temperature (LST) and 

surface albedo at 26 ROIs that transitioned from natural to artificial turf, alongside another 26 

ROIs that remained unchanged between 2018 and 2022 utilizing available Landsat 8 satellite 

images for the respective years. In the comprehensive comparison of ROIs over the two years in 

question, it was observed that transitioning to artificial turf correlated with elevated surface 

temperatures, but only during the warmer months. Two series of paired T-Tests results, taking the 

combined annual and seasonal data, revealed significant differences on the LST of the transitioned 

ROIs indicating turf transition had substantial impact on LST for these ROIs. The albedo values 

for sites with natural grass remained relatively unchanged between the two years. Conversely, a 

notable decrease in albedo was observed in most sites that transitioned to artificial turf. The T-

Tests revealed significant differences in albedo between 2018 and 2022 for these transitioned sites.  

The second objective examined the spectral signatures of 26 transitioned ROIs in both 2018 

and 2022 by creating spectral signature curves and analyzed Normalized Difference Vegetation 

Index (NDVI) at both transitioned and non-transitioned ROIs in both years by creating the NDVI 

maps. For the spectral signatures, the 2018 curves had features indicative of natural grass, while 

the 2022 curves did not show these traits. The most evident distinction was in the SWIR1 region's 

reflectance, with opposing slope directions in the two years. Interestingly, despite being plastic, 

the synthetic turf exhibited increased reflectance in the SWIR1 region, possibly due to surface 

temperature effects. Average reflectance values of all 26 ROIs of each month of 2018 and 2022 at 

each wavelength displayed distinct curves for each year. Two sets of paired T-Test results, one for 
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each month and the other for each ROI, presented significant differences in the reflectance values 

between 2018 and 2022 due to the turf transition. Distinct NDVI values and curves were obtained 

for artificial turf. T-Test results confirmed the significant differences on NDVI due to the turf 

transition as well. The entire analysis for the first and second objectives was conducted using GEE 

and ArcGIS Pro, with statistical assessments carried out in R-Studio.  

This thesis includes an additional chapter that examines the health and environmental 

effects of artificial turf. It covers issues such as the use of recycled tire crumb as infill, the presence 

of microplastics in turf components, and the composition of turf fibers. It also addresses health 

risks like Methicillin-Resistant Staphylococcus Aureus (MRSA) infections, heat-related illnesses, 

and various injuries that athletes might suffer on artificial playing surfaces. On the environmental 

side, the focus is on the higher temperatures of turf surfaces, ecological damage from toxic 

substances, and a greater risk of flooding. The thesis suggests that the decision to install artificial 

turf should be tailored to the unique conditions and requirements of each location. 

 Studying the impact of artificial turf on the urban thermal environment of LVV can be 

helpful for informed urban planning and policymaking, aimed at creating a healthy and 

comfortable urban environment, especially considering the unique climate challenges of the 

region. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Research Background  

Artificial turf, also known as synthetic grass, is a man-made surface created to resemble 

natural grass, first used in the 1960s primarily for sports fields. Its use has expanded to various 

athletic and recreational areas due to its affordability and low maintenance nature. In environments 

where sustaining natural grass is impractical due to severe snow or lack of water, artificial grass 

offers a more resilient option. A key benefit in dry and semi-dry regions is its ability to conserve 

water by eliminating the need for irrigation (Kanaan et al., 2020). According to the studies by 

Cheng et al. (2014) and Lavorgna et al. (2011), a field of artificial turf could conserve as much as 

1 million gallons of water each year. Besides conserving water and reduced maintenance costs, 

artificial turf is adaptable to various climates and multi-purpose stadiums. Its application has 

extended beyond sports venues to include residential and commercial landscaping in regions where 

maintaining natural grass is difficult and resource intensive. Constructed from synthetic plastic 

and chemical fibers, artificial turf is noted for its excellent drainage capabilities. Technological 

advancements have continually enhanced its manufacture, with the latest, sixth-generation turf 

closely mirroring natural grass in aspects like shock absorbency and ball interaction, even 

surpassing natural grass in some traits (Xiao & Cao 2013). The broad applicability of artificial turf 

is further enriched by its uniformity, the option for varied colors, and its resistance to wear. 

The arid southwestern U.S. is experiencing an increasing demand on its water resources 

due to its expanding growth, especially in extensive urban areas where water predominantly 

supports urban greenery (Wynne & Devitt, 2020). Las Vegas, Nevada, with a current population 

over 2.2 million, stands out as one of the rapidly expanding cities in the United States, tripling its 

population from 1990 to 2018. The residential area, encompassing both single-family houses and 
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multi-unit apartment complexes, accounts for 60 percent of Southern Nevada's yearly water 

consumption. Outdoor usage, particularly for landscape watering, dominates residential water use. 

This water, once used outside, is lost to evaporation and is not reclaimable for recycling (Southern 

Nevada Water Authority (SNWA), 2023). Therefore, water agencies, including SNWA, have 

prioritized the reduction of outdoor water consumption to ensure a sustainable balance between 

water availability and its usage (Wynne & Devitt, 2020). 

Ensuring a consistent and safe drinking water supply for Southern Nevada depends on 

effective water conservation (Water Smart Landscape Rebate Program). Beginning in 1991, 

SNWA and its associated agencies launched one of the most extensive water conservation 

initiatives of the US in response to the persistent drought conditions in the Colorado River Basin, 

which posed risks to water resources and distribution systems. The SNWA engages in both 

immediate and future-oriented strategies to maintain high quality water and dependable service for 

its users. To encourage conservation and minimize water consumption, it employs a variety of 

demand management strategies such as pricing strategies, incentives, rules, and awareness 

programs. These approaches are designed to complement each other in fostering responsible water 

usage. Through these conservation initiatives, there has been a 58 percent reduction in water usage 

per person from 2002 to 2023, despite a population growth of over 786,000 in the same period. 

(Joint Water Conservation Plan, 2019)  

The SNWA has created a comprehensive set of resources to assist customers within its 

jurisdiction in enhancing water efficiency and curbing wastage.  

● A standout initiative is the Water Smart Landscape Rebate Program, which has 

proven to be highly effective in cutting down water use outdoors. Since its launch 
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in 1999, the program has seen over 60,500 conversions by residents and businesses, 

removing close to 190 million square feet of grass and saving around 130 billion 

gallons of water. In 2018, the rebate was increased to $3.00 for each square foot of 

turf replaced with desert-friendly landscaping for the first 10,000 square feet, and 

$1.50 per square foot for any additional area. The highest annual reward for a 

property is set at $500,000. To date, more than 223 million square feet of turf have 

been removed, conserving over 176 billion gallons of water. (Joint Water 

Conservation Plan, 2019). By 2007, homeowners had replaced approximately 535 

acres of turf, equivalent to about 1% of the total residential land (Brelsford & 

Abbott, 2017). 

● Switching from cool-season to warm-season grass varieties in areas designated for 

active use, which substantially lowers water needed for irrigation. Warm-season 

grasses are more suited to hot environments and can withstand heavy use. 

● The Water Efficient Technologies Rebate Program, which has enabled participating 

businesses to save over 19 billion gallons of water since its inception in 2001. 

● The provision of various instant coupons and rebates for homeowners, such as the 

Water Smart Car Wash Coupons, rebates for Smart Irrigation Controllers, and Pool 

Cover Rebates. Before the conclusion of the program in June 2020, more than 

45,000 coupons had been issued, leading to an estimated saving of 5.6 billion 

gallons of water. (Joint Water Conservation Plan, 2019) 

The SNWA is also implementing or considering several key water efficiency strategies, 

including: 
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● Eliminating Nonfunctional Turf: Targeting the removal of nonfunctional turf, such 

as in medians and traffic circles, which consumes significant water resources 

without providing utility. With around 5,000 acres of such turf remaining, focusing 

on its replacement is crucial. Although not all turf was removed, the emphasis is on 

retaining it only where it serves a functional purpose. In 2021, the Nevada 

Legislature passed a new law which will restrict the use of Colorado River water 

supplied by Water Authority member agencies for irrigating non-functional grass 

starting from 2027 (Joint Water Conservation Plan, 2019).  Single-family 

residential property owners can either undertake the project themselves or hire a 

contractor and receive $3 per square foot for the first 10,000 square feet of grass 

they replace, followed by $1.50 per square foot for any additional area, within each 

fiscal year running from July 1 to June 30. An estimated water savings of 825,000 

gallons annually is expected for an average conversion of 15,000 square feet to 

water-efficient landscaping. (What We’re Doing to Conserve, 2024) 

● Banning New Grass Installations: This measure will prohibit grass in new 

developments, anticipated to conserve around 27,000 acre-feet of water in the 

future. 

● Limiting Residential Pool Sizes: In the middle of 2022, the board of the Las Vegas 

Valley Water District enacted new regulations, capping the surface area of new 

residential pools and spas at 600 square feet for each property. On average, 

residential pools in the region measure approximately 475 square feet. The new 

restriction aims to curb the emergence of extremely large residential pools — with 

some exceeding 3,000 square feet — which are notably water-intensive. Over the 
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coming decade, this policy is projected to conserve more than 32 million gallons of 

water (Drought and Conservation Measures, 2024).  

Additional measures like a moratorium on evaporative cooling and a voluntary septic 

conversion program are also part of the comprehensive water efficiency plan. 

However, there is an ongoing debate regarding the environmental friendliness of replacing 

natural grass with artificial turf. A significant concern with artificial turfgrass is the elevated 

surface temperatures it can reach during daylight hours (Devitt et al., 2007). Buskirk et al. (1971) 

noted that on warm, sunny days, artificial turf temperatures could surpass those of natural grass by 

30°C to 65°C, posing serious concerns. This increase in temperature can adversely affect player 

comfort and health, especially when surface temperatures rise above the 45°C threshold for heat 

pain, as discussed by Kandelin et al. (1976). Lee et al. (2018) found that in urban areas like Seoul, 

Korea, artificial turf fails to cool surface temperatures and often records higher temperatures 

compared to other urban materials. Xiao and Cao (2013) pointed out that the thermal performance 

difference between natural and artificial turf materials could alter the local thermal and humidity 

conditions on sports fields, potentially impacting athletes' thermal comfort and performance. Jim 

(2016) argued that the shift from natural to artificial turf reduces urban cooling effects and 

heightens heat-stress health hazards. Despite ongoing advancements to make artificial turf more 

similar to natural grass in look and feel, Villacañas et al. (2017) assert that these modifications 

have not successfully addressed the issue of heat accumulation, leading to user dissatisfaction, 

performance drops, and an increased risk of heat-related injuries. The thermal characteristics of 

artificial turf, which can contribute to elevated local temperatures, present significant 

environmental challenges and represent one of the critical disadvantages associated with its use. 
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The Las Vegas Valley (LVV) has been chosen as the focal point of this study due to its 

extensive use of artificial turf. While artificial turf can save water in arid regions such as LVV, it 

might compromise thermal comfort due to elevated surface temperatures. Elevated Land Surface 

Temperature (LST) can have cascading effects on the local urban environment and can have direct 

health impacts on residents.  

Understanding the trade-offs between water conservation and thermal comfort is essential 

for informed urban planning. Also, changes in albedo due to the transition from natural to artificial 

grass can influence local energy balances, potentially affecting the local climates. By measuring 

how albedo changes with the transition to artificial turf, urban planners can understand its broader 

climatic implications. Therefore, the first objective of this study is to evaluate the impact of 

artificial turf on the urban thermal environment by measuring the LST and Surface Albedo through 

remote sensing techniques. 

Measuring the total amount of natural grass surfaces within the valley is crucial to evaluate 

the effectiveness of different lawn conversion programs. With such information, conversion efforts 

can be more strategically directed towards the areas with higher concentrations of natural grass 

which would benefit the most from such conversions, thus optimizing the impact of the program 

(Brandt, 2008). Therefore, another objective of this study is to differentiate and characterize the 

spectral signatures and NDVI of artificial turf and natural grass within the LVV.  

1.2 Research Motivation  

 

The comprehensive review of existing literature on the surface temperatures of artificial 

turf reveals a predominant focus on evaluating extreme conditions during sunny, clear summer 

days. While this approach has provided valuable insights, it overlooks the nuanced variations 
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across different seasons and diverse geographical landscapes. Researchers such as Aoki (2009) 

and Loveday (2019) have made strides in incorporating winter measurements, yet there remains a 

significant gap in our understanding of how artificial turf behaves across the full spectrum of 

seasonal changes. 

Furthermore, the geographic scope of these studies has largely been confined to temperate 

regions, with a notable concentration of research emanating from the United States and a few other 

countries. This regional focus raises questions about the applicability of findings across varied 

climatic conditions, particularly in areas with extreme climates that may exhibit distinct thermal 

behaviors. 

Another critical gap lies in the methodology of data collection. Existing studies have 

predominantly relied on infrared thermometers, thermocouples, and albedo meters for surface 

temperature and albedo measurements, with thermal imaging used to a lesser extent. These 

methods, while effective, are limited by the need for physical presence on-site and do not offer a 

comprehensive overview of large geographical areas. 

Moreover, the temporal scope of previous studies has been relatively narrow, often 

spanning only a couple of days. This short duration fails to capture the dynamic and fluctuating 

nature of surface temperatures and albedo over longer periods, thereby providing a snapshot rather 

than a complete picture of the thermal impact of artificial turf. 

The rapid expansion of urban landscapes has intensified the need for effective urban 

planning and development strategies. Traditional ground measurement techniques for identifying 

and differentiating between natural and artificial grass cover over large areas are often labor-

intensive, time-consuming, and may not be feasible for continuous monitoring. The capability to 

accurately classify these land covers through remote sensing techniques could revolutionize urban 
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ecological assessments, offering a high-resolution, cost-effective, and efficient tool for urban 

planners. This research seeks to harness advanced remote sensing technologies to discern natural 

from artificial grass over expansive regions. 

In light of these gaps, this research aims to leverage the capabilities of Google Earth Engine 

(GEE) and ArcGIS Pro to examine the Land Surface Temperature (LST), surface albedo, spectral 

signatures and Normalized Difference Vegetation Index (NDVI) of natural grass and artificial turf 

across the Las Vegas Valley (LVV). By employing these advanced tools, this study offers a novel, 

cost-effective approach to data collection, eliminating the dependency on sophisticated field 

equipment and expensive satellite imagery. This research stands out by extending the analysis 

beyond the summer months to include all seasons of the years 2018 and 2022, thereby providing 

a more holistic understanding of seasonal variations in surface temperatures, surface albedo, 

spectral signatures, and NDVI of artificial turf. 

By analyzing 45 Landsat 8 satellite images from 2018 and 2022 and focusing on 26 

Regions of Interest (ROIs) that transitioned from natural to artificial turf, along with a control 

group of natural grass areas, this study not only broadens the temporal and geographical scope of 

the research but also introduces a unique comparative dimension to the analysis. This 

comprehensive approach addresses the previously identified knowledge gaps and contributes 

significantly to the body of knowledge on the environmental impacts of artificial turf. 

 

1.3 Research Objectives 

 

Las Vegas, a city experiencing rapid growth in the United States, faces escalating pressures 

on its water supply. In response, the 1999 Water Smart Landscapes (WSL) program was launched 

to encourage residents to switch from traditional grass lawns to water-efficient xeriscaping, 
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particularly during the drought in 2004. This initiative resulted in the removal of approximately 

535 acres of turf by 2007, as part of efforts to ensure a stable and safe drinking water source for 

Southern Nevada. However, the ecological consequences of substituting natural grass with 

artificial turf remain a point of contention. This is largely because artificial turf can attain 

significantly higher surface temperatures due to its low reflectivity, minimal heat capacity, and 

water-repellent materials, which enhance heat absorption and retention, potentially leading to 

adverse environmental impacts. Therefore, the first objective of this research is to evaluate the 

impact of artificial turf on the urban thermal environment by measuring the Land Surface 

Temperature (LST) and Surface Albedo through remote sensing techniques. This objective aims 

to answer the following research questions:  

1. What is the impact of turf conversions on LST?   

2. What is the impact of turf conversions on Surface Albedo?  

3. How do the LST and Albedo changes in areas with turf conversion compared to areas that 

maintained the same natural grass?  

Given the research suggesting artificial turf could raise surface temperatures, identifying 

locations with artificial and natural grass coverage in the valley becomes crucial. Recognizing the 

unique spectral signatures of each turf type can aid in their identification. In the past, identifying 

these signatures depended on advanced and expensive techniques like commercial satellite 

imagery, hyperspectral imaging, or spectroradiometers, which are not easily accessible to the 

general public or educational institutions. Therefore, the second objective of this study is to 

differentiate and characterize the spectral signatures and Normalized Difference Vegetation Index 
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(NDVI) of artificial turf and natural grass within the LVV. This objective aims to answer the 

following research questions:  

1. What are the distinct spectral signatures of natural and artificial turf?  

2. Which wavelengths show the most significant differences between natural grass and 

artificial turf spectral signatures?  

3. How does the NDVI of artificial turf differ from those of natural grass?  

1.4 Research Tasks 

 

The tasks are organized in the format of manuscripts. The first chapter provides an 

introduction and outlines the research questions guiding the study. The second chapter, titled 

"Artificial Turf and Urban Thermal Environment: Analyses of the Changes in Land Surface 

Temperature and Surface Albedo in Las Vegas Valley," addresses the first set of research questions 

by investigating the impact of artificial turf on the urban thermal environment within the LVV. 

This investigation involved analyzing LST and surface albedo at 26 ROIs that switched from 

natural grass to artificial turf, compared to 26 ROIs that did not change during the period from 

2018 to 2022. The ROIs that underwent the transition were mainly high school football fields, 

whereas the unchanged ROIs, predominantly golf courses, acted as a baseline for the study. 

Analysis was performed using GEE and ArcGIS Pro, with statistical evaluations conducted in R-

Studio. The third chapter, "Detection and Analysis of the Spectral Signatures and NDVI of 

Artificial Turf and Natural Grass in Las Vegas Valley," addresses the second set of research 

questions. It focuses on 26 high school football fields in the valley that were converted from natural 

grass to artificial turf between 2018 and 2022, A total of 45 charts, detailing the spectral signature 

curves for all the selected regions, were produced, and analyzed. Chapter 4 delves into the health 
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and environmental implications of artificial turf. The use of artificial turf has raised concerns about 

health and environmental issues due to the materials used to produce artificial turf. The issues have 

been studied and discussed in numerous papers which have been reviewed in this section. The fifth 

chapter offers a summary of the objectives of the study, key findings, and limitations, and proposes 

directions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

CHAPTER 2: ARTIFICIAL TURF AND URBAN THERMAL ENVIRONMENT: 

ANALYSES OF THE CHANGES IN LAND SURFACE TEMPERATURE AND 

SURFACE ALBEDO IN LAS VEGAS VALLEY 

2.1 Introduction  

Artificial turf, often known as synthetic turf or artificial grass, is a man-made material made 

from synthetic fibers designed to mimic the appearance of natural grass. Since the 1960s, it has 

been utilized as a substitute for real grass (Jastifer et al., 2019). Originally conceived as an option 

for indoor baseball fields, its usage gradually expanded to encompass various athletic purposes, 

gaining popularity in the 1970s across fields, stadiums, and indoor/outdoor athletic facilities 

(Jastifer et al., 2019). The challenges associated with maintaining natural grass in regions with 

heavy snowfall have led to an increased adoption of artificial turf. In dry climates, one of the major 

arguments in favor of artificial turf is its potential for water conservation; replacing water-intensive 

grass with a non-irrigated option (Kanaan et al., 2020). According to Cheng et al. (2014) and 

Lavorgna et al. (2011), a typical synthetic turf football field can conserve from 0.5 to 1 million 

gallons of water annually. Some other advantages include lower maintenance costs, suitability for 

cold and arid regions, and its versatility for use in stadiums with multiple purposes. Although 

initially designed for sports fields, artificial turf has found wider applications in residential lawns 

and commercial properties due to its benefits. In regions with extreme climates, where the upkeep 

of high-quality natural grass fields requires chemical treatments and substantial amounts of water, 

artificial turf serves as a viable alternative.  

The arid southwest of the U.S., particularly in rapidly growing urban areas like Las Vegas, 

Nevada, is facing increased pressure on water resources, largely due to the need to maintain urban 
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green spaces (Wynne & Devitt, 2020). Las Vegas has seen its population surge to over 2.2 million, 

more than tripling since 1990. In Southern Nevada, residential areas, which include both single-

family homes and apartment complexes, are responsible for 60% of the annual water use. Most of 

this residential water is used outdoors for landscaping and is not recoverable for reuse due to 

evaporation (Southern Nevada Water Authority (SNWA), 2023). Consequently, water 

management organizations, such as the Southern Nevada Water Authority, are focusing efforts on 

reducing outdoor water use to maintain a sustainable balance between water supply and demand 

(Wynne & Devitt, 2020). 

In 1999, Las Vegas introduced the Water Smart Landscapes (WSL) initiative, a program 

incentivizing homeowner to replace turf grass with xeric landscaping that would save the use of 

water. With the help of the Water Smart Landscapes rebate program, the community has 

successfully transformed over 223 million square feet of lawns into water-efficient landscapes, 

resulting in a savings of over 176 billion gallons of water (Joint Water Conservation Plan, 2019). 

In 2021, the Nevada Legislature passed a new law which will restrict the use of Colorado River 

water supplied by Water Authority member agencies for irrigating non-functional grass starting 

from 2027. This regulation targets commercial, multi-family, governmental, and other properties 

in Southern Nevada.  

However, there is an ongoing debate regarding the environmental friendliness of replacing 

natural grass with artificial turf. A significant concern with artificial turfgrass is the elevated 

surface temperatures it can reach during daylight hours (Devitt et al., 2007). Lavorgna et al. (2011) 

highlighted that these synthetic turf fields can have temperatures ranging between 60°C and 80°C. 

As a result, they often require watering systems, including drainage, to regulate and maintain them 
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at a comfortable temperature, approximately 37.7°C, for usage. The thermal characteristics of 

artificial turf, which can contribute to elevated local temperatures, present significant 

environmental challenges and represent one of the critical disadvantages associated with its use. 

An estimated water savings of 825,000 gallons annually is expected for an average conversion of 

15,000 square feet to water-efficient landscaping (Water Smart Landscapes Rebate, n.d.-b). 

The Las Vegas Valley (LVV) has been chosen as the focal point of this study due to its 

extensive use of artificial turf. While artificial turf can save water in arid regions such as LVV, it 

might compromise thermal comfort due to elevated surface temperatures. Elevated LST can have 

cascading effects on the local urban environment and can have direct health impacts on residents.  

Understanding the trade-offs between water conservation and thermal comfort is essential 

for informed urban planning. Also, changes in albedo due to the transition from natural to artificial 

grass can influence local energy balances, potentially affecting the local climates. By measuring 

how albedo changes with the transition to artificial turf, urban planners can understand its broader 

climatic implications. Therefore, the following objective has been undertaken:  

Research Objective: To evaluate the impact of artificial turf on the urban thermal 

environment by measuring the Land Surface Temperature and Surface Albedo through remote 

sensing techniques.  

Research Questions:  

1. What is the impact of turf conversions on LST?   

2. What is the impact of turf conversions on Surface Albedo?  
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3. How do the LST and Albedo changes in areas with turf conversion compared to 

areas that maintained the same natural grass?  

Research Hypothesis: The transformation of 26 ROIs from natural grass to artificial turf 

over the period from 2018 to 2022 has resulted in notable changes in both Land Surface 

Temperature and Surface Albedo.  

Both LST and Surface Albedo have been measured through remote sensing technologies. 

Improved spatial, temporal, and spectral resolutions of sensors have made it possible to identify 

surface materials with greater precision due to recent developments in remote sensing technology. 

The most notable advancement has been found in the spatial resolution of the satellite optical 

sensor, and Google Earth has made the resulting very high-resolution photos widely accessible 

(Hara et al., 2013). 

2.2 Literature Review 

An extensive review of research on LST and surface albedo was undertaken, focusing 

predominantly on studies from countries with temperate climates. In the United States, notable 

investigations include those into the surface temperatures of artificial turfs, conducted in various 

locations such as Pennsylvania by Buskirk et al. (1971), Texas by Ramsey (1982) and Carvalho et 

al. (2021), Hawaii by Kandelin et al. (1976), Las Vegas by Devitt et al. (2007), and Southern 

California by Yaghoobian et al. (2010). Internationally, significant contributions have been made 

by Aoki (2009) in Japan, Loveday et al. (2019) and Petrass et al. (2014) in Australia, Jim (2016) 

in Hong Kong, Gustin et al. (2018) in the UK, and Lee et al. (2018) in Seoul, Korea. 
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In every study reviewed, the surface temperatures recorded on artificial turf were 

consistently higher than those of natural grass or any other surface elements. The initial 

comparisons between artificial turf and natural grass, conducted by Buskirk et al. (1971), Kandelin 

et al. (1976), and Ramsay (1982), all confirmed that artificial turf fields exhibited higher surface 

temperatures than their natural grass counterparts. Gustin et al. (2018) noted in their study of a 

third-generation artificial turf pitch, that the surface temperature of the pitch could rise or fall 

rapidly, by approximately 2.5–3.0 °C per minute. Additionally, the research by Xiao and Chao 

(2013) into the thermal properties of natural and artificial turfs revealed that both the foliar surface 

temperature and the average air temperature were significantly higher on artificial turf compared 

to natural grass during the early summer period.  

 Several studies, including those by Carvalho et al. (2021), Garai and Kleissl (2011), Gustin 

et al. (2018), and Aoki (2009), also investigated the albedo of artificial turf in addition to surface 

temperature, consistently finding that artificial turf exhibits lower albedo. Aoki (2009) specifically 

noted an inverse correlation between surface temperatures and albedo values. Measurements of 

temperatures below the surface or of the underlying layers were rare, with only Carvalho et al. 

(2021) and Jim (2017) reporting on subsurface and substrate temperatures of artificial turf fields, 

respectively. 

To measure surface temperatures, most researchers employed infrared thermometers or 

thermocouples, whereas albedo values were typically measured using albedo meters. Loveday et 

al. (2019) and Lee et al. (2018) utilized thermal images as a method for assessing surface 

temperatures. 
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Most of the research was carried out during summer days characterized by clear skies and 

intense sunlight to assess the most extreme conditions. Typically, data collection spanned over two 

days. Aoki (2009) and Loveday et al. (2019) expanded their investigations to include seasonal 

temperature fluctuations of artificial turf, recording temperatures in both the winter and summer 

seasons. Aoki (2009) observed elevated temperatures on artificial turf in both seasons but noted 

that the temperature differences between artificial and natural grass surfaces was more pronounced 

during the summer months. 

Studies by Devitt et al. (2007), Lee et al. (2018), Loveday et al. (2019), Carvalho et al. 

(2021), and Williams and Pulley (2002) compared the surface temperatures of artificial turf to 

those of other urban surfaces or elements. Williams and Pulley (2002) evaluated two types of 

artificial turf against natural grass, concrete, and soil, discovering that artificial turf could reach 

temperatures as high as 69.4°C, significantly hotter than the maximum of 31.4°C recorded for 

natural grass on the same day. Lee et al. (2018) examined the thermal behavior of various urban 

street elements, observing notably higher temperatures on artificial turf and wooden decks during 

the day, which then significantly decreased at night. Carvalho et al. (2021) compared the surface 

temperatures of natural grass, artificial turf, decomposed granite, and hardwood mulch, finding 

artificial turf to have the highest surface temperatures, the lowest albedo, and the highest net 

radiation among the materials tested. Loveday et al. (2019) assessed the surface temperatures of 

19 different landscape elements across all four seasons in a single day, noting that despite similar 

colors, artificial and natural grass differed significantly in thermal behavior. On average, artificial 

turf was 11.2°C warmer than natural grass during the summer measurement period. 
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 Various researchers have identified multiple factors contributing to the increased surface 

temperatures observed on artificial turf fields. Aoki (2009) and Gustin et al. (2018) attributed the 

temperature rise primarily to the absorption of solar radiation. Petrass et al. (2014) expanded on 

this by noting that ambient temperature and relative humidity also play significant roles in 

influencing the temperature of artificial turf surfaces. Their comparison across 34 synthetic turf 

products revealed that not only environmental factors but also specific components of the synthetic 

turf system, such as the type of infill material and the presence of a shock pad, markedly affect 

surface temperatures. Twomey et al. (2014) conducted measurements of ambient and surface 

temperatures, relative humidity, wind speed, and cloud cover on a third generation (3G) artificial 

turf and two natural grass surfaces nearby. Their findings highlighted that the artificial turf 

consistently registered higher surface temperatures than the natural grass, with cloud cover being 

a significant determinant of the temperatures recorded. Jim (2016) examined six factors related to 

the radiant-energy environment on both natural and artificial turf sports fields and found that 

artificial turf absorbed intense shortwave and longwave radiation more readily, leading to surface 

temperatures as high as 70.2°C, compared to less than 40°C for natural turf. This absorption 

initiated a warming effect that started with the low albedo and high net solar irradiance of artificial 

turf materials, combined with their low specific heat capacity, resulting in elevated material 

temperatures, increased ground-thermal radiation, and the transfer of heat to the air above the 

ground through conduction and convection. The study by Devitt et al. (2007) revealed that the key 

factors contributing to the increase in temperature of artificial turf surfaces were the intensity of 

the sunlight hitting the surface and the angle of the sun above the horizon. 

While most studies adopted the empirical field experiment approach, Yaghoobian et al. 

(2010) and Gustin et al. (2018) employed quantitative modeling or simulation methods to 
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investigate their hypotheses. Gustin et al. (2018) constructed a numerical model that, informed by 

empirical data, accurately estimated surface temperatures, and demonstrated that higher surface 

albedos could lead to a notable decrease in peak surface temperatures. Yaghoobian et al. (2010) 

introduced the Temperatures of Urban Facets in 3D (TUF3D) model and, through integrating a 

basic offline convection model that substituted grass with artificial turf, discovered this change 

could contribute an additional 2.3 kW h m−2 day−1 of heat to the surrounding air, potentially raising 

urban air temperatures by as much as 48°C. 

Jim (2017) conducted detailed observations on four types of radiant energy (direct solar, 

reflected solar, sky thermal, and ground thermal) across five different heights (150 cm, 50 cm, 15 

cm, the surface of the turf, and the substrate layer) under three distinct summer weather patterns 

(sunny, cloudy, overcast). On a clear, sunny day, the surface of the artificial turf reached 

temperatures as high as 72.4°C, in contrast to natural turf, which peaked at 36.6°C. The artificial 

turf dissipated this heat through conduction and convection to the air just above the ground and 

via significant ground-thermal radiation. During cloudy conditions, the artificial turf's temperature 

increase was less intense, facilitating earlier cooling in the late afternoon. On overcast days, 

temperatures at both the artificial and natural turf sites remained within safe limits. 

Aoki (2009), Petrass et al. (2015), Villacañas et al. (2017), and Devitt et al. (2007) 

conducted investigations into the surface temperatures on various artificial turf fields and products. 

Aoki (2009) assessed the surface temperature and albedo of five different outdoor sports surfaces, 

including three with artificial turf (a field, a track, and a tennis court with sand-filled artificial turf), 

one with natural grass, and a clay track. Among the artificial surfaces, the turf field recorded the 

highest temperatures in the summer, whereas the turf track was warmer in the winter. Petrass et al. 



 

20 

 

(2015) compared the surface temperatures of two artificial turf types against natural grass, noting 

that surface temperatures were influenced by the ambient air temperature and that both artificial 

surfaces were significantly hotter than natural grass at the same location, with differences of 

12.46°C and 22.15°C at metropolitan and regional venues, respectively. Villacañas et al. (2017) 

explored how structural elements like fiber type, infill type, turf age, and usage hours affect the 

temperature of artificial turf football fields. Their findings indicated that fields made with Styrene-

Butadiene Rubber (SBR) and fibrillated fibers exhibited higher temperatures, highlighting the 

impact of infill and fiber types on third-generation artificial turf field temperatures, with 

thermoplastic rubber and monofilament fibers contributing to temperature reduction. Devitt et al. 

(2007) gathered data on surface temperature, spectral reflectance, solar radiation, and air 

temperature related to various landscape coverings and artificial turf components. Their analysis 

showed that the surface temperature of green artificial turf with black rubber infill was significantly 

higher than that of white artificial turf, asphalt, bare soil, concrete, and natural grass, concluding 

that the addition of rubber beads, regardless of color, raised the temperature of the artificial turf 

grass system. 

2.3 Study Area   

LVV has been chosen as the focal point of this study due to its extensive use of artificial 

turf. Located in southern Nevada, LVV is one of the largest metropolitan areas in the Southwestern 

U.S. This area lies in a higher-altitude segment of the Mojave Desert, specifically in the central-

western region of Clark County, Nevada. It's encircled by several mountain ranges, with the tallest 

peak reaching up to 11,918 feet (Morris et al., 1997). The climate of Las Vegas is characterized as 

a subtropical hot desert (Koppen climate classification: BWh), which is common in the Mojave 
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Desert. This entails prolonged, intensely hot summers, brief mild winters, and transitional seasons 

that are warm (NOAA’s National Weather Service, n.d.). Rain is infrequent, averaging about 4.2 

inches annually (Weather Averages Las Vegas, Nevada, n.d.). Among North American cities, Las 

Vegas stands out for its sunshine, dryness, and exceptionally low humidity levels, often dropping 

below 10% (Cities with Low Humidity in US - Current Results, n.d.). The period from June to 

September is notably hot due to the low humidity. July stands as the hottest month, with average 

daytime highs reaching 104.5°F. The yearly average high temperature is around 80°F (Weather 

Averages Las Vegas, Nevada, n.d.). 
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Figure 2.1: Study Area: Las Vegas Valley, Nevada 
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2.4 Materials and Methods 

In this research, the goal is to assess the impact of artificial turf on the urban thermal 

environment by measuring the LST and Surface Albedo using remote sensing technologies. 

Satellite remote sensing offers a direct and consistent approach to assess the thermal 

contrast between urban and rural regions. Extensive research has been carried out on the utilization 

of remotely sensed data to identify thermal characteristics of urban surfaces (Xian & Crane, 2006). 

Temperature images acquired through satellite data enable the estimation of LST, which represents 

the temperature of the land surface directly interacting with the atmosphere. LST can be influenced 

by various factors, including solar radiation, vegetation cover, and soil moisture (Black et al., 

2019). The study of urban climates heavily relies on LST as it modifies the air temperature within 

the atmospheric boundary layer and serves as a vital parameter for surface energy and water 

balance at local and global scales (Yu et al., 2018). It is important to note that LST differs from 

the air temperature reported in daily weather forecasts. Changes in urban LST can significantly 

impact local weather and climate (Xian & Crane, 2006).  

Thermal bands on remote sensing satellites play a crucial role in determining LST. Multiple 

satellites such as Landsat, Aster, AVHRR, MODIS, etc., possess thermal bands for this purpose. 

Due to the greater heterogeneity in urban areas, a finer spatial resolution is necessary to study LST 

variations in these regions (Bala et al., 2018). 

 Most of this project was carried out using Google Earth Engine (GEE), with some tasks 

completed in ArcGIS Pro by Environmental Systems Research Institutes (ESRI), California. GEE 

is a cloud computing platform renowned for offering robust computing capabilities, especially 

when handling massive geospatial datasets (Gorelick et al., 2017). It is engineered to manage and 
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analyze vast (petabyte-scale) datasets to aid decision-making (Mutanga & Kumar, 2019). The 

efficiency of Google's computing combined with data mining capabilities has captivated numerous 

professionals and scholars due to its rapid information access, as highlighted by Becker et al. 

(2021).  

The study focused on the analysis between 2018 and 2022. During 2020-21, 29 football 

fields in Southern Nevada public schools transitioned from natural grass to synthetic turf (Seeman, 

2020). Therefore, all these fields had natural grass in 2018, and have artificial turf at present. Out 

of these 29 fields, 26 fields have been designated as the Regions of interest (ROIs) for this study, 

while the remaining three are outside the designated study zone. Additionally, 26 ROIs were 

chosen that did not undergo the transition process from natural to artificial turf. Among these 26 

ROIs, 1 ROI belongs to a sports complex, 4 ROIs are in 4 parks, and the rest of the ROIs are in 

golf courses. These non-transitioned ROIs worked as a control group. This control group served 

as an important benchmark. The temperature difference in the football fields due to the alteration 

from natural to artificial turf was analyzed with respect to the temperature difference in the non-

transitioned ROIs between 2018 and 2022. The comparison between the football fields and golf 

courses can help isolate the effects of turf transition from other environmental changes. 

All the Landsat 8 satellite images available for 2018 and 2022 were downloaded and used 

for this study. Table 2.1 and Table 2.2 display the dates on which satellite images were obtained 

for the years 2018 and 2022, respectively, along with corresponding information on low, high, and 

average temperatures, precipitation, and cloud cover for each image. Figure 2.2 illustrates the 

frequency of satellite images obtained for each day over the course of a year, comparing the data 

between 2018 and 2022. The blue bars represent the count of images for 2018, and the red bars 
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represent the count for 2022. Figure 2.3 displays the distribution of average day temperature for 

each date on which a satellite image was obtained, across 2018 and 2022.  

 

 
Figure 2.2: Distribution of the dates of the obtained satellite images in 2018 and 2022 

 

 

 

 

 

 

 

 

 



 

26 

 

Table 2.1: Low-high- average air temperature, and precipitation (Source: Weather Underground) 

and the cloud covers of the obtained satellite images of 2018 (Source: Earth Explorer) 

Dates 

Low 

Temperature 

(°C) 

High 

Temperature 

(°C) 

Average Day 

Temperature 

(°C) 

Precipitation 

(mm) 

Cloud Cover 

(CC) (%) 

5-Jan-18 5 19 11.83 0 0.58 

21-Jan-18 3 12 7.29 0 1.9 

6-Feb-18 13 22 17.17 0 0.2 

22-Feb-18 -1 13 6.96 0 46.62 

10-March-18 12 19 14.7 0 100 

26-Mar-18 9 17 13.24 0 5.79 

11-Apr-18 23 33 27.07 0 0.07 

27-April-18 20 34 28.2 0 0.09 

13-May-18 18 28 23.46 0 12.7 

29-May-18 22 35 29.5 0 4.54 

14-Jun-18 26 40 34.41 0 0.45 

30-Jun-18 25 38 32.4 0 0.35 

16-Jul-18 31 42 36.17 0 11.76 

1-Aug-18 31 43 38.03 0 4.3 

17-Aug-18 28 38 33.81 0 6.12 

2-Sep-18 23 37 30.79 0 4.71 

18-Sep-18 20 37 29 0 0 

4-Oct-18 17 27 21.17 4.06 17.67 

20-Oct-18 15 27 21.58 0 14.96 

5-Nov-18 12 24 17.38 0 0.03 

21-Nov-18 5 18 12.33 0 2.31 

7-Dec-18 7 13 10 2.29 86.51 

23-Dec-18 6 16 10.17 0 4.53 
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Table 2.2: Low-high- average air temperature, and precipitation (Source: Weather Underground) 

and the cloud covers of the obtained satellite images of 2022 (Source: Earth Explorer) 

Dates 

Low 

Temperature 

(°C) 

High 

Temperature 

(°C) 

Average Day 

Temperature 

(°C) 

Precipitation 

(mm) 

Cloud Cover 

(CC) (%) 

16-Jan-22 3 17 9.71 0 33.03 

1-Feb-22 6 16 10.88 0 38.72 

17-Feb-22 8 17 11.58 0 0.37 

5-Mar-22 7 13 11.16 0 36.98 

21-Mar-22 11 23 16.5 0 1.83 

6-Apr-22 16 26 21.13 0 0.23 

22-April-22 11 22 16 0 80.84 

8-May-22 18 29 24.21 0 0.08 

24-May-22 21 33 27.63 0 0.24 

9-Jun-22 27 42 35.84 0 1.36 

25-Jun-22 25 40 34.21 0 1.07 

11-Jul-22 29 44 38.04 0 0.9 

27-Jul-22 26 38 31.41 0 31.06 

12-Aug-22 27 37 30.86 20.57 46.23 

28-Aug-22 27 40 34.29 0 0.82 

13-Sep-22 23 33 28.47 2.03 75.96 

29-Sep-22 23 36 29.42 1.02 1.93 

15-Oct-22 19 31 23.88 0 43.17 

31-Oct-22 13 24 18.13 0 0.17 

16-Nov-22 7 17 11.3 0 0.47 

2-Dec-22 9 17 13.83 0 35.85 

18-Dec-22 -1 11 4.63 0 31.51 
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Four images, two from 2018 and two from 2022, were omitted from the research because 

they exhibited substantial cloud cover. Specifically, the excluded images from 2018 were dated 

February 22nd (with 46.62% cloud cover) and December 7th (with 86.51% cloud cover). From 

2022, the dates of the omitted images were April 22nd (with 80.84% cloud cover) and September 

13th (with 75.96% cloud cover). The extensive cloudiness in these images resulted in the inability 

to derive LST or surface albedo measurements for most of the ROIs on these dates. 

 

 

  

Figure 2.3: Distribution of average day temperatures for 2018 and 2022 

 



 

29 

 

Figure 2.3 represents the distribution of average day temperatures for two different years, 

with blue representing 2018 and orange representing 2022. Both years have a similar median 

temperature, indicated by the line inside each box, which suggests that the central tendency of 

temperatures has remained relatively consistent from 2018 to 2022. The range of temperatures 

appears to be wider for 2022, suggesting there was greater variability in daily temperatures during 

that year. The interquartile range, which shows the middle 50% of the data, also seems wider for 

2022, further supporting the idea of greater variability in temperatures compared to 2018. The 

distribution for 2018 appears more symmetrical around the median, while 2022's distribution 

seems slightly skewed upwards, with the median closer to the bottom of the box. This suggests 

that more of the 2022 data is spread towards higher temperatures. The average day temperatures 

for these two years seem to be relatively comparable, with potentially less variability in 2018 

compared to 2022. 
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(a) 

 

(b) 

Figure 2.4: Comparison of 10 am air temperatures with the peak temperatures recorded each day 

for the years (a) 2018 and (b) 2022 (Source: Weather Underground) 
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Figure 2.4 presents a side-by-side analysis of air temperatures at 10 am and the maximum 

day temperatures for the years 2018 and 2022. It was observed that the temperatures at 10 am were 

consistently lower than the daily peaks for both years. On average, the temperature difference at 

these times was 5.83°C in 2018 and increased slightly to 6.23°C in 2022. This particular time of 

10 am was chosen for comparison as it aligns with the overpass time of the Landsat 8 satellite, 

which is approximately 10:00 am +/- 15 minutes (European Space Agency, 2022). As such, the 

satellite imagery, captured at local 10 am, offers a specific snapshot of surface conditions at that 

moment (Black et al., 2019). It's important to note that the highest LST values might occur later in 

the day, typically in the afternoon. 

Figure 2.5 represents the schematic workflow to calculate the LST for the study area. 

Figure 2.6 shows the visual representation of the methodology to calculate the LST.  
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Figure 2.5: Schematic of workflow to retrieve the LST from Landsat 8 Satellite images. 
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Figure 2.6: Steps involved to retrieve LST in GEE and ArcGIS Pro 
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For LST, the Landsat 8 Collection 2 Level 2 Tier 1 dataset was initially imported into the 

code editor, and a study area polygon was delineated. During the data initialization phase, first, 

optical and thermal scaling factors were defined, cloud shadow and cloud bit masks were then 

established, and finally various bands, features, and visual parameters were determined. The 

Landsat 8 image collection was narrowed down based on specific dates and the selected region. 

In the data pre-processing stage, first, the scaling factors were applied to the optical and 

thermal bands of the image employing the “applyScaleFactors” function to convert the raw digital 

numbers (DN) into reflectance and brightness temperatures, respectively. Secondly, the 'maskL8sr' 

function was utilized to exclude cloud-covered and shadowed pixels based on the pixel quality 

assessment (QA) band. Finally, the median values of the processed image were extracted. 

Subsequently, the data was visualized on the map and relevant calculations were 

performed. A true color composition of the imagery was rendered. Normalized Difference 

Vegetation Index (NDVI) of the study area was determined using the near-infrared (NIR) and red 

bands of the filtered image and displayed on the map. This process enabled the derivation of 

minimum and maximum NDVI values, from which vegetation fraction was computed. Using the 

fraction of vegetation, the emissivity was computed. Finally, with the emissivity and the thermal 

band 10, the LST was calculated for the study area. A visualization palette for LST was provided, 

and the LST layer was added to the map. The LST layer's coordinate system was subsequently 

reprojected from WSG 1984 to NAD 1983 UTM Zone 11 N to align with the coordinates of LVV. 

Finally, the images for each date were exported as a Tiff file. The cloud computations were done 

following the paper by Waleed and Sajjad (2022). 
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Following that, the subsequent phase involved defining the ROIs in ArcGIS Pro to examine 

temperature fluctuations within each ROI across the four-year period. As mentioned earlier, 26 

ROIs transitioned from natural to artificial turf between 2018 and 2022, and 26 ROIs did not go 

through any transition and served as a control group. For the purposes of this research, two separate 

ROI maps were created for two cases: transitioned ROIs and non-transitioned ROIs. Two to three 

complete pixels located within the boundaries of the football fields and other land types were 

selected as the ROIs (Figure 2.7). The selection of complete pixels is aimed at minimizing the 

influence of mixed pixels that contain multiple land classes. A ROI map was then created showing 

all the transitioned and non-transitioned ROIs (Figure 2.8). The LST layer exported from GEE was 

retrieved from Google Drive and displayed on the Arc map. The LST layer was clipped using the 

shape file of the study area. The shape file of the LVV was created in ArcGIS Pro utilizing the 

political boundary of the area. Finally, temperature data was collected from each ROI using the 

“Zonal Statistics as Table'' tool in ArcGIS Pro. This produced standalone tables with ROI-specific 

values for subsequent analyses. The gathered data was then compiled into a separate Excel sheet 

for further analysis.    
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                                    (a)                                                                    (b) 

Figure 2.7: Representation of selected ROIs for analysis. (a) Depicts two fully contained pixels 

within the confines of Desert Pines High School football field, identified as a transitioned ROI, 

with the left displaying a grayscale image and the right showcasing the true-color image. (b) 

Illustrates three fully contained pixels situated within the Las Vegas Golf Club grounds, identified 

as a non-transitioned ROI, where the left image is grayscale, and the right reveals the natural 

coloration. 
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Figure 2.8: Yellow dots represent the ROIs converted from natural grass to artificial turf between 

2018 and 2022 and green dots represent the ROIs that did not go through any conversion. 
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Surface Albedo:  

The Surface Albedo is a measure of reflectivity in all directions above the surface which 

integrates across the entire spectrum of the wavelengths that the surface is exposed to. Surface 

albedo maps were generated for 2018 and 2022 in GEE for all the months. Figure 2.9 shows the 

steps to calculate albedo values using GEE and ArcGIS pro.  
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Figure 2.9: Steps to retrieve Surface Albedo of selected ROIs in GEE and ArcGIS Pro 
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At first, the study area was defined using a polygon and the Landsat 8 data was imported. 

This study employed the USGS Landsat 8 Level 2, Collection 2, Tier 1 dataset, which contains 

atmospherically corrected surface reflectance and land surface temperature derived from the data 

produced by the Landsat 8 OLI/TIRS sensors. Out of the 17 bands in this image collection, this 

study focused on 5. (USGS Landsat 8 Level 2, Collection 2, Tier 1, n.d.) Table 2.3 provides details 

on the selected bands and their respective attributes.  

 In the next step, a Landsat image was used as an input using the “image” function. The 

image was then modified by applying new bands which involved applying mathematical 

transformation to adjust the values. Next step was to calculate the surface albedo of the study area 

using a formula that involves different bands. Coefficients used in the formula are weights assigned 

to each band to calculate albedo. Next, some filters were applied such as date and boundary to get 

images for the study area. The “albedo” function was applied to each image in the collection. The 

“maskLandsat” function was used to remove cloudy pixels from each image. Next step was to add 

the median albedo data as a layer on the map, with a specified range of albedo values (0 - 0.4).  

Next, the “bitwiseExtract” function was used to extract specific bits from a value which is 

used to interpret the "QA_Pixel" band to identify cloud free pixels. The typical range of albedo is 

0 to 1. More than 1 and less than 0 come due to the noise in the data and errors in the calculation. 

Therefore, constraints were applied to the data in the GEE script to ensure that all albedo values 

are within the physically meaningful range of 0-1. Reprojection of the coordinates from WGS 

1984 to NAD 1983 UTM Zone 11N was done. This was done to match the coordinate system of 

Las Vegas. Reprojected images were added to the map. Finally, the images were exported as a Tiff 
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file. The images were downloaded from Google Drive and were opened on ArcGIS pro for further 

analysis.  

In ArcGIS Pro, these images were retrieved from Google Drive and displayed on the Arc 

map. Two existing ROI maps, showing 26 ROIs where turf transitioned from natural to artificial 

between 2018 and 2022, and 26 ROIs which did not go through any alteration, were used in 

measuring the average surface albedo for each ROI using the "Zonal Statistics as Table" tool. This 

produced standalone tables with ROI-specific values for subsequent analyses. The data was 

gathered on an excel sheet for further analyses. The study's final step involved clipping the polygon 

using the area's shapefile. 

 

Table 2.3: USGS Landsat 8 Level 2, Collection 2, Tier 1 bands used in measuring the Surface 

Albedo 

Band 

Names 

Band Description Resolution 

(Meters) 

Wavelength 

(μm) 

SR_B2 Band 2 (Blue) Surface 

Reflectance 

30 0.452 - 

0.512 

SR_B4 Band 4 (Red) Surface 

Reflectance 

30 0.636 - 

0.673 

SR_B5 Band 5 (Near Infrared) Surface 

Reflectance 

30 0.851 - 

0.879 

SR_B6 Band 6 (Shortwave Infrared 1) 

Surface Reflectance 

30 1.566 - 

1.651 

SR_B7 Band 7 (Shortwave Infrared 2) 

Surface Reflectance 

30 2.107 - 

2.294 
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In this study, the codes for retrieving surface albedo values from the GEE were set up to 

work with any land cover class, as it did not include specific constraints that would limit it to a 

particular land class type. The formula used for calculating albedo was generic and can be applied 

to any land surface type. It was based on a weighted sum of reflectance from various spectral 

bands. While the code was generalized in terms of albedo calculation, the specific parameters, like 

the date range, area of interest (polygon), and reprojection CRS, imply that the code is tailored to 

a specific dataset or study area rather than a specific land class type.  

A comprehensive series of Paired T-Tests was conducted to assess the impact of 

transitioning from natural to artificial turf on both LST and Surface Albedo. The T-Tests were 

conducted for both transitioned and non-transitioned ROIs. In this research, paired sample T-Tests 

were utilized due to their relevance in comparing two sets of variables from identical subjects. 

Typically, this form of analysis is apt when the variables are differentiated by time. For the 

purposes of our investigation, this was particularly applicable as the measurements for LST, or 

surface albedo were recorded from the same geographical locations at two distinct time points. 

Table 2.4 gives an overview of four series of Paired T-Tests conducted for LST and Surface 

Albedo Analysis. The table summarizes the types of T-Tests applied, including annual, seasonal, 

and individual ROI assessments for both transitioned and non-transitioned ROIs, along with the 

count of tests conducted per category and the corresponding threshold P-values.  
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Table 2.4: Summary of the types of paired T-Tests applied, the count of tests conducted in both 

transitioned and non-transitioned categories and the corresponding threshold values. 

Paired T-

Tests 

Description No of pair of T-

Tests for 

Transitioned 

ROIs 

No of pair of T-

Tests for Non-

Transitioned 

ROIs 

P-Values 

Annual T-

Test 

All data from all ROIs 

for the entire year were 

combined 

1 1 0.05/26 = 0.002 

Individual 

ROI 

T-Tests were performed 

for each ROI taking all 

the data from the 

available dates 

26 26 0.05 for each 

ROI 

Seasonal 

T-Tests for 

each ROI 

The data were 

categorized into four 

seasons, Winter, 

Spring, Summer, and 

Fall and T-Tests were 

performed separately 

for each ROI and for 

each season 

26 * 4 = 104 26 * 4 = 104 0.05 for each 

ROI 

Combined 

Seasonal 

T-Tests 

All data from all ROIs 

were pooled for each 

season to conduct T-

Tests 

4 4 0.05/26 = 0.002 

for each season 

 

An alpha level of 0.05 was established as the threshold for statistical significance for the 

second and third series of T-Tests, indicating that any differences observed would need to be 

statistically significant to be considered meaningful. In the context of statistical significance, if the 

p-value is above a predefined threshold (commonly 0.05), it is generally interpreted that there is 

not enough statistical evidence to reject the null hypothesis. Thus, it would be concluded that the 

differences between the paired samples are not statistically significant.  
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Bonferroni adjustment was considered for the other two series of T-Tests by adjusting the 

alpha level to avoid multiple testing problems. The Bonferroni adjustment is a method to control 

Type I errors (false positives) when conducting multiple tests. It reduces the alpha level to account 

for the number of tests being performed which is done by dividing the original alpha level by the 

number of tests. Bonferroni Adjustment reduces the probability of obtaining a significant result by 

chance alone across all the tests.  

The null hypothesis (H0) of this study posits that there are no significant differences in 

LST/ Albedo resulting from the turf type change between the years 2018 and 2022. Conversely, 

the alternative hypothesis (H1) contends that there are significant differences in the LST/ Albedo 

between the years 2018 and 2022 attributable to the conversion from natural to artificial turf.  

R Studio was utilized to perform these statistical tests. In the R studio, each data set was 

first subjected to normality testing to determine if it follows a normal distribution. For data sets 

that do not pass the normality test, indicated by an alpha value of less than the actual alpha value, 

the Mann-Whitney U test was applied.  

2.5 Results and Discussions 

This study aims to discuss the following topics:  

1. The variation in LST of 26 selected ROIs that transitioned from natural to artificial turf 

between the years 2018 and 2022. 

2. The alterations in Surface Albedo values across the same 26 ROIs, consequent to the 

replacement of natural grass with artificial turf within the same timeframe. 
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3. A comparative analysis of LST and albedo modifications in the ROIs that underwent the 

transition from natural to artificial grass against those ROIs which retained their natural 

grass cover, thereby assessing the direct impacts of this land cover transition. 

2.5.1 Land Surface Temperature (LST)  

23 LST maps for 2018 and 22 LST maps for 2022 were generated using GEE platforms. 

Landsat 8 satellite was used to generate maps. The maps were then imported to ArcGIS pro, where 

they were clipped according to the shapefile of LVV. A ROI map showing 26 ROIs that have been 

switched from natural to artificial grass between 2018 and 2022, and 26 ROIs that did not go 

through any transition between the time, was used to measure the average LST values at these 

ROIs. The data were gathered on an excel sheet for further analysis. Two cases were made for the 

ease of the analysis: 

a. Case I: 2018 (NG) vs 2022 (AT), the ROIs transitioned from natural grass to artificial turf. 

b. Case II: 2018 (NG) vs 2022 (NG), the ROIs did not go through any alteration and maintained 

natural grass in both years.    

2.5.1.1 Comparison of the LST for each ROI across various dates within the years 2018 and 

2022 

a. Case I: 2018 (NG) vs 2022 (AT)  

For the ROIs that underwent a transition from natural to artificial turf between pre (2018) 

and post-conversion (2022), the data indicate a rise in LST during the months of June, July, and 

August across all such ROIs. During the remaining months, most of the transitioned ROIs did not 

exhibit a significant increase in LST.  
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b. Case II: 2018 (NG) vs 2022 (NG)  

Conversely, for the ROIs that did not undergo any transition, a noticeable increase in LST 

was observed only in a few ROIs during the summer months, while for the rest of the year, LST 

remained largely unchanged in 2022 compared to 2018.  

The distribution of LST Values for 26 transitioned and 26 non-transitioned ROIs are 

provided in Appendix A.1 and A.2, respectively. Blue boxes represent LST data for the year 2018, 

and orange boxes show LST data for the year 2022. Each box plot illustrates the variation in LST 

readings across multiple dates within the respective years. The Y-axis indicates the LST range in 

degrees Celsius.  

For transitioned ROIs, the post-conversion data (2022) exhibits increased variability, as 

suggested by the wider range of the box plots for that year. Except for one ROI (T26), median LST 

values for 2022 decreased across all ROIs. Non-transitioned ROIs reveal a similar trend of 

heightened variability in 2022 for the ROIs that did not undergo transition. The median LST for 

these ROIs decreased, with an average reduction of 6.1°C per ROI. In contrast, the average decline 

in median LST among the transitioned ROIs was 5.17°C. 

2.5.1.2 Comparison of the average LST for each ROI between 2018 and 2022 

 The average LST for each ROI was calculated for the years 2018 and 2022, and 

comparisons were drawn by subtracting the average LST of 2018 from that of 2022. Subsequently, 

scatter plots were generated to visualize the data where blue dots represent the average LST for 

each ROI in 2018, and red dots for 2022. 

a. Case I: 2018 (NG) vs 2022 (AT)  

The analysis revealed an increase in average LST for 7 ROIs, while a decrease was noted 

in the remaining ROIs. The most substantial rise in temperature was recorded at the football field 
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of Durango High School (T26), with an increase of 2.33°C. Figure 2.10 illustrates the LST 

differences for each transitioned ROI between 2018 and 2022.  

 

 

 

Figure 2.10: Average LST differences for each ROI between 2018 and 2022 for transitioned 

ROIs 

 

 

b. Case II: 2018 (NG) vs 2022 (NG) 

An increase in average LST was observed in only one ROI, specifically at Rhodes Ranch 

Golf Club (G7), by 0.72°C. Conversely, the average LST decreased in 2022 for the other ROIs. 

Figure 2.11 presents the LST differences for each ROI between 2018 and 2022.  
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Figure 2.11: Average LST differences for each ROI between 2018 and 2022 for non- 

transitioned ROIs 

 

 

Figure 2.12 shows a comparison of LST for football fields that transitioned from natural to 

artificial turf between 2018 and 2022. The box plots compare average LSTs from two different 

years, providing insight into whether the change in turf material had an impact on the surface 

temperature of the fields. From the box plots, it seems that there is a noticeable difference in 

average LSTs between the two years. Figure 2.13 presents a comparison of average LSTs for golf 

courses that have maintained natural grass surfaces between the same years. This comparison 

could serve as a control to understand the natural variability in LST over time without the influence 

of changing the surface material.  
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Figure 2.12: Distribution of the average LST for football fields that transitioned from natural to 

artificial turf, comparing data from 2018 (blue) and 2022 (orange) 
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Figure 2.13: Distribution of the average LST for Golf Courses that maintained the natural grass 

surfaces, comparing data from 2018 (blue) and 2022 (orange) 

 

 

In Figure 2.12, the median LST appears to be slightly lower in 2022 (orange) compared to 

2018 (blue), indicating a small decrease in the central tendency of the LST after the transition to 

artificial turf. The range of LST values, denoted by the whiskers, has a slight downward shift in 

2022. This suggests that the highest temperatures recorded in 2022 are lower than those recorded 

in 2018. The interquartile range (IQR), which is the height of the boxes, is narrower for the 2022 

data compared to the 2018 data. This suggests that the middle 50% of LST values in 2022 were 

closer together than in 2018, indicating less variability in LST in 2022. In summary, the transition 
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from natural to artificial turf seems to be associated with a slight decrease in the median LST and 

a decrease in temperature variability, as well as a reduction in extreme temperature values. 

In Figure 2.13, the average LST for the golf courses, which maintained their natural grass 

surfaces, has decreased from 2018 to 2022. This is indicated by the median value which has shifted 

downward in 2022 (orange) compared to 2018 (blue). The variability of LST, as represented by 

the range of the boxes and the whiskers, has also decreased from 2018 to 2022. This suggests a 

narrower range of temperature fluctuations in 2022. The upper extreme values and the maximum 

values have also decreased, showing that the highest temperatures recorded were lower in 2022 

compared to 2018. Overall, these observations could suggest a general cooling trend over the four 

years.   

The figures indicate that due to the general cooling trend in 2022, the LST reduced for both 

transitioned and non-transitioned ROIs. The average LST reduction might not be as pronounced 

for transitioned ROIs as non-transitioned ROIs due to the impact of turf transition. But other factors 

such as changes in irrigation practices, urban development, or microclimate variations could also 

affect the LST of these transitioned ROIs.    

2.5.1.3 Comparison of the annual average LST of all ROIs between 2018 and 2022 

 The average LST values of all ROIs were obtained for 2018 and 2022, and then were 

compared. The mean, median, and standard deviation values of each type of ROI for both years 

are provided in Table 2.5.  
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Table 2.5: Average LST values and standard deviation of all ROIs in 2018 and 2022 

 

Transitioned ROIs 

(Football Fields) 

 2018 Natural Grass 2022 Artificial Turf 

Average LST (°C) 38.857 37.975 

Median 39.459 38.008 

Standard Deviation 1.345 1.19 

Non-Transitioned 

ROIs (Golf Courses) 

 2018 Natural Grass 2022 Natural Grass 

Average LST (°C) 35.9 33.336 

Median 36.256 33.208 

Standard Deviation 1.629 1.484 

 

 

 

Contrary to the common findings in literature, there was no significant increase in average 

LST for the football fields in 2022 despite the transition to artificial turf. The data shows that the 

average LST for ROIs that transitioned from natural grass to artificial turf (football fields) was 

slightly cooler in 2022 compared to 2018. Similarly, non-transitioned areas (golf courses) also 

recorded a cooler average LST in 2022 than in 2018. This could suggest a general cooling trend in 

the climate between these years, which may have influenced the lower LST readings in 2022. The 

average LST difference was higher for the golf courses (2.546°C) than the football fields (0.882°C) 

(Figure 2.14). 
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The median LST values declined from 2018 to 2022 for both transitioned (football fields) 

and non-transitioned (golf courses) ROIs. The decrease was more pronounced in the non-

transitioned ROIs, where the median LST dropped by over 3°C.  

In comparing the LST values for the years 2018 and 2022, it was observed that the standard 

deviation, which indicates how spread out the numbers are, decreased for both transitioned and 

non-transitioned ROIs. This reduction in standard deviation indicates that the LST readings in 

2022 were more consistent and less spread out than in 2018. This could suggest that the variability 

in temperature conditions at each ROI became more uniform over the study period, regardless of 

the transition from natural to artificial surfaces. 

 

 

 

Figure 2.14: Comparative analysis of average LST for Transitioned and Non-Transitioned ROIs 

between 2018 and 2022 
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Figure 2.14 shows the comparative analysis of the average LST for transitioned (Football 

Fields) and non-transitioned ROIs (Golf Courses) between 2018 and 2022. The blue bars indicate 

the average LST for the year 2018, while the red bars show the average for 2022, facilitating a 

direct comparison of temperature changes over the four-year span for each land class. It shows that 

even though both football fields and golf courses had natural grass in 2018, the average LST of 

the football fields is much higher than the average LST of the golf courses. In 2018, the average 

LST of the football fields has been found to be 38.857°C and the average LST of golf courses has 

been found to be 35.9°C. This 2.957°C discrepancy between the average LST of two different 

types of land classes, despite all the ROIs being natural grass sites in 2018 can be due to the 

following reasons:  

1. Different types of grasses have different thermal properties. Golf courses are typically 

made of cool season grasses which have higher evapotranspiration rate (3 to 8 millimeters 

per day) (Huang, 2008). This can affect the surface temperature due to the cooling effect 

through evapotranspiration. 

2. Football fields and golf courses may have different lengths of grass. Longer grasses have 

increased growth rate, contain higher amounts of chlorophyll and consume greater amounts 

of water as indicated by Biran et al. (1981) which may contribute to an increased rate of 

evapotranspiration.  

3. The amount and frequency of watering the grass can affect surface temperature. More 

frequent watering can lower the temperature due to increased evaporation. 

4. The level of activity in the fields can impact surface temperature. School football fields 

may experience more compaction due to regular use, which can reduce the ability of soil 

to retain moisture, leading to decreased evapotranspiration rate. 

https://extension.umn.edu/soil-management-and-health/soil-compaction#:~:text=A%20compacted%20soil%20has%20a,likelihood%20of%20aeration%2Drelated%20problems.
https://extension.umn.edu/soil-management-and-health/soil-compaction#:~:text=A%20compacted%20soil%20has%20a,likelihood%20of%20aeration%2Drelated%20problems.
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5. Intense activity can damage the grass, reducing its overall health and vigor. Damaged or 

stressed grass may have a reduced transpiration rate which can result in increased surface 

temperature. 

6. The local environment, including the amount of shade, wind patterns, and proximity to 

buildings or other structures, can influence the temperature. Golf courses typically have 

varied landscapes having more trees, natural shade, or water bodies nearby, which can 

contribute to the cooler surface temperatures.  

2.5.1.4 Comparison of the seasonal variabilities  

 

LST data for each ROI were categorized and averaged by season—winter, spring, summer, 

and fall—and subsequently compared between the years 2018 and 2022 for both cases. Box plots 

were made to show the distribution of the average seasonal LST values at each transitioned and 

non-transitioned ROI across all seasons (Figure 2.15 and 2.16). The LST values from 2018 were 

subtracted from those of 2022 to determine the changes. Seasonal LST variation maps were 

generated for each ROI, illustrating the differences for both cases (Figure 2.17 and 2.18).  

a. Case I: 2018 (NG) vs 2022 (AT)  

For the ROIs that transitioned from natural grass to artificial turf, a significant increase in 

LST was observed during the summer season across all ROIs. The most substantial rise was 8.96°C 

at the football field of Las Vegas High School (T3). During the other seasons, only two ROIs in 

the winter season exhibited an LST increase of less than 1°C (T3 and T7). Figure 2.15 illustrates 

the average LST values for each season across the studied ROIs, which transitioned from natural 

grass to artificial turf between 2018 and 2022. 
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b. Case II: 2018 (NG) vs 2022 (NG) 

For the ROIs that retained natural grass, the LST during the summer season of 2022 

increased for 17 ROIs, while a decrease was noted for the remaining ROIs. The greatest increase 

recorded was 5.86°C at Paradise Park (G13). In the other seasons, LST increase was observed at 

only one ROI during the winter season. Figure 2.16 shows the average seasonal LST values for 

each non-transitioned ROIs, which maintained natural grass surfaces between 2018 and 2022. 

 

 

 

Figure 2.15: Distribution of the average seasonal LST values at each transitioned ROI switched 

from Natural grass to Artificial turf between 2018 and 2022. 
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Figure 2.16: Distribution of the average seasonal LST values at each non-transitioned ROI that 

maintained only natural grass between 2018 and 2022. 

 

 

From Figures 2.15 and 2.16, a clear seasonal variation in LST can be found for both 

observed years. The figures show a consistency in the LST patterns indicating that seasonal factors 

affecting LST are consistent over the years. In Figure 2.15, the transition from natural grass to 

artificial turf seems to notably affect LST only in the summer, with other seasons not showing 

significant LST increases. Conversely, Figure 2.16 presents higher LST readings for most non-

transitioned ROIs during winter, spring, and fall, with varied results for the summer of 2022 

compared to 2018. Some variability in LST was found at each season for both years indicated by 

the spread of the dots may be due to the locations of the ROIs, type of turf materials and local 

weather conditions. The transitioned ROIs exhibit a larger temperature disparity in the summer 
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compared to the non-transitioned ROIs, with the smallest temperature differences observed in 

winter for both scenarios.  

 

 

Table 2.6: The median values in LST noted in different seasons for both transitioned and non-

transitioned ROIs and the differences in the median values between 2018 and 2022. 

Transitioned ROIs Non-Transitioned ROIs 

Seasons LST (°C) 2022 - 2018 Seasons LST (°C) 2022 - 2018 

Winter-18 20.79 

-2.38 

Winter-18 19.23 
-2.85 

Winter-22 18.41 Winter-22 16.36 

Spring-18 42.83 

-5.62 

Spring-18 37.99 
-5.18 

Spring-22 37.21 Spring-22 32.81 

Summer-18 53.52 

4.19 

Summer-18 49.13 
0.97 

Summer-22 57.71 Summer-22 50.09 

Fall-18 37.08 

-4.04 

Fall-18 34.34 

-5.16 
Fall-22 33.05 Fall-22 29.19 

 

 

Table 2.6 shows the median LST values for transitioned and non-transitioned ROIs during 

various seasons of 2018 and 2022, and the corresponding differences. Positive differences indicate 

an increase in median LST, while negative values denote a decrease. 

 There are observable changes in the median LST values from 2018 to 2022 for both 

transitioned and non-transitioned ROIs across all seasons. LST values vary with seasons, with 

higher temperatures in the summer months and lower temperatures during the other months. For 
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transitioned ROIs, the LST values in 2022 have generally increased during the summer and 

decreased during winter, spring, and fall when compared to 2018. For non-transitioned ROIs, there 

was a similar pattern of decrease in winter, spring, and fall, but the change in summer is minimal. 

Transitioned ROIs show a notable increase in summer temperatures from 2018 to 2022, whereas 

there was a slight increase in LST during summer in non-transitioned ROIs. The transitioning from 

natural to artificial turf may have influenced the LST values, potentially leading to higher LST in 

transitioned areas compared to non-transitioned ones, particularly during the summer. 
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Figure 2.17: Seasonal LST changes for the transitioned ROIs 
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Figure 2.18: Seasonal LST changes for the non-transitioned ROIs 
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2.5.1.5 T-Tests 

The T-Test is utilized in statistics to determine if there are significant differences between 

two distinct groups. These tests were carried out using R-Studio. For every pair of data, normality 

checks were conducted. If the data did not meet the normality criteria, Mann-Whitney U Tests 

were applied. Table 2.4 provides an outline of the paired T-Test varieties executed, the number of 

tests for transitioned and non-transitioned ROIs, and their respective threshold values. The 

resulting p-values for each paired T-Test executed in this investigation are presented in Tables 2.7, 

2.8, 2.9, and 2.10. 

 

 

Table 2.7: P-Values for the annual Paired T-Tests considering all LST values from all ROIs 

(Threshold P-Value = 0.002) 

Transitioned ROIs Non-Transitioned ROIs 

1.169e-05* < 2.2e-16* 
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Table 2.8: P-Values for the Paired T-Tests at individual ROI performed by taking all the data from 

the available dates (Threshold P-Value = 0.05) 

Land Surface Temperature 

Transitioned ROIs Non-Transitioned ROIs 

ROIs P Values ROIs P Values ROIs P Values ROIs P Values 

T1 0.62 T14 0.16 G1 0.0006* G14 0.32 

T2 0.41 T15 0.10 G2 0.06 G15 0.04* 

T3 0.6 T16 0.14 G3 0.17 G16 0.28 

T4 0.11 T17 0.2 G4 0.11 G17 0.01* 

T5 0.14 T18 0.06 G5 0.0002* G18 0.049* 

T6 0.12 T19 0.35 G6 0.002* G19 0.017* 

T7 0.60 T20 0.27 G7 0.78 G20 0.01* 

T8 0.18 T21 0.22 G8 0.03* G21 0.01* 

T9 0.96 T22 0.83 G9 0.24 G22 0.01* 

T10 0.35 T23 0.046* G10 0.006* G23 0.04* 

T11 0.54 T24 0.63 G11 0.11 G24 0.31 

T12 0.64 T25 0.20 G12 0.001* G25 0.1 

T13 0.32 T26 0.51 G13 0.15 G26 0.23 
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Table 2.9: P-Values for the seasonal Paired T-Tests performed separately for each ROI and for 

each season (Threshold P-Value = 0.05) 

 Transitioned ROIs  Non-Transitioned ROIs 

ROIs Winter Spring Summer Fall ROIs Winter Spring Summer Fall 

T1 0.64 0.03* 0.0005* 0.56 G1 0.04 0.0097* 0.73 0.06 

T2 0.25 0.10 0.08 0.58 G2 0.26 0.0187* 0.31 0.35 

T3 0.56 0.05 0.02* 0.29 G3 0.27 0.10 0.19 0.17 

T4 0.07 0.01* 0.008* 0.10 G4 0.17 0.08 0.63 0.17 

T5 0.38 0.03* 0.63 0.16 G5 0.008* 0.008* 0.32 0.09 

T6 0.17 0.14 0.50 0.09 G6 0.03* 0.01* 0.81 0.12 

T7 0.40 0.06 0.06 0.50 G7 0.29 0.04* 0.05 0.58 

T8 0.30 0.03* 0.12 0.40 G8 0.21 0.02* 0.07 0.04* 

T9 0.49 0.20 0.02* 0.38 G9 0.009* 0.02* 0.33 0.06 

T10 0.40 0.25 0.02* 0.37 G10 0.02* 0.008* 0.23 0.07 

T11 0.56 0.047* 0.0004* 0.16 G11 0.10 0.01* 0.11 0.04* 

T12 0.17 0.07 0.04* 0.26 G12 0.08 0.02* 0.27 0.03* 

T13 0.37 0.10 0.53 0.56 G13 0.30 0.03* 0.12 0.05 

T14 0.12 0.13 0.003* 0.48 G14 0.37 0.03* 0.17 0.11 

T15 0.02* 0.041* 0.20 0.06 G15 0.04* 0.01* 0.77 0.36 

T16 0.005* 0.06 0.009* 0.37 G16 0.04* 0.01* 0.24 0.25 

T17 0.46 0.03* 0.009* 0.12 G17 0.032* 0.03* 0.87 0.07 

T18 0.03* 0.02* 0.84 0.47 G18 0.002* 0.03* 0.63 0.22 

T19 0.40 0.19 0.016* 0.13 G19 0.30 0.07 0.65 0.008* 

T20 0.09 0.04* 0.29 0.27 G20 0.009* 0.08 0.73 0.38 

T21 0.36 0.02* 0.01* 0.08 G21 0.02* 0.11 0.81 0.27 

T22 0.04* 0.13 0.06 0.40 G22 0.04* 0.09 0.63 0.32 

T23 0.10 0.13 0.03* 0.26 G23 0.05* 0.03* 0.18 0.30 

T24 0.91 0.11 0.18 0.51 G24 0.90 0.07 0.09 0.13 

T25 0.31 0.002* 0.002* 0.22 G25 0.98 0.03* 0.73 0.16 

T26 0.28 0.25 0.08 0.09 G26 0.38 0.12 0.09 0.04* 
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Table 2.10: P-Values for Combined seasonal Paired T-Tests performed by taking all data from all 

ROIs for each season (Threshold P-Value = 0.002) 

Transitioned ROIs Non-Transitioned ROIs 

Winter Spring Summer Fall Winter Spring Summer Fall 

0.000781

1* 

9.518e-

12* 

6.134e-

16* 

< 2.2e-

16* 

1.128e-

07* 

< 2.2e-

16* 

1.44e-06* < 2.2e-

16* 

 

 

The first series of paired T-Test, which aggregated all data from all 26 ROIs throughout 

the entire year, indicated notable differences in LST for both categories of ROIs, with p-values 

falling beneath the 0.002 significance level.  

In the second series of T-Tests, which analyzed each ROI individually considering all LST 

data across all available dates, only one transitioned ROI had notable LST differences. However, 

14 non-transitioned ROIs exhibited significant LST differences, with p-values dipping below the 

0.05 mark. The marked variations in LST for certain non-transitioned ROIs, despite consistent turf 

types, could be attributed to inherent weather pattern changes over the years. Factors such as 

temperature shifts, precipitation variances, and cloudiness between 2018 and 2022 might have 

influenced the LST of these areas. Moreover, fluctuations in soil moisture over time could also 

contribute to the LST changes. 

The third series of paired T-Tests, categorized by the four seasons and conducted for each 

ROI within each season, showed that only a few transitioned and non-transitioned ROIs at each 

season experienced a significant LST variation between the years 2018 and 2022, with p-values 

smaller than 0.05. These results suggest that while there were observable temperature increases 
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during summer in the transitioned ROIs, they were not statistically significant across the ROIs 

outside of this season. 

Lastly, the combined seasonal T-Tests, which pooled data across all 26 ROIs for each 

individual season, found significant LST variances for both transitioned and non-transitioned 

ROIs, as reflected by p-values below 0.002. 

According to the first and fourth series of T-Tests, the alternative hypothesis can not be 

rejected for the transitioned ROIs since significant differences between the pre (2018) and post 

(2022) conversion were found. These results indicated that the turf conversion has affected LST 

in these specific areas. 

According to the second and third series of T-Tests, the null hypothesis cannot be rejected 

for the transitioned ROIs, as most of the ROIs did not show any significant differences. These 

results suggest that the transition from natural to artificial surfaces in these ROIs did not markedly 

impact LST for transitioned areas. 

Moran's I is an index used to determine the degree of spatial correlation which assesses the 

similarity of observations based on the locations at which they were recorded. Moran's I tests were 

conducted in ArcGIS Pro to determine if there were any spatial correlations in the LST values for 

the transitioned ROIs in 2018 and 2022. Table 2.11 presents the conceptualization of spatial 

relationships, standardization options, the number of neighbors used, Moran's I index values, 

corresponding P-values, and the resulting pattern classification (Clustered or Random) for each 

spatial autocorrelation test scenario. Comprehensive reports were generated for each case through 

ArcGIS Pro and have been added to the appendix (Appendix A.5, A.6, A.7, and A.8).  

 

 



 

67 

 

 

Table 2.11: Summary of Spatial Autocorrelation Tests using the LST values of 2018 and 2022. 

 
Conceptualization 

of spatial 

relationship 

Standardization Number of 

Neighbors 

Moran’s 

Index 

P-Value Outcome 

LST_18 Inverse Distance Row 
 

0.4247 0.00116 Clustered 

LST_18 K Nearest 

Neighbors 

Row 8 0.2262 0.000390 Clustered 

LST_22 Inverse Distance Row 
 

0.0514 0.511432 Random 

LST_22 K Nearest 

Neighbors 

Row 8 0.01322 0.466378 Random 

 

  

 

The table compares two methods of conceptualizing spatial relationships, "Inverse 

Distance" and "K Nearest Neighbors". These methods are used to define the weight of influence 

one observation has on another based on their spatial proximity. For both years, the spatial 

relationships are standardized using the "Row" option. Standardization can affect the interpretation 

of spatial relationships by adjusting weights according to some criteria. Moran’s I index is a 

measure of spatial autocorrelation. Positive values close to 1 indicate a clustered pattern (similar 

values are close together), while values close to 0 indicate a random pattern (no discernible 

pattern). For LST_18, both tests show significant positive Moran's I value (ranging from 0.2262 

to 0.4247), suggesting a clustered pattern of LST. For LST_22, the Moran's I values are low 

(0.0514 and 0.01322), indicating that the pattern of LST is more random or dispersed. The P-value 

tests the hypothesis that the observed spatial pattern is generated by a random process. A low P-

value (typically <0.05) indicates that the observed spatial pattern is statistically significantly 

different from random. For LST_18, both tests yield P-values much lower than 0.05, which means 
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the clustered patterns are statistically significant. For LST_22, the high P-values suggest that the 

observed pattern cannot be distinguished from random; thus, the hypothesis of random distribution 

cannot be rejected. 

 Based on Moran's I Index and p-values, LST_18 shows a statistically significant clustered 

pattern regardless of the method of conceptualization of spatial relationships or standardization. In 

contrast, LST_22 shows a random pattern, indicating that the temperatures are randomly 

distributed in space, or at least, the analysis cannot detect a significant pattern. This information 

could be used to understand changes in the spatial distribution of temperatures over time.  

 In the comparative analysis of all the ROIs between the two years studied, it was found 

that the conversion to artificial turf was associated with higher surface temperatures during warmer 

months. Conversely, a decrease in the LST was observed during the cooler months. This aligns 

with research that artificial turf can become much hotter than natural grass under intense sunlight 

and high temperatures (Jim, 2016). Among the transitioned ROIs, an increase in average LST was 

recorded in only seven ROIs, while a decrease was noted in the rest. Seasonally, the summer 

months exhibited a notable surge in LST across all ROIs. In contrast, no other ROI showed any 

increase in LST during any other seasons except two ROIs which experienced a marginal LST rise 

of less than 1°C during winter. Two types of T-Tests showed significant changes in LST between 

2018 and 2022 where combined data were considered. Other two types of T-Tests results did not 

reflect significant changes in any ROI. 

The components used for infill in artificial turf have low albedo and lower specific heat 

which induces heat absorption and retention (Liu & Jim, 2021). Additionally, artificial turf exhibits 

lower volumetric heat capacity (Carvalho et al., 2021) and lower water retaining capacity causing 

them to heat up more quickly (Liu & Jim, 2021). The hydrophobic nature (Jim, 2016) of artificial 
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turf materials, along with their limited ability to hold water (Liu & Jim, 2021), prevents them from 

evaporating moisture. These thermal properties can cause a significant rise in both the surface and 

the ambient air temperatures near the ground (Liu & Jim, 2021), leading to adverse environmental 

impacts. This is considered as one of the major disadvantages of using artificial turf. 

As shown in Figure 2.4, the average discrepancy between the 10 am temperatures and the 

daily peaks for specific dates rose marginally from 5.83°C in 2018 to 6.23°C in 2022. The LST 

readings taken at 10 am are likely a few degrees Celsius below the true peak LST, which could be 

captured during the hottest part of the day. To obtain the actual peak LST, an on-site infrared 

radiometer can be employed, rather than relying on satellite-based remote sensing data. 

Kanaan et al. (2020) and McNitt et al. (2008) explored strategies for lowering the 

temperature of artificial turf surfaces. Kanaan et al. (2020) developed a mathematical model to 

determine the necessary water volume to keep artificial turf temperatures comparable with those 

of natural grass. The study took place from August 2017 through June 2018 at a baseball field 

located at New Mexico State University in Las Cruces, New Mexico. Their research indicated that 

cooling a 100 m2 artificial turf field with a density of 12.59 kg/m2 from 60°C to 30°C requires 

430,000 liters of 25°C water. They inferred that the choice of artificial turf over natural Bermuda 

grass in dry climates for saving water is a complex decision. McNitt et al. (2008) investigated 

different techniques to cool synthetic turf, including various watering and covering strategies, or 

using infill mixed with calcined clay to boost moisture retention. They found that irrigation had 

the most prolonged cooling effect on synthetic turf surfaces. 

Duble (1993) discussed about natural grass irrigation and suggested that irrigation 

schedules ought to be determined by factors such as the total evapotranspiration loss, the capacity 
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of the soil to hold moisture, the depth to which roots effectively grow, the rate at which water 

penetrates the soil, and the specific variety of turfgrass for natural turfgrass water use to be most 

efficient. Intense upkeep of areas like sports fields and golf course fairways in the southern states 

requires irrigation compensates for about half of the turf's water requirements, as natural rainfall 

is insufficient. Consequently, to maintain warm season turfgrasses, it's necessary to apply 20 to 30 

inches of water annually in the South, and 40 to 50 inches in the West. These amounts translate to 

roughly 0.5 to 1.5 million gallons per acre, or 12 to 36 thousand gallons for every 1,000 square 

feet of turf, signifying a substantial financial cost due to the volume of water utilized (Duble, 

1993).  The study was done in Texas. 

To compare the water requirements of cooling artificial turf versus maintaining natural 

grass according to Kannan et al. (2020) and Duble (1993) studies, specific contexts need to be 

considered in which water is being used for each. 

For artificial turf, Kannan et al. (2020) found that to cool a 100 m2 Artificial turf field with 

a density of 12.59 kg/m2 from 60°C down to 30°C, it takes 430,000 liters (113593.983 gallons) of 

water at a temperature of 25°C. This is a large amount of water required for a significant cooling 

effect, reflecting a single intensive cooling event. 

In contrast, for natural grass, the water usage is spread throughout the year to maintain the 

turf. In the South, warm season turfgrasses require 20 to 30 inches of water per year, and in the 

West, they require 40 to 50 inches. These figures amount to approximately 0.5 to 1.5 million 

gallons per acre annually, or 12 to 36 thousand gallons for every 1,000 square feet (93 m²). This 

water use is for regular maintenance and sustenance of the grass, rather than for cooling. 
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This suggests that the immediate water requirement for cooling artificial turf is similar to 

the annual water requirement for sustaining a slightly smaller area of natural grass, underlining the 

high immediate water demand for cooling artificial turf surfaces. However, it's important to note 

that the artificial turf may not require such intense cooling on a regular basis, whereas natural grass 

needs consistent watering throughout the growing season to remain healthy. 

2.5.2 Surface Albedo 

According to the literature review, artificial turf absorbs most of the solar radiation (Jim, 

2017; Carvalho et al., 2021) due to having lower surface albedo (Yaghoobian et al., 2010; Carvalho 

et al., 2021; Jim, 2017) which is directly associated with the surface temperature. The lower surface 

albedo of the artificial turf leads to significant heat absorption and retention, due to the heat-

absorbing characteristics of different artificial turf materials, such as plastic fibers and rubber infill 

materials (Jim, 2016). Artificial turf surfaces radiate thermal radiation after absorbing the solar 

radiation which increases the ambient temperature (Jim, 2017).  

To measure the impact of artificial turf on the surface albedo, 45 surface albedo maps were 

generated for 2018 and 2022 using the GEE platform. Landsat 8 satellite was used to generate 

maps. The maps were then imported to ArcGIS pro, where they were clipped according to the 

shapefile of LVV. A ROI map showing 26 ROIs that have been switched from natural to artificial 

grass between 2018 and 2022, and 26 ROIs that did not go through any transition between the time 

period, was used to measure the average albedo values at these ROIs. The data were gathered in 

an excel sheet for further analysis.  

Areas with lower albedo values such as closer to 0 are darker on the map, indicating that 

they reflect a smaller portion of the incoming sunlight. These areas are covered with darker 
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surfaces such as water bodies or dense forests. Areas with higher albedo values such as closer to 

0.4 are lighter on the map, indicating that they reflect a higher portion of the incoming sunlight. 

These areas are covered with lighter surfaces, such as snow, ice, or urban areas with many 

buildings. 

2.5.2.1 Comparison of the surface albedo for each ROI across various dates within the 

years 2018 and 2022 

a. Case I: 2018 (NG) vs 2022 (AT)  

Between 2018 and 2022, selected ROIs within high school football fields have undergone 

a shift from natural grass to artificial turf. In 2018, when the ROIs featured natural grass, albedo 

measurements fluctuated between 0.032 and 0.219. Conversely, in 2022, following the transition 

to artificial turf, the range is between 0.007 and 0.143. 

b. Case II: 2018 (NG) vs 2022 (NG)  

The ROIs that have remained unchanged are predominantly golf courses. Albedo 

measurements in 2018 varied between 0.045 and 0.198, whereas in 2022, they spanned from 0.024 

to 0.242. The pattern of albedo values over the two years exhibited some consistency, with certain 

values rising in 2022 and others decreasing.  

The distribution of albedo values for 26 transitioned and non-transitioned ROIs are 

provided in Appendix A.3 and Appendix A.4, respectively. Blue boxes represent the albedo values 

for the year 2018, and orange boxes show albedo values for the year 2022. Each box plot illustrates 

the variation in albedo readings across multiple dates within the respective years. The Y-axis 

indicates the Albedo range.  
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After the turf conversion (2022), the albedo measurements for all the transitioned ROIs, as 

depicted in Appendix A.3, were reduced compared to those in 2018, with the newer data also 

exhibiting less fluctuation. Conversely, Appendix A.4 presented a varied set of outcomes. 

2.5.2.2 Comparison of the average surface albedo for each ROI between 2018 and 2022  

The average surface albedo values for each ROI were calculated for the years 2018 and 

2022, and comparisons were drawn by subtracting the average albedo of 2018 from that of 2022. 

Subsequently, scatter plots were generated to visualize the data where blue dots represent the 

average albedo for each ROI in 2018, and red dots for 2022. 

a. Case I: 2018 (NG) vs 2022 (AT)  

Figure 2.19 shows the average albedo at each ROI for the transitioned ROIs. The plot 

clearly shows that the albedo values in 2022 at all the ROIs are lower than the albedo at 2018. The 

value ranged from -0.024 to -0.076.  

b. Case II: 2018 (NG) vs 2022 (NG) 

Figure 2.20 shows the average albedo at each ROI for the non-transitioned ROIs. The plot 

shows that the albedo values in 2022 decreased at 8 ROIs and increased in the rest of the ROIs. 

The value ranged from 0.026 to -0.0008.    
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Figure 2.19: Average albedo differences at each transitioned ROI between 2018 and 2022 
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Figure 2.20: Average albedo differences at each non-transitioned ROI between 2018 and 2022 
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Figure 2.21: Distribution of the average albedo for Football fields (Transitioned ROIs) and Golf 

Courses (Non-transitioned ROIs), comparing data from 2018 and 2022. 

 

 

 Figure 2.21 presents a comparison of the average surface albedo values for football fields 

and golf courses. It highlights the change in median albedo values for football fields between 2018 

and 2022, reflecting the effects of shifting from natural to artificial turf with a noticeable median 

decrease of 0.049 in albedo post-conversion. In contrast, the median albedo values for golf courses 

over the same period show a minimal difference of 0.009, suggesting that the preservation of 

natural grass surfaces has little to no significant impact on albedo values over time.   
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2.5.2.3 Comparison of the annual average albedo values of all ROIs between 2018 and 2022 

 The annual average albedo values of all ROIs were obtained for 2018 and 2022, and then 

were compared. The mean values of each type of ROI for both years are provided in Table 2.12. 

 

  

Table 2.12: Average albedo values of all ROIs for 2018 and 2022 

Transitioned ROIs 

(Football Fields) 

 2018 Natural Grass 2022 Artificial Turf 

Average Albedo 0.134 0.085 

Median 0.137 0.081 

Non-Transitioned 

ROIs (Golf Courses) 

 2018 Natural Grass 2022 Natural Grass 

Average Albedo 0.098 0.107 

Median 0.095 0.106 

 

 

In 2018, the average albedo value for the football fields was 0.134 when it had natural grass 

surfaces, while in 2022, it was 0.085 for the artificial turf surfaces. This average albedo value for 

the artificial turf ROIs closely aligns with the findings of C.Y. Jim in his 2016 study, where he 

reported an average albedo value of 0.073 from an artificial turf field. Additionally, for the non-

transitioned ROIs, the average albedo values for natural grass were 0.098 in 2018 and slightly 

higher at 0.107 in 2022 which indicates that maintaining natural grass did not significantly change 

the albedo over time. The average albedo decreased by 0.049 for the transitioned ROIs and 

increased by 0.009 for the non-transitioned ROIs in 2022.  
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Even though they are composed of the same natural grass surfaces, the golf courses showed 

less seasonal fluctuation in albedo compared to the football fields during the year 2018. 1n 2018, 

the average albedo for the football fields and the golf courses were 0.134 and 0.098 respectively. 

Despite having the same type of surfaces, golf courses had 0.036 lower albedo than the football 

fields. The discrepancy between the albedo values of the football fields and the golf courses, 

despite having the same turf type in 2018, can be attributed to the following reasons:   

1. Different land types may have different species of grass having various surface 

characteristics such as different leaf sizes, shapes, colors and textures that, in turn, 

can affect albedo.   

2. The density of the grass can influence the albedo. Denser grass has decreased 

surface albedo (Tian et al, 2014). Denser grass might retain more moisture content 

contributing to lower albedo.  

3. Since dry soil has more albedo values than wet soil (Ponce et al., 1997), if the 

football fields have dryer soil conditions than the golf courses, it can contribute to 

the higher albedo values for the football fields.   

4. Different maintenance methods, such as mowing, watering or fertilizations, can 

influence the surface characteristics of the grass, thereby affecting their reflective 

properties.  

5. The presence of tall trees in the golf courses can cast shadows, reducing the amount 

of sunlight that reaches the grass, and can contribute to the lower albedo values for 

the golf courses.  
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6. Usage patterns of the surfaces can influence the albedo values. Golf courses are not 

used at the same level as football fields, potentially resulting in less seasonal 

damage to the grass.     

2.5.2.4 Comparison of the seasonal variabilities 

 Albedo values for each ROI were categorized and averaged by season—winter, spring, 

summer, and fall—and subsequently compared between the years 2018 and 2022 for both cases. 

Box plots were made to show the distribution of the average seasonal LST values at each 

transitioned and non-transitioned ROI across all seasons (Figure 2.22). The albedo values from 

2018 were subtracted from those of 2022 to determine the seasonal changes. Seasonal albedo 

variation maps were generated for each ROI, illustrating the differences for both cases (Figure 

2.23 and 2.24).  

a. Case I: 2018 (NG) vs 2022 (AT)  

For the ROIs that underwent a change from natural grass to artificial turf, a slight increase 

in albedo values was observed during the summer season for only two ROIs. Conversely, the 

albedo values decreased for each ROI during the rest of the year. Figure 2.22(a) showcases the 

changes in surface albedos for these transitioned ROIs across the different seasons, highlighting 

the environmental impact of altering the surface materials. 

b. Case II: 2018 (NG) vs 2022 (NG) 

The ROIs that maintained their natural grass surfaces displayed varying albedo results 

seasonally. In winter, albedo values decreased for four ROIs and rose for the remainder. In spring, 

six ROIs showed a decrease, while the others showed an increase. The trend continued into 

summer, with thirteen ROIs experiencing a decrease, and in fall, eighteen out of twenty-six ROIs 

had lower albedo values. This suggests a seasonal pattern with a general decrease in surface albedo 
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from winter to fall. Notably, Craig Ranch Regional Park (G17) and Painted Desert Golf Club 

(G20), both situated in northern Las Vegas, saw albedo reductions in all seasons. These changes 

are detailed in Figure 2.22(b), which presents seasonal albedo shifts for the non-transitioned ROIs.  

ROIs that underwent a transition exhibited persistently reduced albedo levels throughout 

all seasons in 2022, with the most significant differences occurring during the winter. In contrast, 

ROIs that did not transition displayed fluctuating albedo measurements across all seasons. Some 

variability in albedo was found for both transitioned and non-transitioned ROIs that could be 

attributed to factors such as their specific geographic locations, the local weather patterns, and 

other environmental conditions.  
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(a) 

 

(b) 

Figure 2.22: (a) Average seasonal albedo values for Transitioned ROIs; (b) Average seasonal 

albedo values for non-transitioned ROIs 
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There was a noticeable reduction in albedo values across most ROIs in 2022, with the 

readings displaying uniformity across the seasons. Several variables have been identified by Ponce 

et al. (1997) as key determinants of surface albedo, which include: (1) the solar elevation or zenith 

angle at different times of the day; (2) the seasonality of the year; (3) the landscape's topography; 

(4) the type and density of vegetation; (5) the roughness and the texture of the surface; (6) the 

composition and color of the soil and rocks; (7) the level of moisture present in the soil; and (8) 

the presence of snow which generally has a high albedo. Human activities are noted to have the 

potential to modify factors such as vegetative cover, surface roughness, and soil moisture.  

The artificial turf, composed of synthetic fibers, lacks the natural capacity for seasonal 

adaptation, remaining unaffected by diverse weather conditions such as rain, growth, or trimming, 

which typically influence natural grass, leading to consistent albedo readings for artificial turf 

surfaces. The differing maintenance requirements between the two surface types also contribute to 

the variation in albedo. The application of various fertilizers, pesticides, and chemicals can affect 

the color and density of both types of turfs, thereby influencing the albedos differently. As for 

artificial turf, the infill materials used can vary in color and size, which directly impacts the albedo. 

When these infill materials are replenished, it can lead to a shift in the reflective properties of the 

artificial surfaces. Research by Myers and Allen (1968) established that an increase in the particle's 

diameter typically leads to a reduction in reflectance.  

On the other hand, the albedo values in 2018 exhibited distinct seasonal trends, with higher 

reflectivity in the winter and reduced albedo during the summer months. This seasonal behavior is 

attributed to the natural cycle of grass, which becomes dormant and less green during winter, and 

can be covered by snow which can increase their reflectivity. While in the summer season, as the 

vegetation absorbs more sunlight for photosynthesis, grasses are healthier and greener which 
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results in a lower albedo value. According to Way et al. (2017), photosynthetic capacity of 

vegetation increases in the early summer with peak in mid-summer and then declines over the late 

summer and autumn. Also, the moisture content can vary greatly during different seasons affecting 

the albedo values. Vegetation needs more water during summer months than winter months. Wet 

soils tend to have lower albedo than dry soils due to the absorption characteristics of water (Ponce 

et al., 1997). Dickinson (1983) noted that soil moisture can substantially reduce albedo, often by 

around half. 

 

Table 2.13: The median values in Surface Albedo noted in different seasons for both transitioned 

and non-transitioned ROIs and the differences in the median values between 2018 and 2022. 

Transitioned ROIs Non-Transitioned ROIs 

Seasons Surface Albedo 2022 - 2018 Seasons Surface Albedo 2022 - 2018 

Winter-18 0.18 
-0.10 

Winter-18 0.08 
0.03 

Winter-22 0.08 Winter-22 0.11 

Spring-18 0.13 
-0.04 

Spring-18 0.10 
0.01 

Spring-22 0.08 Spring-22 0.11 

Summer-18 0.11 
-0.03 

Summer-18 0.10 
0.001 

Summer-22 0.08 Summer-22 0.10 

Fall-18 0.14 
-0.06 

Fall-18 0.09 
-0.0009 

Fall-22 0.08 Fall-22 0.09 
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Table 2.13 shows the median albedo values for transitioned and non-transitioned ROIs during 

various seasons of 2018 and 2022, and the corresponding differences. Positive differences indicate 

an increase in median LST, while negative values denote a decrease. 

 The football fields, which are the transitioned ROIs that shifted from natural to artificial 

turf between 2018 and 2022, experienced a decrease in surface albedo during all seasons. The 

decreased albedo values in the post conversion during all seasons suggest that the artificial turf has 

a lower albedo than the natural turf. For the non-transitioned ROIs, which are the golf courses that 

maintained their natural grass surfaces, the changes in albedo are very slight in all seasons 

suggesting that the albedo for natural grass surfaces remains relatively stable year over year. The 

greater changes in albedo values for the transitioned ROIs compared to the non-transitioned ones 

could be due to the difference in surface materials and how they interact with solar radiation across 

different seasons. The data indicates that converting to artificial turf can have a noticeable impact 

on the reflective properties of the surface. 
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Figure 2.23: Seasonal albedo changes for the transitioned ROIs 
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Figure 2.24: Seasonal albedo changes for the non-transitioned ROIs 
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2.5.2.5 T-Tests 

Four series of paired T-Tests were conducted to find any significant differences in the 

surface albedo values between 2018 and 2022 for both transitioned and non-transitioned ROIs. 

The tests were performed in R-Studio. Normality tests were done for all pairs of data. Mann 

Whitney U Tests were performed for the pairs that did not pass the normality tests. Table 2.4 

provides an outline of the paired T-Test varieties executed, the number of tests for transitioned and 

non-transitioned ROIs, and their respective threshold values. The resulting p-values for each paired 

T-Test executed in this investigation are presented in Tables 2.14, 2.15, 2.16, and 2.17. 

 

Table 2.14: P-Values for the annual Paired T-Tests considering all LST values from all ROIs 

(Threshold P-Value = 0.002) 

Transitioned ROIs Non-Transitioned ROIs 

< 2.2e-16* 1.143e-10* 
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Table 2.15: P -Values for the Paired T-Tests at individual ROI performed by taking all the data 

from the available dates (Threshold P-Value = 0.05) 

Surface Albedo 

Transitioned ROIs Non-Transitioned ROIs 

ROIs P Values ROIs P Values ROIs P Values ROIs P Values 

T1 0.0002* T14 1.526e-05* G1 0.07 G14 0.009* 

T2 1.144e-05* T15 1.907e-05* G2 0.95 G15 0.42 

T3 3.815e-06* T16 4.584e-07* G3 0.0007* G16 0.2 

T4 4.726e-08* T17 1.841e-07* G4 0.001* G17 0.05* 

T5 3.815e-06* T18 0.0002* G5 0.31 G18 0.27 

T6 1.526e-05* T19 7.629e-06* G6 0.49 G19 0.06 

T7 3.052e-05* T20 0.0003701* G7 0.9 G20 0.009* 

T8 0.0005* T21 2.168e-07* G8 0.06 G21 0.42 

T9 0.001* T22 0.0001* G9 0.38 G22 0.16 

T10 0.0002* T23 0.0001* G10 0.85 G23 0.002* 

T11 3.797e-05* T24 3.052e-05* G11 0.72 G24 0.0003* 

T12 2.508e-05* T25 7.629e-06* G12 0.97 G25 0.002* 

T13 3.577e-06* T26 0.002* G13 0.02293* G26 0.18 
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Table 2.16: P-Values for the seasonal Paired T-Tests performed separately for each ROI and for 

each season (Threshold P-Value = 0.05) 

 Transitioned ROIs  Non-Transitioned ROIs 

ROIs Winter Spring Summer Fall ROIs Winter Spring Summer Fall 

T1 0.003* 0.03* 0.73 0.01* G1 0.03* 0.16 0.58 0.88 

T2 0.01* 0.01* 0.13 0.20 G2 0.77 0.24 0.95 0.5 

T3 0.002* 0.06 0.002* 0.04* G3 0.25 0.7 0.07 1 

T4 0.003* 0.06 0.01* 0.01* G4 0.001* 0.01* 0.2 0.53 

T5 0.001* 0.003* 0.01* 0.02* G5 0.004* 0.96 0.05 0.32 

T6 0.13 0.04* 0.06 0.05 G6 0.46 0.19 0.76 0.86 

T7 0.13 0.10 0.06 0.25 G7 0.63 0.25 0.63 0.25 

T8 0.003* 0.48 0.45 0.01* G8 0.72 0.4 0.33 0.82 

T9 0.21 0.13 0.46 0.04* G9 0.14 0.43 0.63 0.45 

T10 0.01* 0.29 0.91 0.08 G10 0.19 0.14 0.48 0.1 

T11 0.01* 0.06 0.31 0.06 G11 0.15 1 0.1 0.57 

T12 0.25 0.005* 0.03* 0.03* G12 0.70 0.59 0.63 0.33 

T13 0.003* 0.004* 0.002* 0.01* G13 0.04* 0.06 0.69 0.49 

T14 0.002* 0.03* 0.003* 0.001* G14 0.001* 0.13 0.93 0.89 

T15 0.02* 0.003* 0.26 0.05* G15 0.49 0.71 1 0.88 

T16 0.12 0.01* 0.004* 0.02* G16 0.04* 0.19 0.13 0.16 

T17 0.01* 0.005* 0.004* 0.25 G17 0.96 0.46 0.25 0.02 

T18 0.05* 0.25 1 0.19 G18 0.31 0.63 0.3 0.79 

T19 0.03* 0.03* 0.0002* 0.01* G19 0.13 0.04* 0.01* 0.40 

T20 0.10 0.18 0.44 0.13 G20 1 0.06 0.01* 0.12 

T21 0.98 0.001* 0.06 0.08 G21 0.10 0.7 0.13 0.09 

T22 0.02* 0.02* 0.002* 0.09 G22 0.09 0.81 0.84 0.6 

T23 0.04* 0.09 0.02 0.13 G23 0.02* 0.13 0.06 0.9 

T24 0.02* 0.13 0.84 0.03* G24 0.11 0.1 0.16 0.84 

T25 0.003* 0.03* 0.14 0.06 G25 0.16 0.11 0.1 0.32 

T26 0.002* 0.09 0.001* 0.63 G26 0.93 0.37 0.43 0.27 
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Table 2.17: P-Values for Combined seasonal Paired T-Tests performed by taking all data from 

all ROIs for each season (Threshold P-Value = 0.002) 

Transitioned ROIs 
Non-Transitioned ROIs 

Winter Spring Summer Fall Winter Spring Summer Fall 

2.55e-15* < 2.2e-

16* 

< 2.2e-

16* 

8.131e-

16* 

6.684e-

11* 

1.42e-06* 0.37 0.009* 

 

The first series of paired T-Test, which pooled all yearly data from all 26 ROIs, uncovered 

notable albedo differences for both transitioned and non-transitioned ROIs, with p-values falling 

beneath the 0.002 significance level. 

The second series of T-Tests, which examined each ROI individually across all collected 

data points, indicated significant albedo variations for all transitioned ROIs and for nine non-

transitioned ROIs, achieving p-values below the 0.05 threshold. The findings from these T-Tests 

suggest that the shift from natural to artificial turf had a significant impact on the albedo of the 

transitioned ROIs during the study period.   

The third set of paired T-Tests, organized by the four seasons, and executed for each ROI 

within those seasons, showed significant albedo alteration for 19, 14, 11, and 13 transitioned ROIs 

during Winter, Spring, Summer, and Fall, respectively, with p-values smaller than 0.05. Only a 

few non-transitioned ROIs showed significant differences in albedo between 2018 and 2022 at 

various seasons.  

Lastly, the combined Seasonal T-Tests, which aggregated data from all ROIs by season, 

indicated substantial albedo differences for both transitioned and non-transitioned ROIs, with p-

values below the 0.002 threshold. 
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According to the first, second and fourth series of T-Tests, the findings consistently 

demonstrate significant albedo differentiation for ROIs that transitioned from natural grass to 

artificial turf, underscoring the profound influence that turf conversion has on surface albedo. For 

these T-Tests, the alternative hypothesis cannot be rejected for the transitioned ROIs since 

significant differences between the pre (2018) and post (2002) conversion were found. According 

to the third series of T-Tests, the null hypothesis cannot be rejected for the transitioned ROIs, as 

no significant differences were found. This implies that the conversion did not result in statistically 

significant changes in albedo for these areas. 

 

2.5.3 LST-Albedo Relationship for the Transitioned ROIs in 2022 

Aoki (2009) indicates that the surface albedos play a crucial role in determining its 

temperature. Dark or vegetated surfaces, with their lower albedo, tend to absorb more sunlight, 

which increases their temperature. On the other hand, light-colored or snow-covered surfaces have 

a higher albedo and therefore reflect more sunlight, keeping temperatures lower. This study 

involved creating four separate scatter plots to analyze the relationship between LST and albedo 

across 26 transitioned ROIs throughout all the seasons in 2022. The scatter plots for each season 

in Figure 2.29 depict LST on the x-axis and albedo values on the y-axis for each of the transitioned 

ROI. 
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2018 (Natural Grass Surfaces) 

  

  

 

Figure 2.25: Scatter plots showing the LST-Albedo relationships for each transitioned ROI at each 

season in 2018.  
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2022 (Artificial Turf Surfaces) 

  

 
 

 

Figure 2.26: Scatter plots showing the LST-Albedo relationships for each transitioned ROI at each 

season in 2022.  

 

 

The scattered plots do not show any clear trend or pattern between the two variables in 

2018 and 2022 indicating that the changes in albedo do not consistently relate to the changes in 

LST. 

The correlation coefficient is a numerical indicator that quantifies the strength of a linear 

relationship between two variables, with its value ranging from -1 to +1. A value of -1 signifies a 

perfect negative correlation, +1 signifies a perfect positive correlation, and 0 means there is no 
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correlation. In this study, correlation coefficients were calculated for different pairs of data across 

the seasons for both 2018 and 2022. The coefficients obtained were -0.2793 for winter, -0.3422 

for spring, -0.3815 for summer, and 0.3758 for fall in 2022, corresponding to the ROIs that 

transitioned from natural to artificial surfaces. These results suggest a weak to moderate negative 

correlation between LST and albedo values for winter, spring, and summer, implying that LST 

tends to rise as albedo decreases. However, the positive correlation observed in fall indicates an 

increase in LST with an increase in albedo, which is contrary to the expected trend based on 

existing literature that associates artificial turf with higher temperatures and reduced albedo. The 

correlation coefficients obtained in 2018 for winter, spring, summer and fall were 0.542, -0.003, -

0.107, and 0.48 respectively. The coefficients for winter and fall suggest a positive correlation 

between the LST and Surface Albedo indicating LST increases with the increase in Albedo. While 

the correlation coefficients for Spring and Summer suggest a “No Correlation” or a very weak 

correlation between the two variables.  

Aoki (2009) conducted an analysis on the surface temperature and albedo of five different 

outdoor sports surfaces, finding that surface temperatures tend to decrease as albedo increases. 

Based on this inverse correlation, the author suggested that, given consistent material composition 

and structure, one can predict surface temperature based on albedo. Ponce et al. (1997) and Bonfils 

et al. (2001) noted that surface albedo is subject to significant variation, influenced by the specific 

characteristics and state of the surface material. 

This LST-albedo relationship is crucial in understanding and managing urban heat islands, 

climate change impacts, and the design of sustainable environments. By altering surface albedo 

through the choice of materials or vegetation, one can influence the LST and thereby affect local 

microclimates, energy use, and overall comfort levels.  
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Gustin et al. (2018) highlighted the potential for significant decreases in surface 

temperatures through the enhancement of surface albedo. Similarly, Elhinnawy (2004) emphasized 

the role of high albedo values in urban design as an effective method to mitigate urban heat islands, 

noting a 3°C drop in surface temperature for each 0.05 increase in albedo during peak heat times 

at 9:00 am. Gustin et al. (2018) developed a numerical model indicating that substituting the black 

crumb rubber in an artificial 3rd generation turf field with a higher albedo and more conductive 

material could reduce peak surface temperatures by 14–20°C. Lopez-Cabeza et al. (2022) applied 

the ENVI-met simulation tool to assess how varying albedo levels affect the thermal efficiency 

and comfort within a courtyard, finding that high-albedo surfaces could lower temperatures by up 

to 25°C compared to their low-albedo counterparts due to reduced heat accumulation from solar 

radiation. The adoption of materials with high reflectivity not only offers local temperature 

moderation but also contributes to lower energy use and cooling demands in the summer, 

enhancing overall thermal comfort (Konopacki and Akbari, 2001). Lee et al. (2018) further 

advocated for the use of building materials with high reflectivity or emissivity, particularly at lower 

building levels, to improve urban environmental conditions. 

High albedo materials minimize the amount of energy by reflecting more sunlight that is 

absorbed as heat. This is significant because absorbed solar radiation can significantly increase the 

temperature of a material, leading to higher temperatures in the surrounding environment. The 

increase in surface temperature increases the intensity of longwave radiation (Taha, 1997), leading 

to a higher temperature. Artificial turf has a high emissivity property which, in turns, increases the 

longwave radiation from the artificial turf surfaces (Kanaan et al., 2020)  

This study supported the literature and showed that the surface albedo in natural grass ROIs 

were similar in both years. In most of the transitioned ROIs, albedo has reduced since artificial 
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turf has replaced natural grass in those ROIs. The Paired T-Tests results also showed significant 

differences among transitioned ROIs between 2018 and 2022, while it did not show any significant 

differences among non-transitioned ROIs. J. Wickham et al. (2016) studied that land cover change 

does not always affect albedo significantly. In this research, though albedo got reduced in 2022 

after the land cover change occurred, the difference between albedo values of 2018 and 2022 were 

not significant enough.  

While selecting the components of artificial turf, the albedo, or the reflective properties of 

the materials of the components should also be considered wisely to achieve certain thermal 

performance goals. Since plant development, chemical reactions, and the activity of soil-dwelling 

microbes are all affected by temperature, grasping the typical temperature trends within the soil of 

artificial turf fields is also crucial. This knowledge aids in determining the optimal timing for 

watering, fertilizing, and applying treatments to maximize effectiveness. It's also critical for 

forecasting the likelihood of problems such as weed growth, disease outbreaks, and insect 

infestations, which are often temperature-sensitive (Li, 2008). 

2.6 Conclusions  

This study examines the effects of artificial turf on the urban thermal environment in the 

LVV. To assess this impact, LST and surface albedo were analyzed at 26 ROIs that transitioned 

from natural to artificial turf, alongside another 26 ROIs that remained unchanged between 2018 

and 2022. The data for this analysis was obtained from all available Landsat 8 satellite imagery 

for the respective years. The transitioned ROIs are high school football fields, while the non-

transitioned ROIs, primarily golf courses, served as a control group in this research. The entire 
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analysis was conducted using GEE and ArcGIS Pro, with statistical assessments carried out in R-

Studio.  

This study investigated the effect of artificial turf on LST in the LVV from 2018 to 2022, 

focusing on 26 ROIs where turf transitioned from natural to artificial. These were compared with 

26 control ROIs that retained their natural turf. Initial analyses involved comparing LST for each 

ROI across the two years, revealing that artificial turf tended to elevate surface temperatures during 

warmer months, while cooler months saw a reduction in LST for transitioned ROIs. The control 

group, however, showed minimal changes, with a slight increase in LST during summer in a few 

ROIs. Further analysis examined average LST changes per ROI, identifying an increase in 7 

transitioned ROIs but a decrease or no change in the rest. Conversely, the control ROIs largely 

maintained their average LST, with only one showing an increase. Annual average comparisons 

indicated a general decrease in surface temperature for both groups in 2022. Seasonal variability 

was also assessed, showing a significant summer LST increase in all transitioned ROIs, whereas 

the control ROIs presented mixed results. T-Tests were conducted to assess the significance of 

these changes. The T-Tests results which combined the data revealed substantial impact of turf 

transition on LST for transitioned ROIs, and stability within the control group across the study 

period.  

The average discrepancy between the 10 am temperatures and the daily peaks for specific 

dates rose marginally from 5.83°C in 2018 to 6.23°C in 2022. The LST readings taken at 10 am 

using Landsat 8 satellites are likely a few degrees Celsius below the true peak LST, which could 

be captured during the hottest part of the day. To obtain the actual peak LST, an on-site infrared 

radiometer can be employed, rather than relying on satellite-based remote sensing data. 
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Several analyses were performed to assess the effect of switching to artificial turf on the 

surface albedo within the LVV over the period from 2018 to 2022, focusing on 26 ROIs that 

underwent this transition. These findings were then compared with those from another 26 ROIs 

that maintained their natural turf, serving as a control group for this investigation. Initial 

assessments involved comparing the surface albedo for each ROI across the two years through box 

plots. A significant decline in albedo values was noted in 2022 for the ROIs that had transitioned, 

with these values remaining relatively stable throughout the year, in contrast to the seasonal 

variability observed in 2018. The average albedo for all transitioned ROIs decreased in 2022 where 

the albedo values decreased at 8 non-transitioned ROIs and increased in the rest. Seasonal analysis 

indicated a reduction in albedo for nearly all transitioned ROIs during the summer, except for two. 

In contrast, the non-transitioned ROIs in the controlled group displayed a seasonal trend of 

decreasing albedo from winter to fall. The T-Tests revealed marked differences in surface albedo 

between 2018 and 2022 for the transitioned ROIs, whereas the non-transitioned ROIs mostly 

showed no significant change.  

In the comprehensive comparison of ROIs over the two years in question, it was observed 

that transitioning to artificial turf correlated with elevated surface temperatures, but only during 

the warmer months. The T-Tests also confirm these changes. The albedo values for ROIs with 

natural grass remained relatively unchanged between the two years. Conversely, a notable decrease 

in albedo was observed in most ROIs that transitioned to artificial turf. The T-Tests revealed 

significant differences in albedo between 2018 and 2022 for these transitioned ROIs, whereas the 

non-transitioned ROIs showed no significant changes. 
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The relationship between LST and albedo for ROIs that transitioned from natural to 

artificial turf in 2018 and 2022 was evaluated across different seasons, but the scatter plots did not 

show a definitive pattern. The calculated correlation coefficients showed weak inverse correlations 

for the winter, spring, and summer seasons in 2022, suggesting that LST tends to rise as albedo 

decreases. However, an unexpected positive correlation was observed for the fall season, 

contradicting the commonly held view in existing studies that artificial turf leads to increased 

temperatures and lower albedo. For 2018, the coefficients for winter and fall suggested a positive 

correlation between the LST and Surface Albedo indicating LST increases with the increase in 

Albedo. While the correlation coefficients for Spring and Summer suggested a “No Correlation” 

or a very weak correlation between the two variables.   

Artificial turf is often utilized as a water-saving substitute for natural grass in arid regions 

like the LVV, where water conservation is a major concern. Artificial turf can raise local 

temperatures, therefore it's important to balance the advantages of water conservation against any 

potential thermal effects. Elevated surface temperatures have the potential to negatively impact 

public health, cause discomfort, and raise the risk of heat-related illnesses. Artificial turf should 

not be considered as a full replacement for natural grass. Its suitability varies with different weather 

conditions. Shi and Jim (2021) suggested avoiding artificial turf in areas that receive direct 

sunlight, as it can increase the risk of heat stress, and particularly in situations involving intense 

physical activities under direct sun exposure. Therefore, studying the impact of artificial turf on 

the urban thermal environment of LVV is essential for informed urban planning and policymaking, 

aimed at creating a healthy and comfortable urban environment, especially considering the unique 

climate challenges of the region.  
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2.7 Limitations and Recommendations 

2.7.1 Limitations 

● Since the equatorial crossing time of Landsat 8 satellite is 10:00 am +/- 15 minutes 

(European Space Agency, 2022), the remote sensing images are taken at 10am local time.  

Hence, the recorded temperature gives a snapshot of the surface conditions specifically at 

that time (Black et al., 2019). The LST might not be the peak at this time.  

● Some external factors, such as changes in surrounding infrastructure, shade availability, 

irrigation practices, and other management changes can affect the LST readings. 

● The temporal resolution of the Landsat 8 satellite is 16 days. So only one or two images 

were found each month. The data from this one image can be impacted by several factors, 

such as,  

➢ The 4 Oct 2018, 7 Dec 2018, 12 Aug 2022, 13 September 2022, and 29 September 

2022 data might have been affected by different amounts of precipitation that 

occurred that day. (NORTH LAS VEGAS, NV Weather History | Weather 

Underground) 

➢ 6 Feb 2018 and 11 April 2018 both were much hotter than the average temperature 

which might have affected the result.  

➢ Cloud cover is also an important factor that can influence the result. In this study, 

several data had a considerable amount of cloud cover which may have affected the 

data. (Table 2.1 and 2.2)  

● Freely available Landsat 8 dataset was used in this study, which has coarser spatial 

resolution. Finer resolution data could give better results.  
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● The study solely focused on the football fields which comes up with some limitations, such 

as,  

➢ Since football fields represent a specific type of land use, therefore, the result 

obtained from this study cannot be generalized for other land uses such as 

residential lawn or public parks etc.  

➢ The uniformity in the size and shape of the football fields can limit the 

understanding on how LST varies with different sizes and configurations of land 

areas.  

➢ The materials and methods used in constructing the artificial turf for the football 

fields might differ from other applications, leading to different thermal properties 

and LST responses.  

 

2.7.2 Recommendations for the Future Studies  

● Subsequent research could employ high-resolution satellite imagery from commercial 

satellites. Companies like Maxar Technologies, Planet Labs, 21st Century Aerospace 

Technology, and Airbus Defense and Space, which operate in the commercial satellite 

sector, provide the public with access to some of the most detailed satellite imagery. They 

supply images with resolutions reaching up to 30 centimeters (about 11.8 inches) per pixel, 

allowing for the identification of ground objects as small as 30 centimeters in the imagery. 

(GeoWGS, 2024) 

● Investigating the LST and surface albedo across various natural grass types (such as 

Bermuda, Bent, and Rye) and artificial turfs made from diverse materials like polyethylene, 

polypropylene, and nylon would facilitate a comparative study. 
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● Given that temperature fluctuations are natural from year to year, extending the analysis 

over multiple years would enhance the comparative aspect of the study.  

● To mitigate the limitations of solely focusing on football fields, it might be beneficial to 

include a more diverse range of sites and consider additional variables that could influence 

LST for future studies.  

● Future studies could extend to measuring the night-time temperatures of artificial turf in 

addition to daytime readings. Monitoring the 24-hour diurnal cycle could reveal nocturnal 

heat exchanges, which play a crucial role in the overall energy balance. 

● Verifying the outcomes of this study through ground truthing with suitable measurement 

tools can help ascertain the accuracy of the findings.  

● The study compared the LST/ Albedo differences in football fields with the golf courses 

which have varying topography, grass characteristics, surrounding structures etc. For 

enhanced accuracy, a comparison should be made between football fields that have 

transitioned and those that have remained unchanged. 

 

2.7.3 Recommendations for the Policy Makers and Urban Planners 

● The study indicates that artificial turf elevates surface temperatures in the summer, 

highlighting the need for policymakers and urban planners to consider this factor in their 

summer construction and landscaping plans.  

● Given the substantial water required to lower temperatures on artificial turf fields during 

hotter months, water resource management should be tailored to accommodate this 

demand.  
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● The strategic placement of artificial turf is essential to prevent any single area from having 

an excessive concentration, which could result in elevated surface temperatures compared 

to other locations. 

● In areas with artificial turf, adding shade structures, water features, or incorporating cooling 

materials into the surrounding landscapes are some examples of heat mitigation measures 

that can be used to mitigate the increase of heat during summer season.  

● Since artificial turf has been found to have lower surface albedo values, identifying ways 

to make these surfaces more reflective, or incorporating higher albedo materials in the 

vicinity can reduce the overall thermal effect. 

● Promoting a variety of landscaping options, such as artificial turf and drought-tolerant 

native plants, could offer a balanced approach to urban green space, promoting ecological 

sustainability and biodiversity while effectively controlling heat and water use. 

● Continuous monitoring of urban areas with artificial turf is recommended to further 

understand long-term impacts on local microclimates and to assess whether adjustments in 

urban planning policies might be needed. 

● Alternatives to traditional recycled crumb rubber, such as organic or natural infill materials 

derived from coconut shells, walnut shells, rice husks, and renewable corks, could offer a 

solution, albeit at a higher cost.  

● The choice of fiber height and density, along with the type of infill used in artificial turf, 

can impact water drainage and retention, as highlighted by Simpson and Francis (2021). 

These elements should be meticulously considered during the selection process prior to 

installing artificial turf to ensure optimal hydrological performance. In their research, 

Petrass et al. (2014) found that products using Thermoplastic Elastomer (TPE) as infill 



 

104 

 

exhibited significantly cooler surface temperatures compared to those using organic or 

Styrene-butadiene Rubber (SBR) infill. Villacañas et al. (2017) suggested the use of 

thermoplastic rubber and monofilament fibers to reduce the turf surface temperature.  

● Given that increased surface albedo can significantly lower maximum surface temperatures 

(Gustin et al., 2018), urban planners are advised to incorporate urban elements with higher 

albedo values to help reduce surface temperatures.  

● Urban planners should understand the factors responsible for the potential heat stress from 

high-temperature surfaces like artificial turf in public spaces, particularly in areas with 

extreme summer temperatures. 

● The development and use of more sustainable and environmentally friendly artificial turf 

alternatives that closely mimic the thermal properties of natural grass should be 

encouraged.  

● Integration of remote sensing data into climate adaptation strategies would help to create 

cooler urban environments. 

● Policies should be developed that require the consideration of spectral and thermal 

characteristics in the selection of urban materials. 

● Henderson et al. (2003) mentioned modifying the infill material, such as utilizing organic, 

dyed, sand-coated, rubber-coated, or cryogenically chilled rubber, alongside the 

installation of below-ground water systems designed to retain moisture and ensure the 

cooling of the turf fibers, thus reducing the surface temperature of artificial turf.  

● Villacañas et al. (2017) noted that the temperature of synthetic turf fields can reflect their 

level of usage and deterioration, finding that surface temperatures fluctuate based on 

weekly activity. According to their study, fields that experience over 35 hours of weekly 
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play and have SBR infill tend to exhibit elevated temperatures in comparison to less 

frequently used fields. On the other hand, fields utilizing TPE demonstrate a contrasting 

pattern, where temperatures remain lower despite higher levels of activity. Urban 

policymakers can adopt this approach as part of the maintenance strategy for artificial turf 

installations.  

● Wardenaar et al. (2023) discussed the "cool" turf technology, which has gained popularity 

in the US. It works using the evaporation of water from its organic infill, providing 

significant cooling benefits, especially during peak heat periods (Hydrochill | Shaw Sports 

Turf, n.d.). The authors mentioned a drawback of such turf technology which is mirroring 

the same surface and ambient temperatures as conventional artificial turf types when there 

is insufficient amount of moisture in the infill. Consequently, it becomes essential for sports 

field managers to ensure the "HydroChill" turf is adequately irrigated. In the dry climates 

of the southwestern U.S., the infill's moisture might quickly evaporate (Guyer et al., 2021), 

whereas in regions with higher humidity and moisture, the infill retains water longer, 

slowing down the evaporation process and thereby helping to cool both the surface and the 

surrounding air more effectively. 

● According to the SNWA conservation plan 2019 existing building regulations limit the 

installation of turf in new developments. It should be maintained strictly by the urban 

planners to prevent water wastage on non-functional turf. (Joint Water Conservation Plan, 

2019) 
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CHAPTER 3: DETECTION AND ANALYSES OF THE SPECTRAL SIGNATURES AND 

NDVI OF ARTIFICIAL TURF AND NATURAL GRASS IN LAS VEGAS VALLEY 

3.1 Introduction 

Artificial turf has been used instead of natural grass since the 1960s (Jastifer et al., 2019). 

Its water conservation potentiality, low maintenance costs, climate independent nature and its 

versatility to use for different purposes increased the use of artificial turf over the years.  According 

to Cheng et al. (2014) and Lavorgna et al. (2011), a typical artificial turf football field can conserve 

from 0.5 to 1 million gallons of water annually. 

However, there are growing concerns about substituting natural grass with artificial turf, 

originating from an ongoing debate regarding the environmental sustainability of artificial turf. A 

major concern comes from the elevated surface temperature it can reach during daylight hours 

(Devitt et al., 2007). The infill materials of artificial turf have low specific heat and low albedo, 

which promotes heat absorption and retention (Liu & Jim, 2021). Furthermore, artificial turf 

warms up more quickly due to its reduced water-holding capacity and reduced volumetric heat 

capacity (Carvalho et al., 2021; Liu & Jim, 2021). Artificial turf materials are unable to remove 

moisture due to their hydrophobic properties (Jim, 2016) and low water-holding capacity (Liu & 

Jim, 2021). These thermal characteristics have the potential to drastically raise both the ground's 

surface temperature and surrounding air temperature (Liu & Jim, 2021), which would be 

detrimental to the environment. This is one of the biggest disadvantages of artificial turf.  

Due to its rapid growth, the arid southwestern United States is seeing an increase in demand 

for its water resources, particularly in large urban centers where water is mostly used to support 

urban greenery (Wynne & Devitt, 2020). With a population of about 2.2 million as of right now, 
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Las Vegas, Nevada, stands out as one of the American cities that is growing the fastest, tripling in 

size between 1990 and 2018. Sixty percent of Southern Nevada's annual water use is in the 

residential region. Residential water use is mostly dominated by outdoor use, especially landscape 

irrigation. According to the Southern Nevada Water Authority (SNWA), 2023, once this water is 

consumed outside, it evaporates and cannot be recovered for recycling. In order to maintain a 

sustainable balance between the supply and use of water, water agencies, such as SNWA, have 

made reducing outdoor water consumption a top priority (Wynne & Devitt, 2020). 

 The Water Smart Landscapes (WSL) initiative was launched in 1999 in Las Vegas as a 

way to encourage homeowners to switch from turf grass to water-saving xeric landscaping. This 

initiative became a vital part of SNWA's strategy to secure water supplies during the 2004 drought. 

About 535 acres of grass, or 1% of all residential land, had been replaced by homeowners by 2007 

(Brelsford & Abbott, 2017). The community has successfully converted over 223 million square 

feet of lawns into water-efficient landscaping with the aid of the Water Smart landscaping rebate 

program, saving over 176 billion gallons of water (Joint Water Conservation Plan, 2019). A new 

law passed by the Nevada Legislature in 2021 limits the use of Colorado River water provided by 

member agencies of the Water Authority for irrigating non-functional grass beginning in 2027 

(Understand laws & ordinances). An average conversion of 15,000 square feet to water-efficient 

landscaping is predicted to result in yearly water savings of 825,000 gallons (Water Smart 

Landscapes Rebate, n.d.-b).  

 In this study, we differentiated and characterized the spectral signatures of artificial turf 

and natural grass within the LVV. This study focuses on LVV for its significant usage of artificial 

turf. Measuring the total amount of natural grass surfaces within the valley is crucial to evaluate 
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the effectiveness of different lawn conversion programs. With such information, conversion efforts 

can be more strategically directed towards the areas with higher concentrations of natural grass 

which would benefit the most from such conversions, thus optimizing the impact of the program 

(Brandt, 2008).  

Remote Sensing (RS) is a crucial method for obtaining data on Land Use and Land Cover 

(LULC), and it's indispensable for monitoring on a large scale. When analyzing ground covers 

through RS, they exhibit specific spectral signatures, also known as spectral reflectance patterns 

(Becker et al., 2021). A spectral signature represents how a material reflects or emits across 

different wavelengths of the EM spectrum. It is the ratio of reflected radiation energy to incident 

radiation energy on an object and is a function of wavelength (Gupta et al., 2022). Every substance 

on the surface of the planet has a unique value for its spectral reflectance characteristics because 

the reflectance value varies with the wavelength and topography features (Gupta et al., 2022). The 

color and tone of an object in an image are directly correlated with its reflectivity (Jensen, 2009). 

Spectral signatures comprise not only the spectral values but also the spectral curve shape 

(Chen et al., 2016). The spectral response of an object is represented graphically by spectral 

reflectance curves, which display the reflectance values (Y-Axis) at various EM spectrum 

wavelengths (X-Axis). The curves show the various spectral properties of various objects. The 

curve displays "Peak and Valley" configurations, where the valley denotes a lower reflection or 

predominant absorption in the energy while the peak denotes a strong reflection of incident light 

from any wavelength. The substance's physical and chemical state, surface roughness, and 

geometric conditions—such as the sunlight's incidence angle—all affect the reflectance qualities 

of the material.  
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This signature is pivotal in analyzing the Landsat dataset because it helps in distinguishing 

and differentiating various Earth features (Kachhwaha, 1983). Such spectral data can identify 

differences among vegetative surfaces and other land covers, highlighting variations between 

vegetation types and states (Becker et al., 2021). Important qualitative and quantitative information 

for image classification is provided by the spectral signature. Consequently, the foundation for 

classifying remotely sensed data is spectral signatures (Chen et al., 2016). The majority of remote 

sensing applications process digital images to extract spectral signatures at each pixel, which are 

then used in various ways to divide the image into groups of related pixels. In the final stage, they 

compare each group's spectral signature with a known class (classification). 

The spectral signatures of an object can be detected in various ways. In the past, 

hyperspectral or multispectral satellite imagery was the primary means for capturing spectral 

signatures. The vast amount of data produced by hyperspectral imaging, stemming from its many 

spectral bands, poses challenges in storage, processing, and analysis. Kim et al. (2016), Akwensi 

et al. (2023), Priem and Canters, (2016) and Kruse et al. (2016) used hyperspectral images in their 

studies. Another method involves using a spectroradiometer, an instrument that quantifies light 

intensity across an extensive wavelength range, to determine an object's spectral reflectance. This 

instrument offers a comprehensive spectral profile, showcasing light intensity at each distinct 

wavelength. Mei et al. (2016) and Salvador et al. (2014) used spectroradiometers in their research. 

Some researchers have employed data fusion techniques for capturing spectral signatures, 

necessitating a profound understanding of advanced machine learning algorithms.  

Devitt et al. (2007) used a spectroradiometer to measure the spectral reflectance across a 

range of landscape surfaces, including various artificial turf types—green and white—as well as 

asphalt, bare soil, concrete, and natural grass. They found that artificial turf exhibited the lowest 
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reflectance across the entire EM spectrum, leading to the highest surface temperatures among the 

tested surfaces. The study revealed a significant correlation between average reflectance in the 

near-infrared (NIR) region (701 - 1300 nm) and surface temperature for the different landscape 

coverings, with a P-value of less than 0.05, indicating statistical significance. Spectral reflectance 

was measured using a spectroradiometer. 

In this research, the potential of GEE was explored to ascertain the spectral signatures of 

natural grass and artificial turf across 26 regions of interest (ROIs) in the LVV. GEE is a cloud-

powered tool designed for large-scale geospatial analyses, leveraging Google's vast computational 

resources to address significant societal challenges like deforestation, drought, disease, and more 

(Gorelick et al., 2017). Currently, approved users can access GEE and its extensive data catalog 

via two web platforms: GEE Explorer and Code Editor. The GEE Explorer web application 

provides access to a vast collection of public remote sensing images, complete with a suite of pre-

built analytical tools. In contrast, the GEE Code Editor offers users the flexibility to tailor their 

analyses using common programming languages like JavaScript and Python (Liss et al., 2017; 

Tamiminia et al., 2020). These primary functionalities empower users to explore, process, and 

visualize large geospatial datasets without the need for high-end computing resources or deep 

coding knowledge. The introduction of GEE has sparked significant interest and involvement in 

the fields of remote sensing and geospatial data science (Tamiminia et al., 2020). 

This method will help researchers to get the spectral signature of any object from a larger 

area at completely free of cost, without using any powerful tool or expensive satellite. Urban 

planners can locate artificial turf in LVV with the aid of spectral signature identification. It will be 

possible to measure the transition from natural grass to artificial turf and ascertain how the two 

types of turf impact the water use of the area by examining the spectral signatures of the two types 



 

118 

 

of turf. The negative environmental effects of artificial turf can be minimized by monitoring its 

location and size. By separating artificial turf that doesn't require watering from natural vegetation 

that does, municipalities may more effectively plan their use of water. When planning the 

construction of recreational facilities within a city, it can be helpful to identify regions with a high 

density of artificial turf.  

In addition to identifying the spectral signatures of artificial turf, the Normalized 

Difference Vegetation Index (NDVI) was calculated using GEE and ArcGIS pro. NDVI serves as 

a reliable indicator of vegetative health by assessing the disparity between the NIR and red-light 

reflectance. Healthy vegetation typically reflects ample NIR and green light, but they absorb more 

of the red and blue spectrum, leading to the green appearance that human eyes can observe. A high 

NDVI value, resulting from low red reflectance and high NIR reflectance, suggests robust plant 

health.  

The NDVI is a versatile analytical tool that serves a broad spectrum of ecological and 

agricultural applications (Kriegler et al., 1969). It is used to estimate the Leaf Area Index (LAI), a 

key component in crop growth modeling. NDVI also helps calculate the biomass of herbaceous 

and other vegetation types in terms of tons per hectare. It's valuable for assessing the 

photosynthetic activity within vegetation, as well as for determining the percentage of ground 

cover. NDVI measurements can be used to evaluate the cumulative effect of rainfall on vegetation 

over time, ascertain the carrying capacity of rangelands, and forecast yields for different crop 

types. Moreover, NDVI is useful for assessing the quality of the environment, particularly in terms 

of its suitability as a habitat for animals and its potential for harboring pests and diseases. 

Various methodologies have been implemented by researchers to assess NDVI for different 

types of vegetation. Kwan et al. (2020) utilized land cover classification and machine learning to 
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distinguish artificial turf from natural grass, ultimately categorizing it as non-vegetation despite 

their visual similarities. Spadoni et al. (2020) computed NDVI using Sentinel-2 multispectral 

images within GEE to aid in creating forest cartography, underscoring the expectation of varied 

NDVI patterns across different vegetation types. Hashim et al. (2019) leveraged NDVI alongside 

very high-resolution satellite imagery, such as from Pleiades, to differentiate between vegetated 

and non-vegetated areas in urban settings, proving NDVI to be a vital tool for urban vegetation 

detection. Additionally, Wetherly et al. (2017) applied the Airborne Visible Infrared Imaging 

Spectrometer for detailed urban analysis, asserting that such high-resolution spectral data enhances 

the distinction between similar-looking materials like turfgrass and trees.  

Chen et al. (2018) developed a classification system for urban land cover mapping using 

high-resolution hyperspectral data, observing that even shaded vegetation displays high NDVI 

values akin to those in direct sunlight, and sparse grass-covered soils can also show high NDVI 

readings. Their approach initially misclassified artificial turf as vegetation due to high NDVI 

readings, which was later corrected. Wang et al. (2022) introduced a monitoring method for non-

agricultural land activities utilizing domestic satellite imagery and deep learning, selecting optimal 

observation periods for different crops through NDVI time sequence analysis. Their technique, 

too, initially recorded high NDVI values for artificial turf. These studies illustrate the versatility 

and complexities of using NDVI in classifying and monitoring vegetation and highlight the 

importance of context and calibration in interpreting NDVI data. 

Identifying the NDVI for artificial turf and natural grass in LVV can be helpful in several 

ways, particularly given the region's arid climate and water scarcity issues. NDVI measurements 

can help in assessing the vitality and health of natural grass areas, which require significant water 

for maintenance. By comparing NDVI values of natural grass with those of artificial turf, urban 
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planners and water conservationists can better understand the effectiveness of artificial turf in 

reducing water usage and can strategize water conservation efforts more effectively. NDVI can 

indicate the presence and health of vegetation, which plays a crucial role in mitigating urban heat 

island effects. By analyzing the NDVI of natural grass and comparing it with artificial turf, 

researchers can evaluate the potential of these surfaces to reduce urban temperatures, which is 

particularly relevant in a desert city like Las Vegas. Understanding the distribution and health of 

green spaces through NDVI can aid in urban planning, especially in optimizing the use of available 

land for recreational, residential, or commercial purposes while ensuring sustainability and 

environmental quality. Policymakers can use NDVI data to make informed decisions regarding the 

installation of artificial turf versus the maintenance of natural grass areas, considering the trade-

offs between water use, ecological impacts, and recreational needs of the community. 

Therefore, the research objective of this study is to detect and analyze the spectral 

signatures and NDVI of artificial turf and natural grass in Las Vegas Valley.  

Research Questions:  

1. What are the distinct spectral signatures of natural and artificial turf?  

2. Which wavelengths show the most significant differences between natural grass 

and artificial turf spectral signatures?  

3. How does the NDVI of artificial turf differ from those of natural grass?  

Research Hypothesis: There are significant differences on the spectral signature and 

NDVI due to the conversion from natural to artificial turf between 2018 and 2022 on 26 

transitioned ROIs. 
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3.2 Study Area 

Since LVV uses a lot of artificial turf, it has been selected as the primary focus of the 

research. One of the biggest metropolitan regions in the Southwestern United States is the LVV, 

which is situated in Southern Nevada. This area is in the central-western part of Clark County, 

Nevada, which is a higher-altitude segment of the Mojave Desert. It is surrounded by multiple 

mountain ranges, the highest of which is 11,918 feet high (Morris et al., 1997). As is typical of the 

Mojave Desert, Las Vegas' climate is classified as a subtropical hot desert (Koppen climatic 

classification: BWh). This means long, scorching summers, short, moderate winters, and warm 

transitional seasons (National Weather Service, NOAA, n.d.). The yearly average amount of rain 

is rather low, averaging about 4.2 inches (Weather Averages Las Vegas, Nevada, n.d.). Las Vegas 

is a city that is unique in North America due to its high amounts of sunshine, dryness, and unusually 

low humidity—which frequently falls below 10% (Cities with Low Humidity in US - Current 

Results, n.d.). Because of the low humidity, June through September is a particularly hot month. 

The hottest month is July when daytime highs typically exceed 104.5°F. The annual average high 

temperature is approximately 80°F (Weather Averages Las Vegas, Nevada, n.d.). 
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Figure 3.1: Study Area: Las Vegas Valley, Nevada 
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3.3 Materials and Methods 

In this research, the objective is to compare the spectral reflectance curves of 26 ROIs 

switched from natural to artificial turf between 2018 and 2022 in the LVV utilizing  

GEE.  

GEE cloud computing platform enables large-scale analysis of environmental data and with 

ample computational resources, as it uses Google servers for processing and storage. (Gorelick et 

al., 2017) The GEE Code Editor was utilized instead of the GEE Explorer due to the versatility 

and functionality of the program. GEE compiles over four decades of both historical and 

contemporary global satellite data, equipped with the analytical tools and computational strength 

to process this extensive dataset. (Google Earth Engine, n.d.) Pre-processed Landsat 8 satellite 

images were used in this study for 2018 and 2022 which was available through GEE. One tile 

having path and row 039 and 035 respectively, was required to cover the entire study area. A total 

of 26 spectral signature maps were generated for the LVV.  

All the Landsat 8 satellite images available for 2018 and 2022 were downloaded and used 

for this study. Table 3.1 presents the dates on which the spectral signature maps were generated, 

accompanied by the corresponding cloud cover percentages for each date. 
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Table 3.1: Dates of Spectral Signature Map Generation and Corresponding Cloud Cover  

2018 2022 

Dates Cloud Cover (%) Dates Cloud Cover (%) 

5-Jan-18 0.58 16-Jan-22 33.03 

21-Jan-18 1.9 1-Feb-22 38.72 

6-Feb-18 0.2 17-Feb-22 0.37 

22-Feb-18 46.62 5-Mar-22 36.98 

10-March-18 100 21-Mar-22 1.83 

26-Mar-18 5.79 6-Apr-22 0.23 

11-Apr-18 0.07 22-April-22 80.84 

27-April-18 0.09 8-May-22 0.08 

13-May-18 12.7 24-May-22 0.24 

29-May-18 4.54 9-Jun-22 1.36 

14-Jun-18 0.45 25-Jun-22 1.07 

30-Jun-18 0.35 11-Jul-22 0.9 

16-Jul-18 11.76 27-Jul-22 31.06 

1-Aug-18 4.3 12-Aug-22 46.23 

17-Aug-18 6.12 28-Aug-22 0.82 

2-Sep-18 4.71 13-Sep-22 75.96 

18-Sep-18 0 29-Sep-22 1.93 

4-Oct-18 17.67 15-Oct-22 43.17 

20-Oct-18 14.96 31-Oct-22 0.17 

5-Nov-18 0.03 16-Nov-22 0.47 

21-Nov-18 2.31 2-Dec-22 35.85 

7-Dec-18 86.51 18-Dec-22 31.51 

23-Dec-18 4.53   
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Figure 3.2 presents the frequency of Landsat 8 satellite imagery acquisition dates for the 

years 2018 and 2022. Given Landsat 8's temporal resolution of 16 days, the imagery is spaced 16 

days apart annually. The X-axis indicates the day of the year, and the Y-axis shows the count of 

images captured on specific days. The imagery from 2018 is depicted by blue bars, while the 

imagery from 2022 is shown with red bars. 

 

 

Figure 3.2: Distribution of the dates of the obtained satellite images in 2018 and 2022 

 

The framework of this study is delineated in Figure 3.3. This chart offers a structured visual 

representation of the sequential steps and processes undertaken throughout the research. 
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Figure 3.3: Visual representation of the methodology to plot the spectral signature curves.   

 

Initially, a polygon was utilized to determine the study area, followed by the importation 

of satellite imagery. This research employed the Landsat 8 Collection 2 Tier 1 datasets, which 

feature calibrated top-of-atmosphere (TOA) reflectance. The highest quality Landsat scenes are 

categorized into Tier 1 and are deemed appropriate for time-series analytical processes. Tier 1 
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encompasses Level-1 Precision Terrain (L1TP) processed data, known for their consistent 

radiometry and inter-calibration across various Landsat sensors (Crawford et al., 2023). Out of the 

17 bands in this image collection, this study focused on 6. Table 3.2 provides details on the selected 

bands and their respective attributes. 

 

Table 3.2: Landsat 8 Collection 2 Tier 1 Bands used to plot spectral signature curves. 

Name Description Resolution 

(Meters) 

Wavelength 

(nm) 

B2 Blue 30 450 - 510 

B3 Red 30 530 - 590 

B4 Green 30 640 - 670 

B5 Near Infrared (NIR) 30 850 - 880 

B6 Shortwave Infrared 1 

(SWIR 1) 

30 1570 - 1650 

B7 Shortwave Infrared 2 

(SWIR 2) 

30 2110 - 2290 

 

The ROIs were developed in the next stage. In Southern Nevada public schools, 29 football 

fields switched from natural grass to synthetic turf in 2020–21 (Seeman, 2020). Three of them 

were beyond the approved study zone, and 26 of these were identified as the focal sites for this 

investigation. These ROIs were first identified within GEE by means of point features. Then, a 20-

meter buffer was built around each point. Each of these buffered zones were subsequently 

integrated into the map using the “Map.addLayer” function. Several filters were applied in the 
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following stage. The polygon-defined study area was set as the boundary, and date filters were 

ensured so that only a single image is accessible. The first image from the collection was then 

chosen and incorporated into the map.  

To chart the spectral signature curve for each month of 2018 and 2022, specific plotting 

parameters were set. These charts are linear graphs, with the X-axis denoting the bands and the Y-

axis indicating the reflectance from each band. The “Reduce.region” function was employed to 

obtain the mean value from each buffered zone. Alongside each spectral signature curve, a CSV 

file was generated and preserved post-execution for subsequent analysis. Figure 3.4 illustrates the 

ROIs where spectral signature curves from 2018 and 2022 were created and analyzed for 

comparison. This study area map was prepared in ArcGIS Pro.  
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Figure 3.4: Yellow regions represent the ROIs converted from natural grass to artificial turf 

between 2018 and 2022.  
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Additionally, the NDVI was calculated for two sets of ROIs. The first set is the transitioned 

ROIs, that transitioned from natural to artificial turfs between 2018 and 2022. These ROIs are the 

football fields as mentioned earlier. The second set is the non-transitioned ROIs that maintained 

natural grass surface over the years. These ROIs are mostly the golf courses around the LVV. 

Figure 3.5 shows the visual representation of the methodology to calculate the NDVI.  
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Figure 3.5: Steps involved to retrieve NDVI values from ROIs in GEE and ArcGIS Pro. 
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During the data initialization phase, the Landsat 8 Collection 2 Level 2 Tier 1 dataset was 

initially imported into the GEE code editor, and a study area polygon was delineated. In the data 

pre-processing stage, first, optical, and thermal scaling factors were defined using the 

‘applyScaleFactors’ function. After that, the ‘maskL8sr’ function was used to remove cloud and 

cloud shadow from the images by using the ‘QA_Pixel’ band to identify and exclude these pixels. 

Finally, the Landsat 8 image collection was narrowed down based on specific dates and the 

selected region. 

Subsequently, the data was visualized on the map and relevant calculations were 

performed. A true color composition of the imagery was added to the map by defining a 

visualization parameter for the true color image. Then, the NDVI of the study area was determined 

using the NIR and red bands of the filtered image and displayed on the map.  

The coordinate system of the NDVI layer was subsequently reprojected from WSG 1984 

to NAD 1983 UTM Zone 11 N to align with the coordinates of LVV. Finally, the images for each 

date were exported as a Tiff file.  

Following that, the subsequent phase involved defining the ROIs in ArcGIS Pro to examine 

the NDVI values within each ROI across the four-year period. As mentioned earlier, 26 ROIs 

transitioned from natural to artificial turf between 2018 and 2022, and 26 ROIs did not go through 

any transition and served as a control group. For the purposes of this research, two separate ROI 

maps were created for two cases: transitioned ROIs and non-transitioned ROIs. Two to three 

complete pixels located within the boundaries of the football fields and other land types were 

selected as the ROIs (Figure 3.6). The selection of complete pixels is aimed at minimizing the 

influence of mixed pixels that contain multiple land classes. A ROI map was then created showing 
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all the transitioned and non-transitioned ROIs (Figure 3.7). The NDVI layers exported from GEE 

were retrieved from Google Drive and displayed on the Arc map. The NDVI layer was clipped 

using the shape file of the study area. The shape file of the LVV was created in ArcGIS Pro 

utilizing the political boundary of the area. Finally, data was collected from each ROI using the 

“Zonal Statistics as Table'' tool in ArcGIS Pro. This produced standalone tables with ROI-specific 

values for subsequent analyses. The gathered data were then compiled into a separate Excel sheet 

for further analysis.    

 

 

                                    (a)                                                                             (b) 

Figure 3.6: Representation of selected ROIs for analysis. (a) Depicts two fully contained pixels 

within the confines of Desert Pines High School football field, identified as a transitioned ROI, 

with the left displaying a grayscale image and the right showcasing the true-color image. (b) 

Illustrates three fully contained pixels situated within the Las Vegas Golf Club grounds, identified 

as a non-transitioned ROI, where the left image is grayscale, and the right reveals the natural 

coloration. 
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Figure 3.7: Sky Blue dots represent the ROIs converted from natural grass to artificial turf between 

2018 and 2022 and green dots represent the ROIs that did not go through any conversion.  
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Paired T-Tests were employed to evaluate the differences in the spectral signature and 

NDVI of artificial turfs between 2018 and 2022. The T-Test, a statistical method, is designed to 

assess whether there are significant differences between two distinct groups. For Spectral 

Signature, the analysis was divided into two sets of T-Tests. The initial set involved conducting a 

T-Test for each month, resulting in a total of 12 T-Tests. For these tests, reflectance values derived 

from satellite imageries for each month were compared. The second set focused on identifying 

significant differences in reflectance values across each ROI, with a T-Test being conducted for 

each of the 26 ROIs. A significant threshold of 0.05 was applied to both sets of T-Tests, meaning 

that a P-Value below this level was required for the results to be deemed statistically significant. 

Three series of Paired T-Tests were conducted to find significant differences in NDVI 

between 2018 and 2022 for both transitioned and non-transitioned cases. Table 3.3 gives an 

overview of 3 series of Paired T-Tests conducted for NDVI Analysis. The table summarizes the 

types of T-Tests applied, including annual, seasonal, and individual ROI assessments for both 

transitioned and non-transitioned ROIs, along with the count of tests conducted per category and 

the corresponding P-values.  
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Table 3.3: Summary of the types of paired T-Tests applied, the count of tests conducted in both 

transitioned and non-transitioned categories and the corresponding threshold values. 

Paired T-

Tests 

Description No of pair of T-

Tests for 

Transitioned 

ROIs 

No of pair of T-

Tests for Non-

Transitioned 

ROIs 

Threshold P-

Values 

Annual T-

Test 

All data from all ROIs 

for the entire year were 

combined 

 

1 

 

1 

 

0.05/26 = 0.002 

Individual 

ROI 

T-Tests were performed 

for each ROI taking all 

the data from the 

available dates 

 

26 

 

26 

 

0.05 for each 

ROI 

Combined 

Seasonal 

T-Tests 

All data from all ROIs 

were pooled for each 

season to conduct T-

Tests 

 

4 

 

4 

 

0.05/26 = 0.002 

for each season 

 

An alpha level of 0.05 was established as the threshold for statistical significance for the 

second series of T-Test, indicating that any differences observed would need to be statistically 

significant to be considered meaningful. Bonferroni adjustment was considered for the other two 

series of T-Tests by adjusting the alpha level to avoid multiple testing problems.  

In the context of statistical significance, if the p-value is above a predefined threshold 

(commonly 0.05), it is generally interpreted that there is not enough statistical evidence to reject 

the null hypothesis. Thus, it would be concluded that the differences between the paired samples 

are not statistically significant. The null hypothesis (H0) of this study posited that there were no 

significant differences in the reflectance values/ NDVI at different wavelengths of the EM 
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spectrum resulting from the turf type change between the years 2018 and 2022. Conversely, the 

alternative hypothesis (H1) contended that there were significant differences between the years 

2018 and 2022 attributable to the conversion from natural to artificial turf.  

These statistical analyses were carried out using R-Studio. In the R studio, each data set 

first underwent normality testing to determine if it follows a normal distribution. For data sets that 

do not pass the normality test, indicated by an alpha value of less than 0.05, the Mann-Whitney U 

test was applied. 

3.4 Results and Discussions 

This study aims to discuss the following topics:  

1. The distinct spectral signatures associated with natural grass and artificial turf in the 26 

ROIs and the way the spectral signatures of artificial turf in 2022 differ from those of 

natural grass in 2018 across various wavelengths.  

2. The wavelengths that show the most significant differences between natural grass and 

artificial turf spectral signatures.   

3. The way the NDVI of artificial turf differs from those of natural grass in LVV for both 

transitioned and non-transitioned ROIs.  

3.4.1 Spectral Signature 

In GEE, 45 spectral signature curves for each month of 2018 and 2022 were produced for 

locations that underwent a transition from natural to artificial turf between 2018 and 2022. A CSV 

file showing the reflectance values of all 26 ROIs at each wavelength was provided with each 
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curve. The data from the CSV files were compiled into an Excel sheet and were organized for 

analysis.      

 

                             

 

 

Figure 3.8: Distribution of the reflectance values from all the ROIs at each wavelength in 2018 

and 2022 
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The box plots in figure 3.8 provide a visual comparison of reflectance values for different 

spectral bands of the EM spectrum between the years 2018 and 2022, taken from football fields 

that transitioned from natural to artificial turf. The X-axis denotes the center of the wavelengths of 

the EM spectrum, while the Y-axis indicates the reflectance values at each wavelength. 

Box plots show the median, the interquartile range, and the overall range (the whiskers) of 

the reflectance values at each wavelength. An observation that deviates significantly from the rest 

of the data numerically is called an outlier. Outliers are indicated by dots outside the whiskers.  

The plots show that the reflectance values have changed at each wavelength due to the 

transition from natural to artificial turf. Shifts in the median values were found for all the bands of 

the EM spectrum. The median values for all the bands were higher for natural grass in 2018 than 

those for artificial turf in 2022 (Table 3.4). A significant shift was found for the NIR band, having 

0.255 difference in the median values between 2018 and 2022, which is typical as vegetation 

reflects more in the NIR spectrum due to the internal structure of leaves. 

The spread of the data, indicated by the height of the boxes (which represent the 

interquartile range, or IQR), shows the middle 50% of the data for each band and year. A larger 

IQR suggests greater variability. The variability seemed to be greater for natural grass in 2018 

compared to artificial turf in 2022. This could suggest that natural grass has more variability in 

how it reflects light, possibly due to the different water content, health, or density, while artificial 

turf was more stable.  

The numbers that are the smallest and largest can be found at the end of the "whiskers" and 

are helpful in giving a visual representation of how the data is distributed. The ranges of the 

reflectance values of all the bands were found to be higher for the natural grass in 2018.  
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There were outliers in the data for both natural grass in 2018 and artificial turf in 2022. 

More numbers of outliers were found for the artificial turfs in each band. Numerous outliers may 

suggest that there are some areas with quite different reflectance properties compared to the rest 

of the ROIs. 

 

Table 3.4: Median and Mean Reflectance Values for Various Spectral Bands in 2018 and 2022 

with Corresponding Differences 

Bands 

Center of the 

Wavelength 

Median 

Reflectance 2022-2018 

Mean 

Reflectance 

2022-

2018 

Blue-18 482 0.14 
-0.01 

0.17 
0.02 

Blue-22 482 0.13 0.18 

Green-18 562 0.15 
-0.03 

0.17 
0.01 

Green-22 562 0.13 0.18 

Red-18 655 0.16 
-0.05 

0.18 
-0.02 

Red-22 655 0.11 0.16 

NIR-18 865 0.45 
-0.26 

0.44 
-0.20 

NIR-22 865 0.20 0.25 

SWIR1-18 1609 0.33 
-0.07 

0.33 
-0.07 

SWIR1-22 1609 0.26 0.27 

SWIR-18 2201 0.20 
-0.04 

0.20 
-0.03 

SWIR-22 2201 0.16 0.17 

  

 

Healthy green vegetation, due to the chlorophyll pigments, absorbs substantial energy in 

the blue and red regions of the spectrum, resulting in low reflectance, while the leaves' internal 

cellular structure causes high reflectance in the NIR region (Thenkabail et al., 2000). In figure 3.8, 



 

141 

 

the spectral signature of natural grass shows higher reflectance in the NIR band compared to the 

visible bands (blue, green, red), which is a characteristic of healthy vegetation. The spectral 

signature of artificial turf is flatter and lower in reflectance, lacking the distinct peak in NIR. The 

difference in the spectral signatures reflect the inherent differences between the materials. Natural 

grass has a complex structure that interacts with light differently than more homogeneous artificial 

turf material.  

Figure 3.9 shows the average annual reflectance values of all 26 ROIs in 2018 and 2022. 

In 2018, the spectral signature curves displayed characteristics typical of natural grass. Due to the 

internal structure and moisture content of green grass, natural grass exhibits elevated reflectance 

in the NIR zone, spanning from 0.7 µm to 1.3 µm (Spectral Reflectance, n.d.). The spectral 

signature curves obtained from each satellite image revealed that the reflectance values in this NIR 

zone were consistently elevated throughout 2018, with peak values surpassing 0.4 for most of the 

ROIs. The majority of the blue and red light is strongly absorbed by chlorophyll in healthy 

vegetation. A step in the process of photosynthesis is light absorption. The healthy plant reflects a 

large amount of infrared light and some green light. Since infrared light is invisible to human 

vision, healthy plants appear green to the human eyes even if they reflect more NIR radiation than 

visible green. This study's findings indicate that the average reflectance of red (0.183) is higher 

than that of green (0.171) in 2018 when there were natural grass surfaces. It may be the result of 

stressed or dehydrated grass which differs from healthy grass as it is not watered enough and has 

brown spots, whereas healthy grass is all green with no brown spots. (Kwan et al., 2020).  

According to Idso et al. (1980), as plants lose chlorophyll, undergo browning, ripen, or 

experience the process of deterioration with age, the visible spectrum reflects these changes. 

Chlorophyll gives plants their green color, so its loss will significantly affect the coloration 
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observed in the visible spectrum. Unhealthy plants emit more visible red light. That's why as they 

dry up, they become reddish brown. 

 

 

 

Figure 3.9: Average annual reflectance values of all 26 ROIs at each wavelength in 2018 and 2022 
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Figure 3.10: Average reflectance values of each ROI at each wavelength for 2018 and 2022. The 

black lines represent the spectral signatures of 26 ROIs in 2018, while the red represent the 

curves from 2022.  
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Figure 3.11: Average reflectance values of each wavelength at each month of 2018 and 2022. The 

black lines represent the average reflectance values for the months of 2018, while the red represent 

the curves from 2022.  

 

 

The reflectance values were averaged for each month and figure 3.11 was plotted showing 

the average reflectance values of each month of 2018 and 2022 at different wavelengths of the EM 

spectrum. In 2022, the spectral signature curves lacked the characteristics of natural grass, given 

the transition from natural to artificial turfs. Except for May and June 2022, the reflectance values 

in the blue region were higher than those of the green region for the rest of the months. Reflectance 

values at blue and green regions for May (0.128173 in Blue and 0.128365 in Red) and June 2022 
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(0.128212 in Blue and 0.128865 in Red) were almost similar. Due to heavy cloud cover on 22nd 

April (81%) and 13th September (76%) data, unusual reflectance values were being obtained for 

April 2022 and September 2022 data. Therefore, these two images were omitted while doing 

monthly analysis.  

The SWIR1, spanning wavelengths from 1570 to 1650 nm, exhibited a marked feature. At 

1609 nm wavelength, the reflectance patterns of both natural and artificial turf displayed 

contrasting directions. In the first month of 2018, the SWIR1 reflectance values surpassed the 

values in the NIR region (Figure 3.12). However, for the subsequent months of that year, SWIR 

reflectance was consistently below NIR levels.  

Water has a pronounced absorption property in the SWIR region, as highlighted by 

Moshtaghi et al. (2021) and Kim et al. (2015). Given the moisture content in natural grass, it tends 

to absorb more in this region, leading to SWIR reflectance values that were generally lower than 

NIR for 2018, except for the first month of 2018. In contrast, throughout 2022, SWIR1 reflectance 

consistently exceeded that in the NIR region. Artificial turf is commonly crafted from materials 

like nylon, polyethylene, or polypropylene, which belong to the plastic category. Each plastic type, 

made up of elements like carbon, hydrogen, and oxygen, exhibits distinct infrared absorption 

characteristics when illuminated, reflecting the vibrational movements within their polymer 

structures, as noted by Karaca et al. (2013). While studies by Moshtaghi et al. (2021) and Masoumi 

et al. (2012) identified absorption traits for various plastics, this research observed elevated 

reflectance in the SWIR1 zone. The increased surface temperatures from the artificial turf might 

account for this deviation. 
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Figure 3.12: Average reflectance values at each wavelength in January 2018 and February 2018 

 

 

In the subsequent analysis, the average reflectance values in the NIR region were charted 

for every month of 2022 to determine the reflectance of artificial turf surfaces in the NIR region 

(Figure 3.13). The spectral signature curves of April, May and November showed a very slight tilt 

between the Red and SWIR1 regions. Since the reflectance values were taken as the average of all 

26 ROIs, it may suggest that a lot of ROIs might not have shown any reflectance in the NIR region 

during these three months. The average reflectance values of the rest of the months showed 

distinguishable patterns in the NIR region.   
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Figure 3.13: Spectral signatures of artificial turf on April 2022, May 2022 and November 2022 

showing very slight reflectance values in the NIR region.  

 

These variations in the reflectance from the NIR region in different months can come due 

to the following environmental and technical factors:  

1. Artificial turf can be made of different materials such as polystyrene, polyethylene 

or nylon. Various organic or inorganic materials can be used for infill materials. 

Differences in material composition, age of the turf, and wear may affect NIR 

reflectance.  



 

148 

 

2. The reflectance properties of turf can get changed due to the accumulated dust, 

debris, water or snow on it. Therefore, regular maintenance of artificial turf might 

show higher NIR reflectance in certain months. 

3. Landsat 8 collects images at 10 am. That may not be the peak time for the artificial 

turf to show reflection in the NIR region.   

4. One or two dates from each month were chosen for the analysis. The weather on 

that particular date may change abruptly due to atmospheric conditions such as 

cloud cover or haze which, in turn, can affect the NIR reflection in some ROIs. 

In contrast to the NIR region, the SWIR1 region displayed reflectance values consistently 

across all months of 2022 (Figure 3.11).  

 Subsequently, a separate graph was created to depict the reflectance values of NIR, 

SWIR1, and SWIR2 for each month of 2018 and 2022. The 2018 data demonstrated elevated 

reflectance values for NIR and SWIR1, while the 2022 data were higher for SWIR2.  
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Figure 3.14: Average reflectance at the NIR, SWIR1 and SWIR2 regions in each month of 2018 

and 2022  

 

 Figure 3.14 compares the average reflectance values in the NIR, SWIR1, and SWIR2 

regions across the months of 2018 and 2022. The NIR and SWIR1 reflectance values in 2018 are 

consistently higher than in 2022. This change is likely due to the transition from natural grass in 

2018 to artificial turf in 2022. In 2018, the NIR reflectance values show a seasonal pattern, peaking 

around the middle of the year, specifically in the hotter months, which could correspond to the 

growing season when vegetation is most abundant and healthy. The SWIR1 values have also 

shown some variability. This could be due to the SWIR1 region's sensitivity to moisture content, 

which can vary due to factors other than vegetation health, such as precipitation or maintenance 

practices. SWIR1 and SWIR2 show a similar pattern. The reflectance values for 2022 do not show 

the same seasonal pattern as 2018, staying relatively flat throughout the year. This lack of 
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seasonality is consistent with artificial turf, which does not grow or change in the same way that 

natural vegetation does. The NIR reflectance in 2022 is higher than the SWIR2 reflectance, and 

lower than the SWIR1 reflectance in 2022. However, the difference between NIR and SWIR1 

reflectance is more pronounced in 2018 than in 2022, indicating that natural grass has a more 

distinct spectral signature compared to artificial turf. The lower reflectance values in NIR, SWIR1, 

and SWIR2 bands for 2022 suggest that the conversion to artificial turf could have impacted the 

local microclimate and ecological conditions, as these surfaces interact differently with solar 

radiation compared to natural vegetation. 

 

 

Figure 3.15: Average reflectance at the blue, green, and red regions in each month of 2018 and 

2022  
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Figure 3.15 presents a comparative analysis of average reflectance values across the blue, 

green, and red regions of the EM spectrum for each month in 2018 and 2022. Green vegetation 

shows low reflection in the blue and red regions of the EM spectrum (Baghzouz et al., 2006) since 

strong absorption is done by chlorophyll in these regions and this characteristic is clearly observed 

in the graph. In 2018, reflectance values exhibit seasonal fluctuations, peaking during the cooler 

months and diminishing during the summer. The notable dips in the summer correspond to 

increased photosynthetic activity, during which there is substantial chlorophyll absorption in the 

blue and red regions. These variations are indicative of the natural growth and dormancy cycles of 

vegetation. Conversely, the 2022 reflectance values appear consistently uniform, lacking the 

seasonal variability that is typical of vegetated landscapes. This suggests a significant alteration in 

surface characteristics, likely attributable to the replacement of natural turf with artificial surfaces, 

which do not engage in photosynthesis and thus do not show the same seasonal changes in 

reflectance.  

The T-Test is a statistical analysis that identifies any significant differences between two 

groups. The first series of t-tests were conducted for each month between all the reflectance data 

obtained from 2018 and 2022. The second series of the T-Tests were conducted considering each 

ROI. A significance level, or alpha value, of 0.05 was chosen for the T-Tests. The tests were 

performed in R-Studio. Normality tests were done for all pairs of data. The Mann Whitney U Tests 

were performed for the pairs that did not pass the normality tests.  

12 paired sample T-tests were conducted to compare the reflectance values at each 

wavelength of 26 ROIs that transitioned from natural grass to artificial turf between the years 2018 
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and 2022. All the reflectance values of 26 ROIs were selected for each month. Table 3.5 shows 

the P values corresponding to each month.  

 

Table 3.5: P Values of the T-Tests of each month of the transitioned ROI (Threshold P-Value = 

0.05) 

 

 

  

 

 

 

 

 

 

 

 

Name of the months P Value 

January < 2.2e-16* 

February < 2.2e-16* 

March < 2.2e-16* 

April 2.739e-05* 

May 4.518e-14* 

June 2.305e-07* 

July 0.2 

August 0.02* 

September 0.0002* 

October < 2.2e-16* 

November < 2.2e-16* 

December < 2.2e-16* 
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Additional series of T-Test was performed considering the ROIs only. All the reflectance 

values from all the obtained satellite images were selected for each ROI. Table 3.6 shows the P-

Value for each T-Test result.  

 

Table 3.6: P-values for the T-Tests of each ROI (Threshold P-Value = 0.05) 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROIs P-Values ROIs P-Values 

T1 0.001* T14 5.473e-08* 

T2 6.594e-09* T15 2.969e-06* 

T3 4.248e-07* T16 5.358e-11* 

T4 5.399e-08* T17 1.177e-06* 

T5 6.255e-09* T18 1.238e-10* 

T6 3.897e-09* T19 7.273e-09* 

T7 2.786e-11* T20 0.002231* 

T8 1.512e-10* T21 5.063e-11* 

T9 1.662e-15* T22 2.373e-05* 

T10 3.535e-14* T23 1.676e-06* 

T11 5.819e-12* T24 6.049e-11* 

T12 5.581e-08* T25 8.104e-09* 

T13 2.747e-09* T26 2.736e-10* 
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The first series of T-Tests, comparing reflectance values at different wavelengths between 

2018 and 2022 for each ROI, revealed significant differences in all the months except July. The 

ROIs transitioned from natural to artificial turfs between 2018 and 2022. In the second series of 

T-Tests, significant differences were observed in all transitioned ROIs. 

According to the results of the first series of T-Tests, the alternative hypothesis cannot be 

rejected for the transitioned ROIs, as significant differences were found for almost all the months. 

This implies that the conversion did result in statistically significant changes in spectral signature 

for these areas. Based on the second series of T-Tests, the null hypothesis can be rejected as well 

since statistically significant differences were observed for all ROIs supporting the alternative 

hypothesis that the conversion has affected the reflectance values in these specific areas.  

Overall, T-Test results for spectral signature analysis suggest that the transition from 

natural to artificial turf has had a measurable impact on the spectral properties of the ROIs. 

Artificial turf has different reflectance properties than natural grass across the different bands of 

the EM spectrum due to the differences in color, texture, and the way they interact with light. 

Significant differences in all months also suggest that the changes are consistent throughout the 

year. This could indicate that the differences are not just seasonal variations but are due to the 

actual change in turf. So, it can be inferred that the changes in surface material have a measurable 

impact on the reflectance properties of any land class.  

Distinctive curves have been displayed by both types of surfaces in both years due to the 

transition from natural to artificial turf. Artificial turf lacks the characteristics inherent to natural 

grass. Its spectral signature curves can vary based on factors like material composition, the infill 

materials used (such as sand or rubber), the turf's surface texture (e.g., the length or density of its 
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blades), the colors and dyes employed in its production, any contaminants, or additives present, 

and accumulated dirt. Unlike natural grass, the spectral signatures of artificial turf don't exhibit 

seasonal changes. Therefore, distinguishing between the spectral signatures of natural and artificial 

turf is contingent on the specific region and time of year. The materials used in the artificial turf, 

coupled with the ambient temperature, might account for the observed behaviors of the artificial 

turf. 

Devitt et al. (2007) analyzed the average reflectance measured across different bands of 

the EM spectrum in relation to surface temperature and found that NIR reflectance significantly 

differed among six tested surface types and accounted for 62% of their surface temperature 

variance, a correlation with strong statistical significance (p < 0.05), establishing NIR reflectance 

as a reliable predictor of surface temperature. Consequently, they suggested that manufacturers of 

artificial turf explore modifications to increase NIR reflectance. 

3.4.2 Normalized Difference Vegetation Index (NDVI)  

The NDVI stands as a crucial indicator for assessing vegetation density in a specific area, 

derived from data collected by satellite sensors (Ceballos and Lopez, 2003). NDVI is extensively 

utilized to observe changes in land utilization and coverage, as well as to assess drought, land 

degradation, erosion, wildfires, ecological diversity and preservation, and the levels of organic 

carbon in soil (Kwan et al., 2020). 

23 NDVI maps for 2018 and 22 NDVI maps for 2022 were generated using GEE platforms. 

Landsat 8 satellite was used to generate maps. The maps were then imported to ArcGIS pro, where 

they were clipped according to the shapefile of LVV. A ROI map showing 26 ROIs that have been 

switched from natural to artificial grass between 2018 and 2022, and 26 ROIs that did not go 
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through any transition between the time period, was used to measure the average NDVI values at 

these ROIs. The data were gathered on an excel sheet for further analysis. Two cases were made 

for the ease of the analysis: 

a. Case I: 2018 (NG) vs 2022 (AT), the ROIs transitioned from natural grass to artificial turf. 

b. Case II: 2018 (NG) vs 2022 (NG), the ROIs did not go through any alteration and maintained 

natural grass in both years.   

3.4.2.1 Comparison of the NDVI of all ROIs between 2018 and 2022  

NDVI values at each ROI from all the available Landsat 8 satellite images were obtained. 

Box plots were made to show the distribution of the NDVI values from all transitioned and non-

transitioned ROIs (Figure 3.16).  



 

157 

 

 

Figure 3.16: Distribution of the NDVI values from all ROIs at Transitioned (Football Fields) and 

non-transitioned (Golf Courses) ROIs in 2018 and 2022 

 

The box plot illustrates the distribution of the NDVI values for transitioned and non-

transitioned ROIs over two distinct years: 2018 and 2022.  

For the football fields (transitioned ROIs), the NDVI values in 2018 (blue box) generally 

have a higher median, upper quartile, and range compared to those in 2022 (orange box), indicating 

that the vegetation was likely denser or healthier in 2018 than in 2022, which may be due to the 

transition from natural to artificial turf. Also, the transitioned ROIs showed less variability in 2022, 
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as indicated by the spread of the boxes, than 2018 suggesting that the NDVI became relatively 

uniform after the turf transition.  

For the golf courses (non-transitioned ROIs), the NDVI values in 2018 and 2022 (dark and 

light yellow, respectively) do not show a significant difference in the median value, although the 

range and upper quartile are slightly lower in 2022, which suggests a slight decrease in vegetation 

density or health. 

The differences in NDVI values between the years for the football fields might be more 

pronounced compared to the golf courses, potentially due to the change from natural to artificial 

surfaces, which does not support vegetation and thus would have lower NDVI values. The golf 

courses' relatively stable NDVI values suggest that no significant change in vegetation health or 

coverage occurred between the years. 

 

 

 

Figure 3.17: Annual average NDVI values at each transitioned and non-transitioned ROIs 
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Figure 3.17 shows the annual average NDVI values for both cases and both years which 

clearly shows the annual differences between 2018 and 2022 for both transitioned and non-

transitioned ROIs. Higher NDVI values were observed for the non-transitioned ROIs, which is 

easily understandable since the ROIs were mostly golf courses and golf courses typically have 

denser grass than football fields. Generally, the denser the vegetation is, the higher the NDVI 

value. 

 Both transitioned and non-transitioned ROIs exhibited lower NDVI values in 2022. The 

average precipitation in 2018 was higher, at 0.17 mm, compared to 0.094 mm in 2022. This greater 

rainfall in 2018 likely contributed to the higher NDVI values observed that year, as the increased 

water availability supported healthier vegetation. 

3.4.2.2 Comparison of the seasonal variabilities among the transitioned ROIs 

 The NDVI values of each ROI were averaged for each season, Winter, spring, 

summer, and Fall, to consider the seasonal variations. Box plots were made to show the distribution 

of the NDVI values from all transitioned and non-transitioned ROIs at each season (Figure 3.18) 
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Figure 3.18: Distribution of average NDVI Values of each transitioned ROI at each season of 

2018 and 2022 
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Figure 3.19: Distribution of average NDVI Values of each non-transitioned ROI at each season 

of 2018 and 2022 

 

The box plots show how NDVI values change with the seasons. The seasonal 

representation allows for observation of growth cycles and potentially the impact of weather 

changes on vegetation health. The Summer, Spring and Fall 2022 values were consistently lower 

than those of 2018 values for both transitioned and non-transitioned ROIs. In the winter, the NDVI 

values for 2022 for the transitioned ROIs appear to be higher than those for 2018. During the 

winter season the photosynthetic process slows down or the vegetation goes dormant which can 

affect the NDVI values. In figure 3.18, the summer NDVI values showed the most difference 

between 2018 and 2022 which means the impact of replacing natural grass with artificial turf was 

most pronounced during the summer season. According to Way et al. (2017), photosynthetic 
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capacity of vegetation increases in the early summer with peak in mid-summer and then declines 

over the late summer and autumn.  During photosynthesis, chlorophyll absorbs energy from blue- 

and red-light waves, and reflects green-light waves, making the plant appear green. Overall, a 

noticeable trend where the NDVI values in 2022 were generally lower for the transitioned ROIs, 

was found following the turf transition. For the non-transitioned ROIs in figure 3.19, which are 

the golf courses that maintained their natural grass surfaces, the changes in NDVI are very slight 

in all seasons suggesting that the NDVI for natural grass surfaces remains relatively stable year 

over year. The greater changes in NDVI values for the transitioned ROIs compared to the non-

transitioned ones could be due to the difference in surface materials which indicates that converting 

to artificial turf can have a noticeable impact on the reflective properties of the surface. 

 

 

 

 

 

 

 

 

https://education.nationalgeographic.org/resource/photosynthesis/
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Table 3.7: The median values in NDVI noted in different seasons for both transitioned and non-

transitioned ROIs and the differences in the median values between 2018 and 2022. 

Transitioned ROIs Non-Transitioned ROIs 

Seasons 

Median NDVI 

Values 2022-2018 Seasons 

Median NDVI 

Values 2022-2018 

Winter-18 0.24 

0.10 

Winter-18 0.65 
-0.14 

Winter-22 0.34 Winter-22 0.51 

Spring-18 0.51 

-0.21 

Spring-18 0.67 
-0.07 

Spring-22 0.30 Spring-22 0.60 

Summer-18 0.65 

-0.31 

Summer-18 0.64 
-0.02 

Summer-22 0.34 Summer-22 0.62 

Fall-18 0.47 

-0.13 

Fall-18 0.64 
-0.03 

Fall-22 0.34 Fall-22 0.61 

  

 

Table 3.7 shows that the transitioned ROIs exhibit more significant changes in median 

NDVI values over time, whereas non-transitioned ROIs show relatively minor changes, suggesting 

a more consistent vegetation condition. This implies that changes in land cover, such as 

transitioning from natural to artificial surfaces, have a more pronounced effect on NDVI values, 

which is an expected outcome considering NDVI is a measure of vegetation health and density. 
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3.4.2.3 NDVI Time Sequence Curve 

A time sequence curve was plotted using the average NDVI values for each month for both 

transitioned and non-transitioned ROIs. Figure 3.20 shows the differences in the NDVI Values at 

each month for the studied period for both cases.  
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(a) 

 

(b) 

Figure 3.20: Average NDVI values for each month of 2018 and 2022 for (a) football fields and 

(b) golf courses 
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The curves illustrate a significant decline in NDVI values for football fields between 2018 

and 2022, aligning with the substitution of natural grass—characterized by higher NDVI due to 

photosynthetically active vegetation—with artificial turf, which, lacking live vegetation, exhibits 

lower NDVI. Conversely, the NDVI of golf courses remained stable across both years, indicating 

unchanged natural grass conditions. Both football fields and golf courses exhibited seasonal 

patterns. NDVI increased in the spring and summer when warmer temperatures increased plant 

processes like photosynthesis, transpiration, and respiration, fostering vegetation growth. 

Conversely, NDVI dropped in autumn and winter as cooler weather slows or halts plant growth 

and leads to reduced transpiration rates, reflecting a period of dormancy or reduced activity in 

vegetation.  This seasonal fluctuation in NDVI values is a reflection of the plant phenological cycle 

that responds to changes in the environment, such as temperature, light, and precipitation. The 

findings of this study on seasonal NDVI variation echo the patterns outlined by Naif et al. (2020). 

Golf courses, with their denser vegetation, generally exhibit higher NDVI values than football 

fields, indicative of the thriving, photosynthetically active plant life present. In contrast, the NDVI 

of football fields converted to artificial turf in 2022 remains flat throughout the year, lacking the 

natural seasonal variation associated with vegetative growth. 

Depending on the type of vegetation land cover, NDVI value can be different Spadoni et 

al. (2020). Barren landscapes like rock, sand, or snow areas typically register very low NDVI 

values, around 0.1 or less. Lighter vegetation areas, such as those with shrubs, grasslands, or aging 

crops, tend to have moderate NDVI values ranging from 0.2 to 0.5. In contrast, dense vegetative 

areas, like those in lush forests or fields of crops at the height of their growth, often have high 

NDVI values between 0.6 and 0.9 (NDVI, the Foundation for Remote Sensing Phenology | U.S. 
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Geological Survey, 2018). Though Spadoni et al. (2020) concluded in their study that selecting an 

NDVI threshold based on data from an inappropriate time of year could lead to misclassification.  

3.4.2.4 T-Tests 

Three series of paired T-Tests were conducted to find any significant differences in the 

NDVI values between 2018 and 2022 for both transitioned and non-transitioned ROIs. The tests 

were performed in R-Studio. Normality tests were done for all pairs of data. The Mann Whitney 

U Tests were performed for the pairs that did not pass the normality tests. Table 3.3 provides an 

outline of the paired T-Test varieties executed, the number of tests for transitioned and non-

transitioned ROIs, and their respective threshold values. The resulting p-values for each paired T-

Test executed in this investigation are presented in Tables 3.8, 3.9, and 3.10.  

 

 

Table 3.8: P-Values for the annual Paired T-Tests considering all LST values from all ROIs 

(Threshold P-Value = 0.002) 

Transitioned ROIs Non-Transitioned ROIs 

3.67E-71* 1.67E-14* 
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Table 3.9: P-Values for the Paired T-Tests at individual ROI performed by taking all the data from 

the available dates (Threshold P-Value = 0.05) 

Transitioned ROIs Non-Transitioned ROIs 

ROIs P-Values ROIs P-Values ROIs P-Values ROIs P-Values 

T1 2.37E-06* T14 0.005* G1 0.2 G14 0.03* 

T2 1.67E-05* T15 0.0002* G2 0.0006* G15 0.1 

T3 0.0009* T16 0.03* G3 0.001* G16 0.45 

T4 0.05* T17 0.0002* G4 0.006* G17 0.006* 

T5 0.03* T18 6.90E-05* G5 0.88 G18 0.02* 

T6 0.005* T19 0.08 G6 0.21 G19 0.02* 

T7 0.006* T20 0.001* G7 0.52 G20 0.16 

T8 0.0003* T21 0.004* G8 0.14 G21 0.16 

T9 9.66E-05* T22 0.01* G9 0.25 G22 0.02* 

T10 0.0002* T23 0.0004* G10 0.04* G23 0.0002* 

T11 0.008* T24 0.0003* G11 0.07 G24 0.007* 

T12 0.07 T25 0.0004* G12 0.59 G25 0.002* 

T13 0.04* T26 0.01* G13 0.12 G26 0.26 
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Table 3.10: P-Values for Combined seasonal Paired T-Tests performed by taking all data from all 

ROIs for each season (Threshold P-Value = 0.002) 

 

Transitioned ROIs Non-Transitioned ROIs 

Winter Spring Summer Fall Winter Spring Summer Fall 

9.78E-

10* 

2.4E-42* 1.9E-80* 2.4E-26* 8.76E-

16* 

3E-09* 0.93 0.77 

 

 

The first series of paired T-Test, which pooled all yearly data from all 26 ROIs, uncovered 

notable NDVI differences for both transitioned and non-transitioned ROIs, with p-values falling 

beneath the 0.002 significance level. 

The second series of T-Tests, which examined each ROI individually across all collected 

data points, indicated significant NDVI variations for all transitioned ROIs except one and for 

twelve non-transitioned ROIs, achieving p-values below the 0.05 threshold. The findings from 

these T-Tests suggest that the shift from natural to artificial turf had a significant impact on the 

albedo of the transitioned ROIs during the study period.   

The combined Seasonal T-Tests, which aggregated data from all ROIs by season, indicated 

substantial albedo differences for both transitioned and non-transitioned ROIs, with p-values 

below the 0.002 threshold. 

According to the T-Tests results, the findings consistently demonstrate significant NDVI 

differentiation for ROIs that transitioned from natural grass to artificial turf, underscoring the 

profound influence that turf conversion has on NDVI. For these T-Tests, the alternative hypothesis 
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cannot be rejected for the transitioned ROIs since significant differences between the pre (2018) 

and post (2002) conversion were found.  

 

3.5 Conclusions   

 The study focused on 26 high school football fields in LVV that transitioned from natural 

to artificial turf between 2018 and 2022. A total of 45 charts were produced, detailing the spectral 

signature curves for all the selected ROIs.  

To understand the spectral characteristics of natural and artificial turfs, four distinct 

analyses were undertaken. Initially, box plots were created to exhibit the reflectance value 

distribution across all 26 ROIs in 2018 and 2022, respectively. The second approach involved 

averaging all reflectance readings to construct a chart displaying the mean annual reflectance, thus 

illustrating the spectral signatures for both years. The third method averaged reflectance values by 

month, resulting in a graph that detailed monthly average reflectance for 2018 and 2022 across 

various EM spectrum wavelengths. Lastly, a comprehensive analysis was conducted by plotting 

the spectral curves for the visible and infrared ranges month by month, allowing for an in-depth 

comparison of the spectral profiles between natural and artificial turfs. 

 According to the literature, healthy vegetation predominantly absorbs energy in the blue 

and red wavelengths of the EM spectrum, a trait attributed to chlorophyll, and reflects significantly 

in the NIR region with some reflectance in green as well. The box plots, along with the annual and 

monthly average reflectance charts, delineate spectral signatures characteristic of both natural and 

artificial turfs. For the year 2018, the spectral curves consistently showed pronounced absorption 

in the visible spectrum and marked reflection in the NIR spectrum, a pattern typical for natural 
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grass due to its internal structure and water content which enhances NIR reflectance. Notably, the 

average red reflectance exceeded that of green in 2018, possibly indicating grass under stress or 

lacking hydration. Artificial turf, on the other hand, demonstrated uniformly lower and more stable 

reflectance across all charts, reflecting its absence of the natural properties inherent to living grass. 

The monthly average data also presents a distinctive spectral signature curve for each turf 

type. The 2018 data displayed seasonal fluctuations in reflectance within both the visible and NIR 

spectra, whereas the 2022 data did not show any seasonal pattern and exhibited more consistent, 

flatter reflectance values across the year in these regions. 

Among all the wavelengths of the EM spectrum, the clearest difference between the two 

years was seen in the reflectance of the SWIR 1 region, where the slope for the two years moved 

in opposite directions. The natural grass, with its inherent moisture, typically shows greater 

absorption in the SWIR region, resulting in lower SWIR reflectance compared to the NIR in 2018. 

However, in 2022, the SWIR1 reflectance values consistently surpassed those in the NIR region. 

Notably, the artificial turf, despite being made of plastic, showed elevated reflectance in the SWIR 

1 region, which could be attributed to the influence of surface temperature. 

The variation in spectral signatures highlights the fundamental disparities between the two 

materials. The intricate architecture of natural grass engages with light in a manner distinct from 

the more uniform composition of artificial turf.  

Upon concluding the analysis, two sets of T-Tests were performed. The initial series of 

tests compared the monthly reflectance data between 2018 and 2022. The subsequent series 

focused on each specific ROI. For these tests, a significant threshold (alpha value) was set at 0.05. 

The first series of T-Tests, which examined the reflectance variations across different wavelengths 
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between the two years for each ROI, identified notable differences for all months except July. In 

the second set of T-Tests, notable discrepancies were found in all the ROIs that underwent the 

transition, with only one exception. The outcomes of the T-Tests indicate that changing from 

natural to artificial turf significantly altered the spectral characteristics of the ROIs. 

Additionally, NDVI values were determined for ROIs that switched from natural to 

artificial turfs between 2018 and 2022, as well as for ROIs that retained natural grass, serving as a 

control group. Initially, box plots were created to show the distribution of the NDVI values from 

all ROIs in 2018 and 2022. While NDVI values decreased in both scenarios, the drop was notably 

more substantial in the ROIs that had transitioned. A further analysis segmented the NDVI data of 

the transitioned ROIs by season, revealing significant differences, particularly during the summer. 

Lastly, a NDVI time series curve plotted the monthly average NDVI for both sets of ROIs, showing 

a marked reduction in NDVI for football fields that transitioned to artificial turf. Conversely, the 

natural grass areas exhibited consistent seasonal fluctuations in NDVI values. Three sets of paired 

T-Tests were conducted to detect significant changes in NDVI values for the transitioned ROIs 

from 2018 to 2022. Each set revealed significant alterations, highlighting the impact of changes in 

surface materials on NDVI readings. NDVI measurements can provide valuable insights into the 

environmental and ecological dynamics of artificial turf and natural grass in arid urban areas like 

Las Vegas, supporting more sustainable urban development and conservation strategies. 

The GEE was instrumental in assessing the spectral signatures and the NDVI of the turfs, 

offering insights on reflectance values for each wavelength. The GEE Code Editor streamlined the 

process, allowing easy access to the API (Application programming interface) for analytical tasks. 

It efficiently generated spectral signature charts, and the entire undertaking was cost-free. While 

the Landsat imagery available in GEE wasn't of the highest spatial resolution for this detailed 
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analysis, the platform's capabilities surpassed other geoprocessing software, especially when 

conducted on less robust systems (Liss et al., 2017).  

The results obtained from this study could be used by policymakers and environmental 

planners to understand the impact of replacing natural turf with artificial alternatives, potentially 

guiding future decisions regarding urban planning and environmental conservation. 

3.6 Limitations and Recommendations 

3.6.1 Limitations 

● Since the equatorial crossing time of Landsat 8 satellite is 10:00 am +/- 15 minutes 

(European Space Agency, 2022), the remote sensing images are taken at 10am local time.  

Hence, the recorded temperature gives a snapshot of the surface conditions specifically at 

that time (Black et al., 2019). The reflectance might not be the peak at this time.  

● Some external factors, such as changes in surrounding infrastructure, shade availability, 

irrigation practices, and other management changes can affect the accuracy of spectral data 

and NDVI calculations. 

● The temporal resolution of the Landsat 8 satellite is 16 days. So only one or two images 

were found each month. The data from this one image can be impacted by atmospheric 

conditions like cloud, haze, precipitation, pollution etc.  

● At 30 meters per pixel, Landsat 8 may not capture fine-scale variations in urban landscapes, 

where a single pixel can contain a mix of natural and artificial materials.  

● The spectral signature and NDVI values can be seasonally dependent. Variations in sun 

angle, weather conditions, and plant life cycles throughout the year can introduce 

variability in the data. 
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● The spectral bands of Landsat 8 might not be sufficient to capture all the nuances necessary 

for distinguishing certain types of surfaces or conditions. 

● Different brands or types of artificial turf may have unique spectral signatures, and GEE's 

ability to generalize across these variations could be a concern. 

● The study compared the NDVI differences in football fields with the golf courses which 

have varying topography, grass characteristics, surrounding structures etc. For enhanced 

accuracy, a comparison should be made between football fields that have transitioned and 

those that have remained unchanged. 

 

3.6.2 Recommendations for the Future Studies  

● Combining remote sensing with ground-truthing to validate the classification would help 

better understand the context of the spectral signatures. 

● The research utilized the GEE platform, a freely available tool, to execute the entire project. 

While Landsat 8 satellites lack the multitude of bands found in hyperspectral images from 

commercial satellites, similar analyses could be conducted using hyperspectral images or 

data fusion methods and then compared with the results of this study. 

● Understanding the specific turf materials utilized at each site could provide important 

information on their seasonal performance variations. This knowledge could serve as a 

critical component for future research, guiding more tailored and effective strategies for 

turf management and selection based on regional climate conditions and usage needs.  

● Additional research can be undertaken to identify areas within the valley that have shifted 

from natural to artificial turf providing deeper insights into the effectiveness of the lawn 

transition initiatives. 
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● Future studies can consider the use of thermal infrared data to provide additional insights 

into the heat characteristics of different surfaces. 

● Alongside NDVI, future studies could include additional vegetation indices or thermal data 

to provide a more comprehensive view of vegetation health and surface temperatures. 

 

3.6.3 Recommendations for the Policy Makers and Urban Planners 

● Since the approach suggested by this study has been proven successful to locate artificial 

turf surfaces within a large area, the urban policy makers can employ this method to get 

the spectral signature of any object from a larger area at completely free of cost, without 

using any powerful tool or expensive satellite.  

● Urban planners can locate artificial turf in LVV with the aid of spectral signature 

identification.  

● Since artificial turf has been found to have lower surface albedo values, identifying ways 

to make these surfaces more reflective, or incorporating higher albedo materials in the 

vicinity can reduce the overall thermal effect. 

● Urban planners can increase the use of natural vegetation in urban planning to enhance the 

NDVI and provide cooling through evapotranspiration. 

● Continuous monitoring of urban areas with artificial turf is recommended to further 

understand long-term impacts on local microclimates and to assess whether adjustments in 

urban planning policies might be needed. 

● Developing policies that require the consideration of spectral and thermal characteristics 

in the selection of urban materials should be encouraged. 
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● The community should be engaged in understanding the importance of NDVI and green 

spaces for urban quality of life. 

● Urban planners can use a combination of NDVI data, local climate patterns, and water 

usage studies to make informed decisions about urban landscape planning. 
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CHAPTER 4: HEALTH AND ENVIRONMENTAL IMPLICATIONS OF ARTIFICIAL 

TURF 

4.1 Introduction  

Synthetic grass is becoming popular due to its aesthetic appeal, comfort, low maintenance 

requirements, and the fact that it doesn't need watering, making it an ideal option in regions facing 

drought or water scarcity. The market for artificial turf was estimated at $8.10 billion in 2021 and 

is projected to expand to $12.68 billion by 2027. It is anticipated that by 2027, sales will encompass 

approximately 2863.6 million square feet of artificial turf (Arizton Advisory & Intelligence, 2022). 

Many sports authorities view artificial turf as a viable alternative to natural grass worldwide, 

highlighting its importance in providing a reliable and safe playing field in various weather 

conditions (Charalambous et al., 2023). Artificial turf is used not only in sports fields like soccer, 

golf, field hockey, and rugby but also in many other areas. This includes places like playgrounds, 

lawns at homes and in public spaces, rooftops, gardens, and gyms. It's also used in business settings 

for decoration and in small businesses, among other uses (De Haan et al., 2023). 

Artificial turf has emerged as a notable contributor to primary plastic pollution in the 

environment (De Haan et al., 2023). The current third-generation artificial turf systems comprise 

three principal components: synthetic grass fibers, infill, and backing layers. The synthetic grass, 

made from materials like nylon, polypropylene, or polyethylene, mimics the appearance and feel 

of natural grass (Murphy et al., 2022). Infill, typically a combination of sand and rubber or just 

rubber, is spread across the turf to a depth of around 4 cm to support the blades and provide stability 

(Ruffino et al., 2013; Cheng et al., 2014). Crumb rubber, derived from ground-up recycled tires 

and resembling coarse-grain sand, is favored for infill due to its cost-effectiveness and accounts 

for about 90% of the field's composition (Schiliro et al., 2013; Donald et al., 2019). The backing 
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material secures the fibers in place and facilitates water drainage, often made from polypropylene, 

polyamide-6, polyolefins, or polyurethane, and can be either perforated for better irrigation or non-

perforated for weed control (Cheng et al., 2014). Additional plastic components like shock-

absorbing layers, drainage sheets, and pipes, typically made from materials such as styrene-

butadiene rubber (SBR) or polyurethane for the shock pads and polypropylene or Ethylene 

Propylene Diene Monomer (EPDM)  for the drainage systems, are installed below the turf's surface 

to enhance its functionality, as discussed in research by Hann et al. (2018), Nilsson et al. (2008), 

and Ramboll (2020). 

The installation of artificial turf surfaces has sparked significant health and environmental 

debates owing to the components involved in their fabrication. These issues have been widely 

explored in a range of academic studies. Figure 4.1 shows the structure of artificial turf and Table 

4.1 and 4.2 present a range of health and environmental concerns associated with artificial turf as 

highlighted in existing studies, which are extensively reviewed in a subsequent section. 
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Figure 4.1: Schematic illustrations of the makeup of a typical artificial turf field: (a) the major 

components of artificial turf, and (b) the built-in drainage system (Cheng et al., 2014) 
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Table 4.1: Artificial Turf Materials and their associated health impacts  

 

Materials Health Impacts 

Crumb Tire Rubber Blister formation on individuals 

 Increased air pollution 

 Adverse effect on human fertility. 

 Head, neck, ankle injuries among athletes 

 Concussions, skin infections, respiratory issues, and 

potential carcinogenic risks  

Microplastics Inflammation in tissues 

 Genetic damage 

 Cellular oxidative stress 

Artificial turf fibers Risk of MRSA infection among athletes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

186 

 

 

Table 4.2: Artificial Turf Materials and their associated Environmental Impacts  

 

Materials Environmental Impacts 

 Crumb Rubber tire  Release of heavy metals and toxic chemical substances in 

the air and rainwater around artificial playfields. 

 Runoff emanating from artificial fields  

 Rise in surface temperature of artificial turf. 

 Adverse effects on benthic invertebrates 

 Diminished ground infiltration 

 Heightened risk of flooding in city areas  

Artificial turf fibers Plastic pollution when washed away by rainwater runoff. 

 Plastic contamination in natural water bodies. 

 

 

4.2 Health Impacts of Artificial Turf 

Various health concerns have been raised about the use of artificial turfs in urban areas due 

to their composition of various plastics and their ability to conduct heat. Health impacts due to 

artificial turf are explained in the following sections. 

4.2.1 Use of recycled tire crumb as infill material 

 Notably, crumb rubber, which is derived from recycled tires and commonly used in these 

turfs for its widespread availability, has been cited as a primary concern in these discussions 

(Schilirò et al., 2013). 
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A variety of research studies have been undertaken to assess the possible health hazards 

linked to the incorporation of tire crumbs in artificial turf surfaces. Research by Schiliro et al. 

(2013) and Cheng et al. (2014) has addressed how these crumbs may enter the human body and 

the resultant effects. Potential exposure methods include ingestion, oral contact, skin contact, and 

respiratory inhalation. However, these studies have not identified any considerable health risks via 

these exposure pathways. Conversely, Murphy and Warner (2022) have highlighted concerns 

about the presence of hazardous chemicals within crumb rubber, including substances that are 

carcinogenic, neurotoxic, and endocrine-disrupting chemicals.  

Negev et al. (2022) presented their concerns about infants and toddlers who are at a high 

risk of being exposed to the harmful chemicals released by artificial turf, which could potentially 

harm their health. The authors mentioned that the recycled crumb rubber may carry toxic metals 

like Pb, Cd, Cr, Zn, Al, as well as volatile organic compounds, polycyclic aromatic hydrocarbons, 

and ortho-phthalate esters (Larsans, n.d.) which can be transferred into the environment or can be 

at a risk level in the surroundings of synthetic grass surfaces. Ulirsch et al. (2010) highlighted that 

children engaging in play on synthetic turf might encounter dust infused with lead at 

concentrations potentially hazardous to their health. Given the absence of a definitive safe limit 

for lead exposure, even minimal amounts could negatively impact neurodevelopment and behavior 

(Lanphear et al., 2005).  

 Though the literature indicates that the bio accessibility of heavy metals found in tire crumb 

rubber, when exposed to saliva, sweat, and gastric fluids, is minimal (Thomas et al., 2019). This 

suggests that artificial turf may not significantly contribute to children's exposure to heavy metals. 

The disintegration of artificial grass can increase the number of heavy metals in rainwater runoff 
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and nearby soil. This may lead to a higher risk of children coming into contact with these harmful 

substances (Cheng and Reinhard, 2014; Celeieo et al., 2014). 

Artificial turf containing crumb rubber infill can reach a high temperature of 78°C, which 

has the potential to cause blisters on human skin in less than 3 seconds (ISO 13732-3:2005(en)), 

emitting longwave radiation (heat) at approximately 675Wm-2. This emission is greater than the 

one from dark asphalt, which is about 600Wm-2 (Wardenaar et al., 2023). 

According to Henryk et al. (2023), artificial turf contributes to higher air pollution levels 

due to the wear of the granules it contains. This pollution, which includes harmful chemical 

substances, adversely affects the health of football players. 

4.2.2 Incorporation of microplastics in artificial playing surfaces 

Murphy and Warner (2022), along with Mehmood and Peng (2022), have raised issues 

regarding microplastics, a growing concern for both health and the environment. Particles smaller 

than 5 millimeters in diameter qualify as microplastics. Human exposure to these particles can 

occur through inhaling dust, consuming foods, or eating marine organisms that have ingested 

microplastics from their aquatic habitats. The common installation of artificial turf, particularly in 

cities, has been recognized as a possible origin of microplastics. This is because numerous infill 

substances are made from recycled materials, which tend to break down more easily. 

Environmental factors, such as extreme temperatures, scarce rainfall, humidity, sunlight exposure, 

and saline conditions, can accelerate the deterioration of these materials, causing them to 

disintegrate into smaller fragments. These particles may then enter the environment when infill 

materials are washed away or when they cling to the apparel and footwear of athletes. 

Mehmood and Peng (2022) also detailed several health hazards stemming from 

microplastic ingestion: 
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● Preemptive cellular reaction due to the penetration of microplastics in the pulmonary or 

gastrointestinal epithelium. 

● Inflammation in tissues that come into contact with microplastics. 

● Risks to reproductive health and potential mutagenic and cancer-causing effects following 

microplastic consumption. 

● Genetic damage from toxic substances carried by microplastics into the body. 

● Cellular oxidative stress is due to the introduction of oxidizing agents by microplastics. 

● Lung inflammation resulting from inhaling microplastic particles. 

4.2.3 Dye and material composition of synthetic turf fibers 

Encapsulated lead chromate pigment, a heavy metal, was previously used in the plastic 

fibers of older artificial turf fields. According to Cheng et al. (2014), such heavy metal can be 

harmful to the users. Given the risks associated with even low levels of lead exposure in children, 

it is advised either to limit or completely avoid non-critical applications of lead. (Centers for 

Disease Control Prevention, 2005)  

4.2.4 Release of reproductive toxins from tire crumb leachate 

Murphy and Warner (2022) identified several phthalates released from synthetic turf fibers 

as reproductive toxins that could negatively impact human reproductive capabilities. 

4.2.5 Risk of MRSA infection among athletes  

Artificial turf contributes to a higher risk of Methicillin-Resistant Staphylococcus Aureus 

(MRSA) infection in players, (Schneider & Hypes, 2014) as the bacteria thrive in the fibers and 

infill of the turf, fostered by the accumulation of waste. (Shi & Jim, 2021) 
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4.2.6 Increased likelihood of heat-related illness 

The combined effect of direct sunlight and radiated heat from the surface, alongside intense 

heat transfer from the components of artificial turf, may adversely affect athletes' health and 

performance. This heat dynamic can increase stress levels past safe limits, as discussed by Jim 

(2017). 

4.2.7 Athletic injuries sustained 

The utilization of artificial turf in sports has triggered discussions about its implications for 

athlete injury occurrences. Studies suggest that although the overall incidence of injuries on 

artificial and natural grass surfaces is comparable, the types of injuries differ between the two 

(Charalambous et al., 2016; Dragoo & Braun, 2010). 

Research by Dragoo and Braun (2010) compared the injury patterns on artificial and natural 

turf fields. According to the authors, there tends to be a higher occurrence of head and neck 

injuries, cuts, abrasions, and ankle sprains on artificial turfs. Gould et al. (2022) found that the 

overall rate of injuries, as well as knee-specific injuries, were comparable for artificial turf and 

natural grass. However, injuries to the foot and ankle were more commonly reported on artificial 

turf than on natural grass. Drakos et al. (2013) identified a range of injuries associated with 

artificial turf such as injuries related to the foot, ankle, and knee. They also highlighted several 

non-orthopedic injuries that can occur on artificial turf, including concussions, skin infections, 

respiratory issues, and potential carcinogenic risks due to the crumb rubber used in the third 

generation of artificial turf fields. 

Charalambous et al. (2023) assessed how the temperature of artificial turf affects its 

mechanical characteristics and the movement dynamics related to sports played on turf. The 

research indicated that the temperature of the turf surface impacts its mechanical characteristics. 
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Notably, the study observed that a colder surface temperature range of 1.8°C to 2.4°C resulted in 

a noticeably "firmer" and more rigid turf. Such alterations in the turf's mechanical properties could 

influence an athlete's movements during landing and sprinting, potentially affecting their 

performance and increasing the risk of injuries, especially in colder environments where artificial 

turf is used for sports activities.  

According to Villacañas et al. (2017), manufacturers have consistently enhanced artificial 

turf to mimic the features and qualities of natural grass. Despite these advancements, artificial turf 

still tends to heat up more than natural grass, leading to user dissatisfaction, diminished 

performance, and an increased risk of heat-induced injuries.  

Research in various sports disciplines has shown that excessive heat can affect an athlete's 

performance by raising body temperature, which may lead to an elevated sense of exertion among 

athletes (Nybo, 2008; Galloway and Maughan, 1997). Buskirk et al. (1971) suggested that the 

elevated temperatures associated with artificial turf could contribute to physiological stress among 

athletes. 

Wardenaar et al. (2023) described that despite receiving less solar radiation than natural 

grass during practice times, artificial turf’s higher surface temperature led to greater emission of 

longwave radiation, thus increasing the heat radiated back to athletes. This, coupled with the 

elevated air temperature on artificial turf, which impedes convective heat dissipation, resulted in a 

greater heat burden on players. Consequently, athletes on artificial turf reported significantly 

higher skin temperatures and perceived heat stress. These factors diminished when players 

engaged in activities under cooler conditions, with natural grass being cooler than artificial turf 

providing the lowest heat load.  
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The performance of athletes on artificial turf fields can significantly vary based on the 

field's design and the materials used in its construction (Fleming, 2011). Factors such as the type 

of fibers, infill material, the sub-base, and the presence of an elastic layer can all influence the 

mechanical properties of the turf (Alcantara et al., 2006; Burillo et al., 2014). 

Drakos et al. (2013) mentioned that the modern third generation artificial turf fields show 

lower association with injuries. Introduced in 1998, the third generation of artificial turf features 

longer fibers, measuring 60-65 mm, compared to the shorter fibers of the first and second 

generations, and utilizes a mix of rubber and sand for the infill layer, which is 40 mm thick, instead 

of just sand (Aoki, 2011). William and Pulley (2002) mentioned that in hot weather, third-

generation artificial turf can become up to 3°C hotter than asphalt and 30°C warmer than natural 

grass. Furthermore, a 2008 report by the New York City Department of Health and Mental Hygiene 

(Denly et al., 2008) highlighted that the primary health concern with third-generation artificial turf 

is the high surface temperatures it can reach. The surface temperature of artificial turf can 

significantly increase when ambient temperatures exceed 32.2°C, elevating the risk of heat-related 

issues like heatstroke, blisters, and dehydration (Nybo, 2008). 

4.3 Environmental Impacts  

The use of artificial turf contributes to various detrimental environmental effects, 

particularly in cities where it can cause a significant rise in ground temperature, leading to heat-

related health issues. The environmental impacts of artificial turf are detailed in the following 

sections. 

4.3.1 Elevated temperatures of playing surface 

Artificial turf's thermal properties can lead to an increase in surface temperatures, which 

may sometimes surpass safe levels. A study by Twomey et al. (2016) analyzed how different 
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factors, including ambient temperature, humidity, cloudiness, and wind velocity, affect the surface 

temperatures of both natural and artificial grass. The findings indicated that higher ambient 

temperatures and direct sunlight are the primary contributors to the rise in surface temperature of 

artificial turf. There was an observed negative correlation between humidity and the surface 

temperature of artificial turf, while wind speed's impact was inconsistent across various fields. 

According to Villacañas et al. (2017), altering the shape and structure of the artificial turf 

fibers should be considered, as their design can contribute to lowering the surface temperature of 

artificial turf.  

4.3.2 Concerns about the environment stemming from tire crumbs 

Prior research has highlighted the concern over heavy metals like Cd, Cr, and Pb 

transferring to the air and rainwater around artificial playfields. The environmental hazard is 

underscored by the incineration of rubber tire crumbs, which has shown a marked increase in the 

quantity and toxicity of dangerous chemicals released (Celeiro et al., 2018; Armada et al., 2022). 

Under The Safe Drinking Water and Toxic Enforcement Act of 1986, California established a limit 

of 50 mg/kg for lead content in artificial turf. (Brown et al., n.d.). 

A study from Yale University discovered that the crumb rubber infill contains at least 306 

different chemicals, with as many as 197 identified as carcinogens (Perkins et al., 2019). 

Environmental harm can result from the runoff emanating from artificial fields containing crumb 

rubber, as this runoff may include hydrocarbons, organic substances, and metals (Pochron et al., 

2017). 

Kole et al. (2023) identified the different routes through which infill material exits an 

artificial turf football field and estimated the amount of infill material leaving the turf through each 

of these routes. The authors calculated an annual loss of 948 kg of tire granulate from the turf 
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through known pathways, excluding snow removal. Considering snow removal an additional 830 

kg of granulate per year would be lost, resulting in a total loss ranging from 1778 kg/year to 5030 

kg/year. On average, these fields are replenished with 3312 kilograms of rubber granulate each 

year. To mitigate the effects of surface hardening, the authors have recommended adding an 

average of 1260 kilograms of rubber granulate annually. Figure 4.2 shows the pathways and 

corresponding amount of rubber granules leaving an artificial turf football field according to Kole 

et al. (2023). 

 

 

Figure 4.2: The routes and corresponding quantities of rubber granulate used as infill for an 

artificial turf football field (adapted from Kole et al., 2023) 
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4.3.3 Release of heavy metals into the environment 

Cheng et al. (2014) and Murphy and Warner (2022) have both reported that heavy metals 

and organic pollutants can leach out from the rubber crumbs of tires used in artificial turf as 

rainwater percolates through the infill layer. The levels of these leached substances differ among 

various types of infill materials. Magnusson and Macsik (2017) found detectable levels of zinc, 

chloride, fluoride, sulfate, distillable phenols, and Dissolved Organic Compounds (DOCs) in the 

leachates from different types of infill materials. Additionally, Schilirò et al. (2013) found that 

zinc and Polycyclic Aromatic Hydrocarbons (PAHs) were commonly present in the leachate from 

crumb rubber.  

Trace amounts of lead and other heavy metals are deliberately added to artificial turf 

components to maintain their color brightness over an extended period (Brown et al., n.d.) which, 

over time, can leach out from artificial turf.  

Aoki (2011) mentioned that the leaching of heavy metals into the environment increases 

as the acidity of solutions, mimicking acid rain, rises. 

4.3.4 Harm to ecosystems caused by toxic substances 

Cheng et al. (2014) highlighted the potential ecological toxicity stemming from runoff from 

synthetic sports fields, which tend to contain elevated levels of zinc that could harm aquatic 

ecosystems. 

The use of tire granulate as infill for artificial turf is often perceived as a troubling method 

for disposing of old tires because of its loose application on the surface, leading to inevitable 

dispersion into the surrounding environment (Kole et al., 2023). Research conducted by Khan et 
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al. (2019) and Halle et al. (2021) highlighted that not only can leachate from tires be problematic, 

but ingested tire particles can also have adverse effects on benthic invertebrates.  

4.3.5 Increased potential for flooding  

Substituting natural grass with synthetic turf might lead to adverse environmental and 

hydrological consequences, including challenges with urban drainage systems, such as increased 

surface runoff, diminished ground infiltration, and a heightened risk of flooding in city areas 

(Simpson & Francis, 2021).  

4.3.6 Contribution to plastic pollution in the environment 

The issue of plastic pollution, impacting both land and sea environments worldwide, is 

exacerbated by artificial turf, as identified by Simpson & Francis (2021). Their research found that 

artificial turf lawns shed plastic materials, such as fibers and thatch, which then contribute to 

pollution when washed away by rainwater runoff. 

Plastic pollution is widely acknowledged as a significant human-induced problem in 

aquatic ecosystems. De Haan et al. (2023) examined the presence of artificial turf fibers in rivers 

and oceans, which serve as significant pathways for plastic debris carried by runoff. Their 

investigation revealed that artificial turf fibers can make up over 15% of mesoplastics and macro 

plastics, suggesting a notable contribution to plastic pollution. The authors also mentioned that up 

to 20,000 fibers are observed in river flow, and nearshore sea surfaces everyday containing up to 

213,200 fibers per square kilometer. They concluded that in addition to impacting urban 

biodiversity, water runoff, heat absorption, and chemical discharge, artificial turf is becoming a 

significant contributor to plastic contamination in natural water bodies. The concentration of 

artificial turf-derived plastics is particularly pronounced in coastal areas and regions close to 
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human settlements, especially during the rainy season when runoff into aquatic environments is 

heightened (De Haan et al., 2023).  

 

4.4 Appropriateness for Artificial Turf Usage 

Artificial turf serves as a practical option for areas where harsh climates impede the growth 

of natural grass or where upkeep is prohibitively expensive. However, it should not be regarded as 

a complete replacement for natural grass pitches, as it does not suit all climatic conditions. Table 

4.2 presents the appropriateness of using artificial turf explored by Shi and Jim (2021) and Jim 

(2016) in their respective research.  

 

Table 4.3: Appropriateness for artificial turf usage 

 

Recommended applications for artificial 

turf 

Situations where using artificial turf is 

discouraged 

In conditions with cloudy or overcast weather, 

which diminish the intensity of direct sunlight 

and overall solar radiation. 

In areas that receive intense direct sunlight, 

which can elevate the risk of heat-related 

stress. 

Indoor sports arenas that are equipped with 

adequate air circulation systems. 

For activities that involve intense physical 

exertion under direct sun exposure, due to the 

increased risk of heat stress. 

 

 

In the United States, northern regions typically experience dry conditions with cold winters 

and hot summers, whereas the southern areas are characterized by a humid subtropical climate. 

Schneider and Hypes (2014) suggest that in northern states, where natural grass only experiences 
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optimal growth for about three months, artificial turf fields might be a more suitable option. 

Conversely, in the southern states, where conditions are more favorable for the year-round growth 

of natural grass, it is recommended to opt for natural turf over artificial alternatives due to the 

inherent advantages that natural grass offers, which artificial turf cannot replicate. 

Charalambous et al. (2023) suggested the manufacturers and researchers should explore 

the appropriateness of artificial turf for colder settings. The authors also mentioned that artificial 

turf fields should be certified before use, to ensure they do not negatively impact the game or 

player safety. Henryk et al. (2023) mentioned that maintaining artificial turf playing fields involves 

not just the evaluation of certified cushioning materials (such as top-grade rubber granulate) but 

also the routine substitution of the worn products.  

 

4.5 Conclusions  

 

Despite the health and environmental issues associated with artificial turf, the incorporation 

of recycled tire crumbs into these surfaces offers several advantages. According to Schiliro et al. 

(2013), using crumb rubber in football fields can lead to a reduction in sports-related injuries. 

Furthermore, the process of creating tire crumbs repurposes a substantial quantity of used tires 

(Cheng et al., 2014). Murphy and Warner (2022) noted that a professional-sized sports field 

typically requires between 20,000 to 40,000 tires to produce the necessary crumb rubber. While 

crumb rubber can also be made from virgin rubber, utilizing recycled tires lowers the overall cost 

of producing artificial turf. 

The decision to install artificial turf must be tailored to the specific characteristics and 

needs of each location. Factors to consider include the surface's longevity, total lifecycle expenses, 

its propensity to retain heat, potential exposure to harmful substances, environmental effects, and 
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aesthetic qualities (Schneider & Hypes 2014). Shi and Jim (2021) recommended conducting an 

assessment of a site's solar exposure before deciding on the installation of artificial turf. Installing 

artificial turf in areas exposed to direct sunlight is not recommended due to the potential for heat-

related health risks. To mitigate the danger of heat stress for athletes on warmer days, it is advisable 

to organize games and training sessions during nighttime hours. Twomey et al. (2016) argue that 

artificial turf's ability to withstand harsh weather conditions and provide a consistent playing 

surface makes it an appealing choice. However, its tendency to heat up more than natural grass is 

a concern that needs to be managed effectively. 

In conclusion, it's crucial to have a well-rounded understanding of both the beneficial and 

adverse effects of artificial turf before proceeding with its installation. While artificial turf may 

serve aesthetic purposes well, architects and urban planners should also consider its long-term 

impacts on urban settings. 

4.5.1 Challenges  

 

● Recycled crumb rubber is favored over other, less damaging infill options primarily 

because it lowers production expenses. However, these recycled materials may deteriorate 

more rapidly in extreme weather, leading to environmental concerns.  

● Various methodologies are employed to assess the effects of artificial turf on human health 

and the environment, yet the scarcity of experimental data challenges the validation of 

model-generated information.  

● The absence of consistent, long-term data collection also complicates the creation of time-

series analyses.  
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● The limited availability of studies on health risks and toxicological impacts hampers the 

comprehensive understanding of the health implications associated with artificial turf.  

● The potential for microplastic pollution, the heat island effect increasing local 

temperatures, and the loss of natural habitat contribute to the growing list of challenges 

associated with the use of artificial turf. 

4.5.2 Opportunities  

 

● It is important to conduct life cycle assessments for various artificial turf materials, such 

as nylon, polyethylene, and polypropylene, to evaluate and compare their environmental 

footprints. 

● Apart from crumb rubber, other artificial turf components, like the fibers and backing 

materials made from different polymers, should also be studied to measure their overall 

impact. 

● Future investigations should also delve into the fate and toxicity of contaminants found in 

crumb rubber, such as heavy metals and organic pollutants, to better understand their 

environmental consequences. 

● Exploring the various ways in which crumb rubber particles might enter the human body 

through detailed modeling could illuminate their potential health effects. 

● Comparative studies on the health impacts of recycled versus virgin infill materials are 

needed, as well as research on the leachates from crumb rubber that may contaminate 

groundwater with harmful chemicals like phthalates. 

● Recycling facilities for synthetic turf materials should be developed to prevent landfill 

disposal at the end of their lifecycle. 
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● Finally, the design parameters like the height and density of the artificial turf fibers, along 

with the choice of infill materials, play a crucial role in influencing hydrological processes 

and should be selected with care to mitigate adverse impacts, as highlighted by Simpson 

and Francis (2021). 
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CHAPTER 5: CONTRIBUTIONS AND RECOMMENDATIONS 

5.1 Summary  

 

This thesis presents a comprehensive analysis of the thermal and spectral characteristics of 

Las Vegas Valley. This first objective examines the effects of artificial turf on the urban thermal 

environment in the LVV. To assess this impact, LST and surface albedo were analyzed at 26 ROIs 

that transitioned from natural to artificial turf, alongside another 26 ROIs that remained unchanged 

between 2018 and 2022. The data for this analysis was obtained from all available Landsat 8 

satellite imagery for the respective years. The transitioned ROIs comprised high school football 

fields, while the non-transitioned ROIs, primarily golf courses, served as a control group in this 

research. The entire analysis was conducted using GEE and ArcGIS Pro, with statistical 

assessments carried out in R-Studio.  

This study investigated the effect of artificial turf on LST in the LVV from 2018 to 2022, 

focusing on 26 ROIs where turf transitioned from natural to artificial. These were compared with 

26 control ROIs that retained their natural turf. Initial analyses involved comparing LST for each 

ROI across the two years, revealing that artificial turf tended to elevate surface temperatures during 

warmer months, while cooler months saw a reduction in LST for transitioned ROIs. The control 

group, however, showed minimal changes, with a slight increase in LST during summer in a few 

ROIs. Further analysis examined average LST changes per ROI, identifying an increase in 7 

transitioned ROIs but a decrease or no change in the rest. Conversely, the control ROIs largely 

maintained their average LST, with only one showing an increase. Annual average comparisons 

indicated a general decrease in surface temperature for both groups in 2022. Seasonal variability 

was also assessed, showing a significant summer LST increase in all transitioned ROIs, whereas 
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the control ROIs presented mixed results. T-Tests were conducted to assess the significance of 

these changes. The T-Tests results which combined the data revealed substantial impact of turf 

transition on LST for transitioned ROIs, and stability within the control group across the study 

period.  

The average discrepancy between the 10 am temperatures and the daily peaks for specific 

dates rose marginally from 5.83°C in 2018 to 6.23°C in 2022. The LST readings taken at 10 am 

using Landsat 8 satellites are likely a few degrees Celsius below the true peak LST, which could 

be captured during the hottest part of the day. To obtain the actual peak LST, an on-site infrared 

radiometer can be employed, rather than relying on satellite-based remote sensing data. 

Several analyses were performed to assess the effect of switching to artificial turf on the 

surface albedo within the LVV over the period from 2018 to 2022, focusing on 26 ROIs that 

underwent this transition. These findings were then compared with those from another 26 ROIs 

that maintained their natural turf, serving as a control group for this investigation. Initial 

assessments involved comparing the surface albedo for each ROI across the two years through 

scatter plots. A significant decline in albedo values was noted in 2022 for the ROIs that had 

transitioned, with these values remaining relatively stable throughout the year, in contrast to the 

seasonal variability observed in 2018. The average albedo for all transitioned ROIs decreased in 

2022 where the albedo values decreased at 8 non-transitioned ROIs and increased in the rest. 

Seasonal analysis indicated a reduction in albedo for nearly all transitioned ROIs during the 

summer, except for two. In contrast, the non-transitioned ROIs displayed a seasonal trend of 

decreasing albedo from winter to fall. The T-Tests revealed marked differences in surface albedo 
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between 2018 and 2022 for the transitioned ROIs, whereas the non-transitioned ROIs mostly 

showed no significant change.  

In the comprehensive comparison of ROIs over the two years in question, it was observed 

that transitioning to artificial turf correlated with elevated surface temperatures, but only during 

the warmer months. The paired T-Test results that combined annual and seasonal data showed 

significant differences on LST between 2018 and 2022 for the transitioned ROIs. The albedo 

values for ROIs with natural grass remained relatively unchanged between the two years. 

Conversely, a notable decrease in albedo was observed in most ROIs that transitioned to artificial 

turf. The T-Tests revealed significant differences in albedo between 2018 and 2022 for these 

transitioned ROIs, whereas the non-transitioned ROIs showed no significant changes. 

The second objective focused on 26 high school football fields in the valley that 

transitioned from natural to artificial turf between 2018 and 2022. A total of 48 charts were 

produced, detailing the spectral signature curves for all the selected regions. The 2018 curves had 

features indicative of natural grass, while the 2022 curves did not show these traits. Some areas 

and months did not exhibit NIR reflection. The most evident distinction was in the SWIR 1 region's 

reflectance, with opposing slope directions in the two years. Interestingly, despite being plastic, 

the synthetic turf exhibited increased reflectance in the SWIR 1 region, possibly due to surface 

temperature effects. Average reflectance values of all 26 ROIs of each month of 2018 and 2022 at 

each wavelength displayed distinct curves for each year. Additionally, NDVI values were 

determined for ROIs that switched from natural to artificial turfs between 2018 and 2022, as well 

as for ROIs that retained natural grass, serving as a control group. Distinct NDVI values and curves 
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were obtained for artificial turf. T-Test results also confirm significant differences in NDVI for the 

transitioned ROIs between 2018 and 2022.  

The GEE was instrumental in assessing the spectral signatures of the turfs, offering insights 

on reflectance values for each wavelength. The GEE Code Editor streamlined the process, allowing 

easy access to the API (Application programming interface) for analytical tasks. It efficiently 

generated spectral signature charts, and the entire undertaking was cost-free. While the Landsat 

imagery available in GEE wasn't of the highest spatial resolution for this detailed analysis, the 

platform's capabilities surpassed other geoprocessing software, especially when conducted on less 

robust systems (Liss et al., 2017).  

This thesis includes an additional chapter that examines the health and environmental 

effects of artificial turf. It covers issues such as the use of recycled tire crumb as infill, the presence 

of microplastics in turf components, and the composition of turf fibers. It also addresses health 

risks like MRSA infections, heat-related illnesses, and various injuries that athletes might suffer 

on artificial playing surfaces. On the environmental side, the focus is on the higher temperatures 

of turf surfaces, ecological damage from toxic substances, and a greater risk of flooding. The thesis 

suggests that the decision to install artificial turf should be tailored to the unique conditions and 

requirements of each location. 

Artificial turf is often utilized as a water-saving substitute for natural grass in arid regions 

like the LVV, where water conservation is a major concern. Artificial turf can raise local 

temperatures, therefore it's important to balance the advantages of water conservation against any 

potential thermal effects. Elevated surface temperatures have the potential to negatively impact 

public health, cause discomfort, and raise the risk of heat-related illnesses. Artificial turf should 

not be considered as a full replacement for natural grass. Its suitability varies with different weather 
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conditions. Shi and Jim (2022) suggested avoiding artificial turf in areas that receive direct 

sunlight, as it can increase the risk of heat stress, and particularly in situations involving intense 

physical activities under direct sun exposure. Therefore, studying the impact of artificial turf on 

the urban thermal environment of LVV is essential for informed urban planning and policymaking, 

aimed at creating a healthy and comfortable urban environment, especially considering the unique 

climate challenges of the region.  

 

5.2 Contributions  

 

In this research, the potential of GEE and ArcGIS Pro were explored to ascertain the LST, 

surface Albedo and spectral signature of natural grass and artificial turf in the LVV. These tools 

offer a cost-free method for acquiring LST, albedo, and spectral data without the need for 

sophisticated equipment or costly satellite imagery. No previous research has employed these 

technologies to gather data on LST, albedo, or spectral reflectance. Unlike prior research that 

primarily focused on summer periods to evaluate the impact of artificial turf on urban heat, this 

study expanded its analysis to include all months of the years 2018 and 2022, capturing seasonal 

fluctuations in surface temperatures of both turf types. Most of the previous studies spanned for 

only two days, while this research stands out by examining data from all the days of 2018 and 

2022 when the satellite images were available. In total, 48 Landsat 8 satellite images from 2018 

and 2022 were downloaded to carry out a comprehensive analysis. The study encompassed 26 

ROIs that transitioned from natural to artificial turf during this period, alongside a control group 

of 26 ROIs that retained natural grass, enabling a detailed comparison of surface temperatures, 

albedo, and spectral signatures of both types of turf throughout the entire LVV. This approach of 

covering an extensive number of regions over a prolonged time frame is unique in the field. This 



 

212 

 

research examined the transformation of 26 high school football fields from natural grass to 

artificial turf over the period from 2018 to 2022, in contrast to earlier studies that only analyzed 

data from a single point in time. 

 

5.3 Limitations 

 

● Since the equatorial crossing time of Landsat 8 satellite is 10:00 am +/- 15 minutes 

(European Space Agency, 2022), the remote sensing images are taken at 10am local time.  

Hence, the recorded temperature gives a snapshot of the surface conditions specifically at 

that time (Black et al., 2019). The LST of the reflectance might not be the peak at this time.  

● Some external factors, such as changes in surrounding infrastructure, shade availability, 

irrigation practices, and other management changes can affect the accuracy of LST, albedo 

readings, spectral data and NDVI calculations. 

● The temporal resolution of the Landsat 8 satellite is 16 days. So only one or two images 

were found each month. The data from this one image can be impacted by atmospheric 

conditions like cloud, haze, precipitation, pollution etc.  

● Freely available Landsat 8 dataset was used in this study, which has coarser spatial 

resolution. Finer resolution data could give better results.  

● The data can be seasonally dependent. Variations in sun angle, weather conditions, and 

plant life cycles throughout the year can introduce variability in the data. 

● The absence of consistent, long-term data collection complicates the creation of time-series 

analyses for health and environmental implications of artificial turf.  

● The limited availability of studies on health risks and toxicological impacts hampers the 

comprehensive understanding of the health implications associated with artificial turf. 
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5.4 Recommendations for the Future Studies  

 

● Subsequent research could employ high-resolution satellite imagery from commercial 

satellites. Companies like Maxar Technologies, Planet Labs, 21st Century Aerospace 

Technology, and Airbus Defense and Space, which operate in the commercial satellite 

sector, provide the public with access to some of the most detailed satellite imagery. They 

supply images with resolutions reaching up to 30 centimeters (about 11.8 inches) per pixel, 

allowing for the identification of ground objects as small as 30 centimeters in the imagery. 

(GeoWGS, 2024) 

● Investigating the parameters across various natural grass types (such as Bermuda, Bent, 

and Rye) and artificial turfs made from diverse materials like polyethylene, polypropylene, 

and nylon would facilitate a comparative study. 

● Given that temperature fluctuations are natural from year to year, extending the analysis 

over multiple years would enhance the comparative aspect of the study.  

● To mitigate the limitations of solely focusing on football fields, it might be beneficial to 

include a more diverse range of sites and consider additional variables that could influence 

the studied parameters for future studies.  

● Future studies could extend to measuring the night-time temperatures of artificial turf in 

addition to daytime readings. Monitoring the 24-hour diurnal cycle could reveal nocturnal 

heat exchanges, which play a crucial role in the overall energy balance. 

● Verifying the outcomes of this study through ground truthing with suitable measurement 

tools can help ascertain the accuracy of the findings.  

● Understanding the specific turf materials utilized at each site could provide important 

information on their seasonal performance variations. This knowledge could serve as a 
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critical component for future research, guiding more tailored and effective strategies for 

turf management and selection based on regional climate conditions and usage needs. 

● Additional research can be undertaken to identify areas within the valley that have shifted 

from natural to artificial turf, providing deeper insights into the effectiveness of the lawn 

transition initiatives. 

● Alongside NDVI, future studies could include additional vegetation indices or thermal data 

to provide a more comprehensive view of vegetation health and surface temperatures. 

● It is important to conduct life cycle assessments for various artificial turf materials, such 

as nylon, polyethylene, and polypropylene, to evaluate and compare their environmental 

footprints. 

● While there is a wealth of research focusing on the use of recycled crumb rubber as an infill 

material due to its associated health and environmental risks, the other components of 

artificial turfs, like the fibers and backing materials made from different polymers, warrant 

similar scrutiny to gauge their overall impact. 

● Future investigations should also delve into the fate and toxicity of contaminants found in 

crumb rubber, such as heavy metals and organic pollutants, to better understand their 

environmental consequences. 

● The study compared the LST/ Albedo/ NDVI differences in football fields with the golf 

courses which have varying topography, grass characteristics, surrounding structures etc. 

For enhanced accuracy, a comparison should be made between football fields that have 

transitioned and those that have remained unchanged. 
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5.5 Recommendations for the Policy Makers and Urban Planners 

 

● The study indicates that artificial turf elevates surface temperatures in the summer, 

highlighting the need for policymakers and urban planners to consider this factor in their 

summer construction and landscaping plans.  

● Given the substantial water required to lower temperatures on artificial turf fields during 

hotter months, water resource management should be tailored to accommodate this 

demand.  

● The strategic placement of artificial turf around the valley is essential to prevent any single 

area from having an excessive concentration, which could result in elevated surface 

temperatures compared to other areas. 

● In areas with artificial turf, adding shade structures, water features, or incorporating cooling 

materials into the surrounding landscapes are some examples of heat mitigation measures 

that can be used to mitigate the increase of heat during summer season.  

● Given that increased surface albedo can significantly lower maximum surface temperatures 

(Gustin et al., 2018), urban planners are advised to incorporate urban elements with higher 

albedo values to help reduce surface temperatures. 

● The choice of fiber height and density, along with the type of infill used in artificial turf, 

can impact water drainage and retention, as highlighted by Simpson & Francis (2021). 

These elements should be meticulously considered during the selection process prior to 

installing artificial turf to ensure optimal hydrological performance. In their research, 

Petrass et al. (2014) found that products using Thermoplastic Elastomer (TPE) as infill 

exhibited significantly cooler surface temperatures compared to those using organic or 
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Styrene-butadiene Rubber (SBR) infill. Villacañas et al. (2017) suggested the use of 

thermoplastic rubber and monofilament fibers to reduce the turf surface temperature.  

● The urban policy makers can employ the approach studied in this thesis to get the spectral 

signature of any object from a larger area at completely free of cost, without using any 

powerful tool or expensive satellite.  

● Urban planners can use a combination of NDVI data, local climate patterns, and water 

usage studies to make informed decisions about urban landscape planning. 

● Alternatives to traditional recycled crumb rubber, such as organic or natural infill materials 

derived from coconut shells, walnut shells, rice husks, and renewable corks, could offer a 

solution, albeit at a higher cost.  

● Installing artificial turf in areas exposed to direct sunlight is discouraged to prevent heat-

related health concerns among individuals. To mitigate the risk of heat stress among 

athletes on warmer days, it is advisable to schedule games and practice sessions during 

nighttime. 

● Charalambous et al. (2016) suggested the manufacturers and researchers should explore 

the appropriateness of artificial turf for colder settings. The authors also mentioned that 

artificial turf fields should be certified before use, to ensure they do not negatively impact 

the game or player safety. Henryk et al. (2023) mentioned that maintaining artificial turf 

playing fields involves not just the evaluation of certified cushioning materials (such as 

top-grade rubber granulate) but also the routine substitution of the worn products.  

● Developing policies that require the consideration of spectral and thermal characteristics 

in the selection of urban materials should be encouraged. 
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● Continuous monitoring of urban areas with artificial turf is recommended to further 

understand long-term impacts on local microclimates and to assess whether adjustments in 

urban planning policies might be needed. 

● According to the SNWA conservation plan 2019 existing building regulations limit the 

installation of turf in new developments. It should be maintained strictly by the urban 

planners to prevent water wastage on non-functional turf. (Joint Water Conservation Plan, 

2019) 
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APPENDIX A 

 

Appendix A.1: Comparative Analysis of LST for 26 transitioned ROIs in 2018 (Blue) and 2022 

(Orange) 
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Figure A.1: Comparative Analysis of LST for 26 transitioned ROIs in 2018 (Blue) and 2022 

(Orange) 
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Appendix A.1: Comparative Analysis of LST for 26 non-transitioned ROIs in 2018 (Blue) and 

2022 (Orange) 
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Figure A.2: Comparative Analysis of LST for 26 non-transitioned ROIs in 2018 (Blue) and 

2022 (Orange) 
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Appendix A.2:  Comparative Analysis of Surface Albedo for 26 transitioned ROIs in 2018 

(Blue) and 2022 (Orange) 
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Figure A.3: Comparative Analysis of Surface Albedo for 26 transitioned ROIs in 2018 (Blue) 

and 2022 (Orange) 
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Appendix A.3: Comparative Analysis of Surface Albedo for 26 non-transitioned ROIs in 2018 

(Blue) and 2022 (Orange) 
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Figure A.4: Comparative Analysis of Surface Albedo for 26 non-transitioned ROIs in 2018 

(Blue) and 2022 (Orange) 
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Appendix A.4: LST 18 Inverse Distance Row 

 

Spatial Autocorrelation Report 

 

 

Given the z-score of 3.248639, there is a less than 1% likelihood that this clustered pattern 

could be the result of random chance. 

Moran's Index: 0.424716 

z-score: 3.248639 

p-value: 0.001160 
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Global Moran's I Summary 

Moran's Index: 0.424716 

Expected Index: -0.040000 

Variance: 0.020463 

z-score: 3.248639 

p-value: 0.001160 

 

 

Dataset Information 

Input Feature Class: FullPixels_AT_SpatialJoin1 

Input Field: LST18 

Conceptualization: INVERSE_DISTANCE 

Distance Method: EUCLIDEAN 

Row Standardization: True 

Distance Threshold: 10301.8266 Meters 

Weights Matrix File: None 

Selection Set: False 
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Appendix A.5: LST 18 KNN Row 8  

 

Spatial Autocorrelation Report 

 

 

 

Given the z-score of 3.546458, there is a less than 1% likelihood that this clustered pattern 

could be the result of random chance. 

Moran's Index: 0.226177 

z-score: 3.546458 

p-value: 0.000390 
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Global Moran's I Summary 

Moran's Index: 0.226177 

Expected Index: -0.040000 

Variance: 0.005633 

z-score: 3.546458 

p-value: 0.000390 

 

 

Dataset Information 

Input Feature Class: FullPixels_AT_SpatialJoin1 

Input Field: LST18 

Conceptualization: K_NEAREST_NEIGHBORS 

Distance Method: EUCLIDEAN 

Row Standardization: True 

Distance Threshold: None 

Weights Matrix File: None 

Selection Set: False 
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Appendix A.6: LST 22 Inverse Distance Row  

 

Spatial Autocorrelation Report 

 

 

 

Given the z-score of 0.656609, the pattern does not appear to be significantly different than 

random. 

Moran's Index: 0.051376 

z-score: 0.656609 

p-value: 0.511432 
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Global Moran's I Summary 

Moran's Index: 0.051376 

Expected Index: -0.040000 

Variance: 0.019366 

z-score: 0.656609 

p-value: 0.511432 

 

 

Dataset Information 

Input Feature Class: FullPixels_AT_SpatialJoin1 

Input Field: LST22 

Conceptualization: INVERSE_DISTANCE 

Distance Method: EUCLIDEAN 

Row Standardization: True 

Distance Threshold: 10301.8266 Meters 

Weights Matrix File: None 

Selection Set: False 
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Appendix A.7: LST 22 KNN Row 8  

 

Spatial Autocorrelation Report 

 

 

 

Given the z-score of 0.728385, the pattern does not appear to be significantly different than 

random. 

Moran's Index: 0.013218 

z-score: 0.728385 

p-value: 0.466378 
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Global Moran's I Summary 

Moran's Index: 0.013218 

Expected Index: -0.040000 

Variance: 0.005338 

z-score: 0.728385 

p-value: 0.466378 

 

 

Dataset Information 

Input Feature Class: FullPixels_AT_SpatialJoin1 

Input Field: LST22 

Conceptualization: K_NEAREST_NEIGHBORS 

Distance Method: EUCLIDEAN 

Row Standardization: True 

Distance Threshold: None 

Weights Matrix File: None 

Selection Set: False 
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