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ABSTRACT

Standard and non-standard log-linear models

for 2× 2 contingency tables

by

G M Toufiqul Hoque

Examination Committee Chair: Dr. Petros Hadjicostas

Log-linear models can be used to model the joint relationship of two or more categorical

variables in a multiway contingency table. In a log-linear model, the logarithm of the ex-

pected joint counts (or the logarithm of the joint probabilities) in a contingency table can

be written as a linear model.

Most log-linear models used in practice are standard. Standard log-linear models include

the traditional parameter terms we see in ANOVA models: an overall effect, main effects,

and various kinds of interaction terms.

Standard log-linear models are divided into hierarchical and non-hierarchical. Hierarchi-

cal models satisfy the hierarchy principle: if a higher-order term is included in the log-linear

model, then so are all the lower-order terms.

Most of the standard log-linear models used in practice are hierarchical models. Non-

hierarchical standard models appear rarely in the literature because they are difficult to

interpret.

In this thesis, we examine standard and non-standard log-linear models for 2 × 2 con-

tingency tables. To show their application, we use a thromboembolism data set that first

appeared in Vessey and Doll (1968) and was later analyzed by Worcester (1971) using a

multiplicative model, which can be equivalently written as a non-standard log-linear model.

Although the above data were collected in a one-to-two matching design, Worcester

(1971) analyzed them using multinomial sampling where only the total was fixed.

In this thesis, however, we also examine a product multinomial sampling design for these

data, which is a more correct probability model for a matched design.
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We use the free statistical software R to estimate the above log-linear models. We

compare the estimated log-linear models using the Pearson chi-square test, the G-square

test, and the AIC, and we discuss the results.
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CHAPTER 1

INTRODUCTION

Contingency tables cross-classify two or more nominal or ordinal categorical variables. Ob-

served contingency tables usually contain frequencies (counts) or percentages, which can be

conditional or unconditional.

Log-linear models can be used to model the joint relationship of two or more categorical

variables in a multiway contingency table. In a log-linear model, the logarithm of the ex-

pected joint counts (or the logarithm of the joint probabilities) in a contingency table can

be written as a linear model using ANOVA-type notation. See, for example, Agresti [1] and

Bishop et al. [2].

Most log-linear models used in practice are standard. Standard log-linear models include

the traditional parameter terms we see in ANOVA models: an overall effect, main effects,

and various kinds of interaction terms. Because the number of such parameters is usually

larger than the number of expected counts, various kinds of restrictions on these parameters

are usually imposed.

Standard log-linear models are divided into hierarchical and non-hierarchical. Hierarchi-

cal models satisfy the hierarchy principle: if a higher-order term is included in the log-linear

model, then so are all the lower-order terms. (Many times, but not always, the hierarchy

principle is followed in traditional ANOVA models.)

Most of the standard log-linear models used in practice are hierarchical models. Non-

hierarchical standard models appear rarely in the literature because they are difficult to

interpret.

Non-standard log-linear models are also rare in practice, but they sometimes appear in

relation to synergy. For example, in his recent Ph.D. dissertation, Hasan [10] used non-

standard log-linear models to study synergy of two categorical variables in affecting a third

one. We do not examine synergy in this thesis. (For other examples of the use of non-

standard log-linear models, see von Eye and Mun [13] and von Eye et al. [14].)
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In this thesis, we examine standard and non-standard log-linear models for 2 × 2 con-

tingency tables. To show their application, we use a thromboembolism data set that first

appeared in Vessey and Doll [11] and was later analyzed by Worcester [15] using a multi-

plicative model, which can be equivalently written as a non-standard log-linear model.

The aforementioned thromboembolism data set was collected from a hospital index when

in May 1967 the Medical Research Council of the Statistical Research Unit of the University

College Medical School London looked into the risks of thromboembolic disease in women

taking oral contraceptives. The researchers examined women who were admitted during the

period 1964–1966 with the age range between 16–40 and having been diagnosed with some

kind of thromboembolism.

Although the above data were collected in a one-to-two matching design (one woman with

thromboembolism was matched to two women with no thromboembolism), Worcester [15]

analyzed them using multinomial sampling where only the total (in this case, 116 women)

was fixed.

In this thesis, however, we also examine a product multinomial sampling design for these

data, which is a more correct probability model for a matched design (where the number

of women with thromboembolism and the number of women with no thromboembolism are

fixed).

We review the theory for the standard hierarchical log-linear models for the above data

(that are cross-classified in a 2 × 2 contingency table). We also review the theory for the

standard non-hierarchical log-linear models that include the overall effect (i.e., the intercept).

Finally, we review the theory of the log-linear version of Worcester’s [15] multiplicative model

mentioned above. This model was also examined by Hasan [10], and it is non-standard.

We use the free statistical software R to estimate the parameters of the above log-linear

models (both standard and non-standard). We compare the estimated log-linear models and

discuss the results.

In more detail, the organization of the thesis is as follows. In Chapter 2, we describe

various thromboembolism data sets that appeared in Vessey and Doll [11], which were col-

lected in 1967. Only one of the data sets is analyzed in this thesis (see Table 2.1). Some

of the other data sets in Chapter 2 were analyzed by Hasan [10] in his Ph.D. dissertation,

Funo [5, 6], and Worcester [15].

In Section 3.1, we define the multinomial and product multinomial sampling schemes for

a 2×2 contingency table. In Section 3.2, we give Worcester’s multiplicative parametrization

of a 2× 2 contingency table that she used to analyze the aforementioned thromboembolism

2



data set in Table 2.1.

In Sections 3.3 and 3.4, we discuss various standard and non-standard log-linear models

to analyze the data in Table 2.1 of Chapter 2. (The non-standard log-linear model we

consider here is the logarithmic version of Worcester’s multiplicative parametrization of a

2 × 2 contingency table that we examine in Section 3.2.) In particular, in Section 3.3 we

use multinomial sampling for a 2× 2 table (and thus we work with unconditional expected

counts), while in Section 3.4 we use product multinomial sampling for a 2 × 2 table (and

thus we work with conditional expected counts).

In Section 4.1, we describe the matrix formulation of log-linear models and explain how

to calculate the MLE of the expected counts using multinomial sampling and product multi-

nomial sampling. In Section 4.2, we state the asymptotic distributions of the MLE of the

expected counts in the cases of multinomial sampling and product multinomial sampling.

In Section 4.3, we discuss the asymptotic distribution of the estimate of the log odds ratio

under multinomial sampling and product multinomial sampling. In Section 4.4, we review

the test statistics for the Pearson chi-square test and the likelihood ratio test. In Section

4.5, we discuss the Akaike Information Criterion (AIC) under the two sampling schemes.

In Section 4.6, we estimate the expected counts and find the estimated asymptotic stan-

dard errors (ASE) of the logarithms of their estimates. Furthermore, we calculate the

goodness-of-fit statistics for the unconditional and conditional log-linear models along with

their AICs and discuss the results.

One thing we observed with the analysis in this thesis is that the ‘best’ log-linear model

is sometimes a standard non-hierarchical model. Such models, however, are difficult to

interpret. For more details, see Section 4.7.

3



CHAPTER 2

DESCRIPTION OF THE DATA

In this chapter, we describe various thromboembolism data sets in Vessey and Doll [11],

which were collected in Britain in 1967. We shall analyze some of these data in this thesis

using standard and non-standard log-linear models.

Even though, in this thesis, we only analyze a 2×2 table cross-classifying two categorical

variables (see Table 2.1), we describe many related datasets in Vessey and Doll [11]. Some

of these are actually a refinement of the data we examine and they include more categorical

variables.

Some of these data sets were analyzed by authors that discussed synergy and antagonism

of two categorical variables on a response using non-standard log-linear models; see Bishop

et al. [2], Funo [5, 6], Hasan [10], von Eye and Mun [13], von Eye, Schuster, and Rogers [14],

and Worcester [15].

In May 1967, the Medical Research Council of the Statistical Research Unit of the Uni-

versity College Medical School London looked into the risks of thromboembolic disease in

women taking oral contraceptives. The data set was collected from the hospital index.

The researchers examined women who were admitted during the period 1964–1966 with

the age range between 16–40 and having been diagnosed with phlebitis, thrombophlebitis,

thrombosis, or embolism. All women satisfying these criteria were selected except if they

were single or widowed, had any other reason for developing the disease, were pregnant,

suffered superficial thrombophlebitis, or were not interviewed because they had died.

Moreover, two control patients were selected for each patient. The control patients were

matched with the affected patients based on their age, date of admission, parity, and absence

of the traits used to remove patients from the affected group.

The information about these patients appears in Tables 2.1, 2.2, and 2.3 of this chapter.

These were copied from Tables IV, VI, and VIII in Vessey and Doll [11, pp. 201–202],

respectively. The three tables compare different factors about these patients.
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Table 2.1 shows the number of patients in the treatment and control groups who had

been taking oral contraceptives and the number of patients in the treatment and control

groups who did not take oral contraceptives. This is a 2 × 2 contingency table and both

factors are nominal.

Table 2.2 is an extension of Table 2.1. It now includes another nominal factor: whether

or not a patient had thromboembolism in the past. This is a 2 × 2 × 2 contingency table

and all three factors are nominal.

Table 2.3 is another extension of Table 2.1. The smoking habit of a patient has now been

added. The number of cigarettes smoked on a given day has been grouped into 3 categories.

This is a 2× 2× 3 contingency table and the smoking habit is an ordinal factor.

In this thesis, as mentioned above, we analyze only the data in Table 2.1 using hierarchical

and non-hierarchical log-linear models and compare the results. We also use non-standard

log-linear models, but the interpretation of the latter models is very problematic.

Table 2.1: Affected and control patients classified by the use of oral contraceptives

during the month before the onset of a disease episode

Oral contraceptive

Diagnostic group Used Did not use Total

Thromboembolism 26 32 58

Control 10 106 116

Total 36 138 174
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Table 2.2: History of previous venous thrombosis or pulmonary embolism in affected

and control patients

Previous thromboembolism

Diagnostic group Oral contraceptive Present Absent Total

Thromboembolism
Used 9 17 26

Did not use 12 20 32

Total 21 37 58

Control

Used 2 8 10

Did not used 3 103 106

Total 5 111 116

Table 2.3: Prevalence of cigarettes smoked at the onset of an episode for cases and

controls

Diagnostic group Oral contraceptive No of cigar. smoked Total

0 1–14 15+

Thromboembolism
Used 8 4 14 26

Did not use 11 14 7 32

Total 19 18 21 58

Control

Used 3 5 2 10

Did not used 49 35 22 106

Total 52 40 24 116

6



CHAPTER 3

THEORETICAL DISCUSSION OF VARIOUS

LOG-LINEAR MODELS FOR 2× 2 CONTINGENCY

TABLES

In this chapter, we give a theoretical discussion of various standard and non-standard log-

linear models which can be used to analyze the data in Table 2.1 of Chapter 2. The table

cross-classifies the categorical variables “use of oral contraceptive” and “diagnostic group”.

3.1 Introduction

Denote by i the level of the diagnostic group (i = 1 for cases and i = 2 for controls) and by

j the level of the contraceptive group (j = 1 for use and j = 2 for not use). The frequencies

fij for Table 2.1, in symbolic notation, appear in Table 3.1. We write

f = (f11, f12, f21, f22)
⊤.

Table 3.1: Cell frequencies in symbolic notation

Oral contraceptive

Diagnostic group Used (j = 1) Did not use (j = 2) Total

Thromboembolism (i = 1) f11 f12 f1· = N1

Control (i = 2) f21 f22 f2· = N2

There are two ways to analyze the data in Table 2.1: using multinomial sampling and

product multinomial sampling. Because of the way the data were collected (see Chapter

7



2), the most appropriate method of analysis is product multinomial sampling (even though

Bishop et al. [2] and Worcester [15] used multinomial sampling).

(a) Multinomial sampling

For i, j ∈{1,2}, let πij be the probability that a patient belongs to the cell (i, j). See

Table 3.2. We denote by πi· the marginal probability that a patient belongs to diagnostic

group i, where i = 1 for the thromboembolism patients and i = 2 for the control group.

Let also π·j be the marginal probability that a patient took (j = 1) or did not take an oral

contraceptive (j = 2). We have
∑

i,j πij = 1. Also

πi· = πi1 + πi2 and π·j = π1j + π2j.

Assume
∑

i,j fij = N and N is fixed. Let mij be the expected number of people in cell

(i, j) under multinomial sampling. In such a case,

mij = Nπij for i, j ∈ {1, 2}. (3.1)

Table 3.2: Cell probabilities for multinomial sampling

Oral contraceptive

Diagnostic group Used (j = 1) Did not use (j = 2) Total

Thromboembolism (i = 1) π11 π12 π1·

Control (i = 2) π21 π22 π2·

Total π·1 π·2 1

Table 3.3: Expected counts for multinomial sampling

Oral contraceptive

Diagnostic group Used (j = 1) Did not use (j = 2) Total

Thromboembolism (i = 1) m11 m12 m1·

Control (i = 2) m21 m22 m2·

Total m·1 m·2 N

Assume the probabilities πij = πij(θ) depend on an unknown parameter vector θ. The

expected counts mij = mij(θ) also depend on θ. Then the likelihood function is

8



L(θ;f) = N !
2∏

i=1

2∏
j=1

πij(θ)
fij

fij!
∝

2∏
i=1

2∏
j=1

πij(θ)
fij .

From Eq. (3.1), we get

L(θ;f) = N !
2∏

i=1

2∏
j=1

(
mij(θ)

N

)fij

fij!
∝

2∏
i=1

2∏
j=1

mij(θ)
fij .

The log-likelihood is

ℓ(θ;f) = C1 +
∑
i,j

fij log πij(θ) = C2 +
∑
i,j

fij logmij(θ),

where C1 and C2 are constants. By maximizing the above log-likelihood with respect to θ,

subject to the constraint

∑
i,j

mij(θ) = N,

we may find the MLE’s of the πij’s or mij’s corresponding to multinomial sampling. These

estimates are given in Chapter 4.

(b) Product multinomial sampling

Let πj|i=1 be the conditional probability that an affected patient used (j = 1) or did not

use (j = 2) oral contraceptives given that the patient had thromboembolism. Also, let πj|i=2

be the conditional probability that the patient used (j = 1) or did not use (j = 2) oral

contraceptives given that the patient was in the control group. See Table 3.4.

Table 3.4: Cell probabilities for product multinomial sampling

Oral contraceptive

Diagnostic group Used (j = 1) Did not use (j = 2) Total

Thromboembolism (i = 1) π1|1 π2|1 1

Control (i = 2) π1|2 π2|2 1

9



Table 3.5: Expected counts for product multinomial sampling

Oral contraceptive

Diagnostic group Used (j = 1) Did not use (j = 2) Total

Thromboembolism (i = 1) m1|1 m2|1 N1

Control (i = 2) m1|2 m2|2 N2

Let N1 and N2 be the marginal totals for the patients belonging to diagnostic groups

i = 1 and i = 2, respectively.

Let mj|i=1 = N1πj|i=1 be the conditional expected number of patients that used (j = 1)

or did not use (j = 2) oral contraceptives given that they had thromboembolism. Also, let

mi|j=2 = N2πj|i=2 be the conditional expected number of patients that used (j = 1) or did

not use (j = 2) oral contraceptives given that they were in the control group.

Assume the probabilities πj|i = π(j|i)(θ) depend on an unknown parameter vector θ for

i, j ∈ {1, 2}. The conditional expected counts mj|i = mj|i(θ) also depend on θ. Then the

likelihood function is

L(θ;f) = N1!
2∏

j=1

π(j|i=1)(θ)
f1j

f1j!
·N2!

2∏
j=1

π(j|i=2)(θ)
f2j

f2j!

∝
2∏

j=1

π(j|i=1)(θ)
f1j ·

2∏
j=1

π(j|i=2)(θ)
f2j .

From the equation mj|i= Niπj|i, we get

L(θ;f) = N1!
2∏

j=1

(
m(j|i=1)(θ)

N1

)f1j

f1j!
·N2!

2∏
j=1

(
m(j|i=2)(θ)

N2

)f2j

f2j!

∝
2∏

j=1

m(j|i=1)(θ)
f1j ·

2∏
j=1

m(j|i=2)(θ)
f2j .

The log-likelihood function is

ℓ(θ;f) = C3 +
∑
j

f1j log πj|i=1(θ) +
∑
j

f2j log πj|i=2(θ)

= C4 +
∑
j

f1j logmj|i=1(θ) +
∑
j

f2j logmj|i=2(θ),

10



where C3 and C4 are constants. By maximizing the above log-likelihood with respect to θ,

subject to the constraints∑
i,j

mj|i=1(θ) = N1 and
∑
i,j

mj|i=2(θ) = N2,

we may find the MLE’s of the πj|i’s or mj|i’s corresponding to product multinomial sampling.

These estimates are given in Chapter 4.

3.2 Worcester’s parametrization of a 2× 2 contingency

table

Before we describe some non-standard log-linear models, we give Worcester’s [15] multiplica-

tive parametrization of a 2 × 2 contingency table. These non-standard log-linear models,

which can be obtained from Worcester’s [15] multiplicative models, are described in Section

3.3.2 of this thesis and they are variations of models that appear in Bishop et al. [2] and

Hasan [10].

(a) Multinomial sampling

Worcester [15] considered the parametrization shown in Table 3.6 with

θ = (XA, XB, XAB)
⊤,

where the parameters XA, XB, and XAB are nonnegative. After some algebra, we find that

XA =
π12

π22

=
m12

m22

, XB =
π21

π22

=
m21

m22

,

and XAB =
π11π22

π12π21

=
m11m22

m12m21

. (3.2)

The parameter XAB is the well-known odds ratio.

The null hypothesis

H0 : XAB = 1

corresponds to the independence of factors A and B because

XAB = 1 ⇔ π12π21 = π11π22 ⇔ π11 = π1·π·1.

The last equivalence follows from the fact that both equations are equivalent to the equation

π11 = π2
11 + π11π12 + π11π21 + π12π21. We can also prove that

XAB = 1 ⇔ (πij = πi·π·j for all i, j). (3.3)

11



Table 3.6: Worcester’s parametrization for multinomial sampling

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism m11 = NXAXBXAB/D m12 = NXA/D

Control m21 = NXB/D m22 = N/D

D = XAXBXAB +XA +XB + 1 N

(b) Product multinomial sampling

Even thoughWorcester [15] did not consider product multinomial sampling, the parametriza-

tion in Table 3.6 implies the conditional parametrization in Table 3.7. We have

XB =
π1|2

π2|2
=

m1|2

m2|2
and

XAB =
π1|1π2|2

π2|1π1|2
=

m1|1m2|2

m1|2m2|1
. (3.4)

(We condition on the categories of factor A.) The parameter XA cannot be expressed in

terms of the conditional probabilities πj|i, so it does not appear here. The parameter XAB

is again the odds ratio.

The null hypothesis

H0 : XAB = 1

can be stated equivalently as follows:

XAB = 1 ⇔
π1|1

π2|1
=

π1|2

π2|2
⇔

π1|1

π2|1 + π1|1
=

π1|2

π2|2 + π1|2
⇔ π1|1 = π1|2. (3.5)

This means that XAB = 1 if and only if the conditional probability of smoking given throm-

boembolism is equal to the conditional probability of smoking given no thromboembolism.

Table 3.7: Worcester’s parametrization for product multinomial sampling

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism m1|1 =
N1XBXAB

XBXAB+1
m2|1 =

N1

XBXAB+1
N1

Control m1|2 =
N2XB

XB+1
m2|2 =

N2

XB+1
N2

12



3.3 Log-linear models for a 2× 2 contingency table for

multinomial sampling

We use two different kinds of log-linear models for the data in Tables 2.1 and 3.1: (a)

Standard log-linear models and (b) non-standard log-linear models. In this section, we use

multinomial sampling for the 2× 2 table, and thus we work with the unconditional expected

counts, mij.

3.3.1 Using standard log-linear models for multinomial sampling

The general standard log-linear model for Table 3.3 (for multinomial sampling) is

logmij = λ+ λA
i + λB

j + λAB
ij (i, j ∈ {1, 2}). (3.6)

The total number of parameters here is 1 + 2+ 2+ 4 = 9. Usually, we impose one of the

following three sets of restrictions in order to reduce the number of parameters to 2 · 2 = 4,

which is the number of cells in the table.

i. Zero-sum constraints:∑
i λ

A
i = 0,

∑
j λ

B
j = 0,

∑
i λ

AB
ij = 0 for each j, and

∑
j λ

AB
ij = 0 for each i.

In this case,

logm11 = λ+ λA
1 + λB

1 + λAB
11 ,

logm12 = λ+ λA
1 − λB

1 − λAB
11 ,

logm21 = λ− λA
1 + λB

1 − λAB
11 ,

logm22 = λ− λA
1 − λB

1 + λAB
11 .

It follows that

λ =
1

4
logm11 +

1

4
logm12 +

1

4
logm21 +

1

4
logm22,

λA
1 =

1

4
logm11 +

1

4
logm12 −

1

4
logm21 −

1

4
logm22,

λB
1 =

1

4
logm11 −

1

4
logm12 +

1

4
logm21 −

1

4
logm22,

λAB
11 =

1

4
logm11 −

1

4
logm12 −

1

4
logm21 +

1

4
logm22.

In addition, λA
1 = −λA

2 , λ
B
1 = −λB

2 , and λAB
11 = −λAB

12 = −λAB
21 = λAB

22 .
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ii. Zero constraints for the first categories (R constraints):

λA
1 = 0, λB

1 = 0, λAB
1j = 0 for each j, and λAB

21 = 0.

In this case,

logm11 = λ,

logm12 = λ+ λB
2 ,

logm21 = λ+ λA
2 ,

logm22 = λ+ λA
2 + λB

2 + λAB
22 .

It follows that

λ = logm11,

λB
2 = logm12 − logm11,

λA
2 = logm21 − logm11,

λAB
22 = logm11 − logm12 − logm21 + logm22.

iii. Zero constraints for the last categories (SAS constraints):

λA
2 = 0, λB

2 = 0, λAB
i2 = 0 for each i, and λAB

21 = 0.

In this case,

logm11 = λ+ λA
1 + λB

1 + λAB
11 ,

logm12 = λ+ λA
1 ,

logm21 = λ+ λB
1 ,

logm22 = λ.

It follows that

λ = logm22,

λA
1 = logm12 − logm22,

λB
1 = logm21 − logm22,

λAB
11 = logm11 − logm12 − logm21 + logm22.

14



Standard log-linear models are divided into (1) hierarchical log-linear models (Section

3.3.1.1) and (2) non-hierarchical log-linear models (Section 3.3.1.2). As mentioned before, a

hierarchical model is one where, if a higher order term is included in the log-linear model,

then so are all the lower order terms.

3.3.1.1 Using standard hierarchical log-linear models (for multinomial sam-

pling)

It is well-known (e.g., see Agresti [1]) that no matter which restrictions on the λ parameters

we use, for each pair (i, j), the estimates of the parameter mij in a standard hierarchical

model are the same.

We estimate the following hierarchical submodels of the saturated model (3.6):

i. logmij = λ

ii. logmij = λ+ λA
i

iii. logmij = λ+ λB
j

iv. logmij = λ+ λA
i + λB

j

Log-linear model iv above is equivalent to the independence model (3.3) in Section 3.2. We

prove this claim in Appendix A.1.

The above unconditional standard hierarchical log-linear models are estimated in Tables

4.3–4.7 in Section 4.6.

3.3.1.2 Using standard non-hierarchical log-linear models (for multinomial sam-

pling)

Standard non-hierarchical log-linear submodels of the saturated model (3.6) are those that

are missing at least one of the terms λ, λA
i , λ

B
j , and λAB

ij . In this thesis, we always include

the intercept λ in a standard log-linear model corresponding to multinomial sampling.

In standard non-hierarchical models, we get different results when we impose different

kinds of zero constraints (and that is one of the reasons these are not used in practice).

Because of the above problems and because of time constraints, we only study the fol-

lowing standard non-hierarchical model under three different sets of parameter restrictions:
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i. logmij = λ + λAB
ij with

∑
i λ

AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i. Thus we

have

logm11 = λ+ λAB
11 ,

logm12 = λ− λAB
11 ,

logm21 = λ− λAB
11 ,

logm22 = λ+ λAB
11 .

ii. logmij = λ+ λAB
ij with λAB

1j = 0 for each j, and λAB
21 = 0. Thus we have

logm11 = λ,

logm12 = λ,

logm21 = λ,

logm22 = λ+ λAB
22 .

iii. logmij = λ+ λAB
ij with λAB

i2 = 0 for each i, and λAB
21 = 0. Thus we have

logm11 = λ+ λAB
11 ,

logm12 = λ,

logm21 = λ,

logm22 = λ.

The above three unconditional standard non-hierarchical log-linear models are estimated

in Tables 4.8–4.10 in Section 4.6.

3.3.2 Using non-standard log-linear models for multinomial sam-

pling

In this section, for multinomial sampling, we give the log-linear version of the Worcester

multiplicative model given in Table 3.6. Let

wA = logXA, wB = logXB, wAB = logXAB, w = log

(
N

D

)
,

δ1 = δ11 = 1, and δ2 = δ12 = δ21 = δ22 = 0.
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The parameters in Table 3.6 can be then written in the following way:

logm11 = log
N

D
+ logXA + logXB + logXAB

= w + δ1wA + δ1wB + δ11wAB,

logm12 = log
N

D
+ logXA

= w + δ1wA + δ2wB + δ12wAB,

logm21 = log
N

D
+ logXB

= w + δ2wA + δ1wB + δ21wAB,

logm22 = log
N

D

= w + δ2wA + δ2wB + δ22wAB.

For multinomial sampling, we may thus write Worcester’s multiplicative model as a non-

standard log-linear model:

logmij = w + δiwA + δjwB + δijwAB for i, j ∈ {1, 2}. (3.7)

The above formulation of Worcester’s model in a non-standard log-linear form is similar

to the one in Bishop at al. [2, pp. 111–114] for 2× 2× 2 tables. See also Hasan [10].

In Sections 3.2 and 3.3.1.1 of this thesis, we have seen that the independence model is

equivalent to XAB = 1; i.e, wAB = 0. As in Appendix A.1, we may prove that

i. logmij = λ ⇐⇒ XA = XB = XAB = 1 ⇐⇒ wA = wB = wAB = 0

ii. logmij = λ+ λA
i ⇐⇒ XB = XAB = 1 ⇐⇒ wB = wAB = 0

iii. logmij = λ+ λB
j ⇐⇒ XA = XAB = 1 ⇐⇒ wA = wAB = 0

iv. logmij = λ+ λA
i + λB

j ⇐⇒ XAB = 1 ⇐⇒ wAB = 0

Using Eq. (3.7), we may thus reformulate models i-iv above as follows:

i. logmij = w

ii. logmij = w + δiwA

iii. logmij = w + δjwB

17



iv. logmij = w + δiwA + δjwB

We estimate submodels i-iv and the saturated models (3.6)/(3.7) in Tables 4.3–4.7 in Sec-

tion 4.6.1. In addition, asymptotic variance-covariance matrices of ŵ under multinomial

sampling are given in Appendix B.1.

3.4 Log-linear models for a 2× 2 contingency table for

product multinomial sampling

3.4.1 Using standard log-linear models for product multinomial

sampling

The general standard log-linear model for Table 3.5 (for product multinomial sampling) is

logmj|i = λA
i + λB

j + λAB
ij (i, j ∈ {1, 2}). (3.8)

The total number of parameters here is 2 + 2 + 4 = 8. Usually, we impose one of the

following three sets of restrictions in order to reduce the number of parameters to 2 · 2 = 4,

which is the number of cells in the table.

i. Zero-sum constraints:∑
j λ

B
j = 0,

∑
i λ

AB
ij = 0 for each j, and

∑
j λ

AB
ij = 0 for each i.

In this case,

logm1|1 = λA
1 + λB

1 + λAB
11 ,

logm1|2 = λA
2 + λB

1 − λAB
11 ,

logm2|1 = λA
1 − λB

1 − λAB
11 ,

logm2|2 = λA
2 − λB

1 + λAB
11 .

It follows that

λA
1 =

1

2
logm1|1 +

1

2
logm2|1,

λA
2 =

1

2
logm1|2 +

1

2
logm2|2,

λB
1 =

1

4
logm1|1 +

1

4
logm1|2 −

1

4
logm2|1 −

1

4
logm2|2,

λAB
11 =

1

4
logm1|1 −

1

4
logm1|2 −

1

4
logm2|1 +

1

4
logm2|2.
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In addition, λB
1 = −λB

2 , and λAB
11 = −λAB

12 = −λAB
21 = λAB

22 .

ii. Zero constraints for the first categories (R constraints):

λB
1 = 0, λAB

1j = 0 for each j, and λAB
21 = 0.

In this case,

logm1|1 = λA
1 ,

logm1|2 = λA
2 ,

logm2|1 = λA
1 + λB

2 ,

logm2|2 = λA
2 + λB

2 + λAB
22 .

It follows that

λA
1 = logm1|1,

λA
2 = logm1|2,

λB
2 = logm2|1 − logm1|1,

λAB
22 = logm1|1 − logm1|2 − logm2|1 + logm2|2.

iii. Zero constraints for the last categories (SAS constraints):

λB
2 = 0, λAB

i2 = 0 for each i, and λAB
21 = 0.

In this case,

logm1|1 = λA
1 + λB

1 + λAB
11 ,

logm1|2 = λA
2 + λB

1 ,

logm2|1 = λA
1 ,

logm2|2 = λA
2 .

It follows that

λA
1 = logm2|1,

λA
2 = logm2|2,

λB
1 = logm1|2 − logm2|2,

λAB
11 = logm1|1 − logm1|2 − logm2|1 + logm22.
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3.4.1.1 Using standard hierarchical log-linear models (for product multinomial

sampling)

We shall see in Section 4.6 that, no matter which restrictions on the λ parameters we use,

for each pair (i, j), the estimates of the parameter mj|i in a standard hierarchical model are

the same.

We estimate the following hierarchical submodels of the model (3.8):

i. logmj|i = λA
i

ii. logmj|i = λA
i + λB

j

Log-linear model ii above is equivalent to the independence model (3.5) in Section 3.2.

We prove this claim in Appendix A.2.

The above conditional standard hierarchical log-linear models are estimated in Tables

4.11–4.13 in Section 4.6.

3.4.1.2 Using standard non-hierarchical log-linear models (for product multi-

nomial sampling)

Standard non-hierarchical log-linear submodels of the saturated model (3.8) are those that

are missing at least one of the terms λA
i , λ

B
j , and λAB

ij . In this thesis, we always include the

intercept λA
i in a standard log-linear model corresponding to product multinomial sampling.

In standard non-hierarchical models, we get different results when we impose different

kinds of zero constraints (and that is one of the reasons these are not used in practice).

Because of the above problems and because of time constraints, we only study the fol-

lowing standard non-hierarchical model under three different sets of parameter restrictions:

i. logmj|i = λA
i + λAB

ij with
∑

i λ
AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i. Thus we

have

logm1|1 = λA
1 + λAB

11 ,

logm2|1 = λA
1 − λAB

11 ,

logm1|2 = λA
2 − λAB

11 ,

logm2|2 = λA
2 + λAB

11 .
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ii. logmj|i = λA
i + λAB

ij with λAB
1j = 0 for each j, and λAB

21 = 0. Thus we have

logm1|1 = λA
1 ,

logm2|1 = λA
1 ,

logm1|2 = λA
2 ,

logm2|2 = λA
2 + λAB

22 .

iii. logmj|i = λA
i + λAB

ij with λAB
i2 = 0 for each i, and λAB

21 = 0. Thus we have

logm1|1 = λA
1 + λAB

11 ,

logm2|1 = λA
1 ,

logm1|2 = λA
2 ,

logm2|2 = λA
2 .

The above three conditional standard non-hierarchical log-linear models are estimated in

Tables 4.14–4.16 in Section 4.6.

3.4.2 Using non-standard log-linear models for product multino-

mial sampling

In this section, for product multinomial sampling, we give the log-linear version of the

Worcester multiplicative model given in Table 3.7. Let

v1 = log

(
N1

D1

)
, v2 = log

(
N2

D2

)
, vB = logXB, vAB = logXAB,

δ1 = δ1|1 = 1, and δ2 = δ2|1 = δ1|2 = δ2|2 = 0,

where D1 = XBXAB + 1 and D2 = XB + 1. In other words, δi and δj|i are equal to 1 if and

only if all of their indices are equal to 1; otherwise, they are equal to 0.
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The parameters in Table 3.7 can be then written in the following way:

logm1|1 = log
N1

D1

+ logXB + logXAB

= v1 + δ1vB + δ1|1vAB,

logm2|1 = log
N1

D1

= v1 + δ2vB + δ2|1vAB,

logm1|2 = log
N2

D2

+ logXB

= v2 + δ1vB + δ1|2vAB,

logm2|2 = log
N2

D2

= v2 + δ2vB + δ2|2vAB.

For product multinomial sampling, we may thus write Worcester’s multiplicative model as

a non-standard log-linear model:

logmj|i = vi + δjvB + δj|ivAB for i, j ∈ {1, 2}. (3.9)

In Section 3.2 of this thesis, we have seen that the independence model is equivalent to

XAB = 1; i.e, vAB = 0. As in Appendix A.2, we may prove that

i. logmj|i = λA
i ⇐⇒ XB = XAB = 1 ⇐⇒ vB = vAB = 0

ii. logmj|i = λA
i + λB

j ⇐⇒ XAB = 1 ⇐⇒ vAB = 0

Using Eq. (3.9), we may thus reformulate models i-ii above as follows:

i. logmj|i = vi

ii. logmj|i = vi + δjvB

We estimate submodels i-ii and the saturated models (3.8)/(3.9) in Tables 4.11–4.13 in

Section 4.6.2.
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CHAPTER 4

ANALYSIS OF THE EFFECT OF ORAL

CONTRACEPTIVE ON THROMBOEMBOLISM

USING LOG-LINEAR MODELS

In this chapter, we fit the various log-linear models developed in Chapter 3 of this thesis to the

data in Table 2.1, which cross-classifies the categorical variables “having thromboembolism”

and “using oral contraceptives”. We give estimates and standard errors for the expected

counts in the aformentioned 2× 2 contingency table under each model. We do that both for

multinomial sampling and product multinomial sampling.

4.1 Matrix formulation of a log-linear model

A general log-linear model for a 2× 2 contingency table can be written in the form

logm = Xθ, (4.1)

where X is a 4× q model matrix, θ is a q × 1 vector of population parameters, and

m =

(m11,m12,m21,m22)
⊤, in the unconditional case;

(m1|1,m2|1,m1|2,m2|2)
⊤, in the conditional case.

See Tables 3.3 and 3.5 in Section 3.1.

In this thesis, we assume thatX is a full column rank matrix and that θ has no redundant

parameters. As a result, the q × q square matrix X⊤X is non-singular (i.e., invertible).

For example, for the unconditional log-linear model logmij = λ + λA
i + λB

j with the

contraints λA
2 = λB

2 = 0, we have
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X =


1 1 1

1 1 0

1 0 1

1 0 0

 and θ =


λ

λA
1

λB
1

 .

As another example, for the conditional log-linear model logmj|i = λA
i + λB

j with the

contraints λA
1 + λA

2 = 0 = λB
1 + λB

2 , we have

X =


1 1

1 −1

−1 1

−1 −1

 and θ =

(
λA
1

λB
1

)
.

The calculation of the MLE of θ using multinomial sampling and product multinomial

sampling was discussed in Section 3.1.

If θ̂ is the MLE of θ, then m̂ = m(θ̂) is the MLE of m by the invariance property of

the MLE. If Ω0 is the linear space
1 defined by the model logm = Xθ, then (in both cases)

the MLE m̂ of m satisfies the matrix equation

PΩ0m̂ = PΩ0f , (4.2)

where PΩ0 is the orthogonal projection on the linear space Ω0 . Here

f = (f11, f12, f21, f22)
⊤.

If X is of full column rank, we have that PΩ0 = X(X⊤X)−1X⊤. This is the well-known

hat matrix H in regression. For example, in the model logmij = λ+ λA
i + λB

j , we have

PΩ0 =


3
4

1
4

1
4

−1
4

1
4

3
4

−1
4

1
4

1
4

−1
4

3
4

1
4

−1
4

1
4

1
4

3
4

 ,

1Strictly speaking, Ω0 = {µ ∈ R4|∃θ ∈ Rq : µ = Xθ}, where q is the number of columns of X. We

assume that µ = logm ∈ Ω0.
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while in the model logmj|i = λA
i + λB

j , we have

PΩ0 =


1
2

0 0 −1
2

0 1
2

−1
2

0

0 −1
2

1
2

0

−1
2

0 0 1
2

 .

Because the MLE m̂ depends on the q × 1 vector θ, the system (4.2) has q unknowns

and 4 equations. It can be solved using the Newton-Raphson method. We use the statistical

software R to solve the system for each one of the log-linear models in Chapter 3.

If X is of full column rank and we pre-multiply both sides of (4.2) by X⊤, we get

X⊤m̂ = X⊤f . (4.3)

See Christensen [4, p. 400].

Equations (4.2) and (4.3) are valid both for multinomial sampling and product multino-

mial sampling.

Remark 4.1.1. If the design matrix X is of full column rank, it follows from Eq.(4.1) that

θ = (X⊤X)−1X⊤(logm).

Thus, the estimated θ equals

θ̂ = (X⊤X)−1X⊤(log m̂). (4.4)

This follows from the invariance property of the MLE.

4.2 Asymptotic variance-covariance matrices of the vec-

tor MLE

In this section, we state the asymptotic distributions of the MLE m̂ in the cases of multi-

nomial sampling and product multinomial sampling.

4.2.1 Asymptotic results for multinomial sampling

In multinomial sampling, we have m = (m11,m12,m21,m22)
⊤. According to Christensen [4,

Section 12.3], in the case, we have

log m̂− logm ∼ MVN(0, (A(m)−Az(m))D−1(m)) (4.5)
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approximately for large N , where N =
∑

i,j fij. Here 0 is an IJ × 1 = 4 × 1 zero vector,

D = D(m) is an IJ × IJ = 4× 4 diagonal matrix with the vector m in its main diagonal,

A(m) = X(X⊤DX)−1X⊤D, and (4.6)

Az(m) = J(J⊤DJ)−1J⊤D = JJ⊤D/N . (4.7)

In the last equation, we denote by J the IJ × 1 = 4× 1 vector of 1’s.

If m̂ij is the kth element of the vector m̂, then the square root of the kth diagonal

element of the asymptotic variance-covariance matrix (A(m)−Az(m))D−1(m) gives the

theoretical asymptotic standard error of log m̂ij. We get the estimated asymptotic standard

error of m̂ij by replacing m with m̂. We calculate these for our data in Table 2.1 and the

different models (under multinomial sampling) in Section 4.3.

4.2.2 Asymptotic results for product multinomial sampling

In product multinomial sampling, we have

m(1)⊤ = (m1|1,m2|1) and m(2)⊤ = (m1|2,m2|2)
⊤.

Also, m = (m(1)⊤,m(2)⊤)⊤. According to Christensen [4, Section 10.3], in this case, we have

log m̂− logm ∼ MVN(0, (A(m)−Az(m))D−1(m)). (4.8)

approximately for large N1 and N2, where N1 = f1|1 + f2|1 and N2 = f1|2 + f2|2

Here 0 is an IJ × 1 = 4 × 1 zero vector, D = D(m) is an IJ × IJ = 4 × 4 diagonal

matrix with the vector m = (m(1)⊤,m(2)⊤)⊤ in its main diagonal,

A(m) = X(X⊤DX)−1X⊤D, and (4.9)

Az(m) = Z(Z⊤DZ)−1Z⊤D. (4.10)

In addition,

Z =

(
J 0

0 J

)
=


1 0

1 0

0 1

0 1

 .

If m̂j|i is the kth element of the vector m̂, then the square root of the kth diagonal

element of the asymptotic variance-covariance matrix (A(m)−Az(m))D−1(m) gives the
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theoretical asymptotic standard error of log m̂ij. We get the estimated asymptotic standard

error of log m̂ij by replacing m with m̂. We calculate these for our data in Table 2.1 and

the different models (under product multinomial sampling) in Section 4.3.

Remark 4.2.1. Because of Eqs. (4.4), (4.5), and (4.8), it follows that

θ̂ − θ ∼ MVN(0, (X⊤X)−1XV(log m̂)X(X⊤X)−1). (4.11)

This is true for both sampling schemes. For multinomial sampling Eq. (4.11) is approximately

true for large N , while for product multinomial sampling Eq. (4.11) is approximately true

for large N1 and N2.

4.3 The asymptotic distribution of the estimate of the

log odds ratio

The odds ratio for a 2 × 2 table was defined by Eqs. (3.2) and (3.4) in Section 3.2. In

particular, for multinomial sampling (see Table 3.3) the odds ratio is

XAB =
m11m22

m12m21

,

while for product multinomial sampling (see Table 3.5) the odds ratio is

XAB =
m1|1m2|2

m1|2m2|1
.

Thus, the log odds ratio is

logXAB = c⊤ logm,

where

c = (1,−1,−1, 1)⊤ and

m =

(m11,m12,m21,m22)
⊤, in the unconditional case;

(m1|1,m2|1,m1|2,m2|2)
⊤, in the conditional case.

4.3.1 The asymptotic distribution of log X̂AB under multinomial

sampling

In the case of multinomial sampling, a point estimate of the log odds ratio, logXAB, is

log X̂AB = log m̂11 − log m̂12 − log m̂21 + log m̂22 = c⊤ log m̂.
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The estimate has an asymptotic normal distribution with mean c⊤ logm and asymptotic

variance is given by

V(log X̂AB) = c⊤(A−Az)D
−1c = c⊤AD−1c, (4.12)

where D is an IJ × IJ = 4 × 4 diagonal matrix with the vector m in its main diagonal,

A is defined by Eq. (4.6), and Az is defined by Eq. (4.7). As usual, we get the estimated

asymptotic variance of log X̂AB by replacing m with the MLE m̂.

For most of the unconditional log-linear models in Chapter 3, log X̂AB = 1, and the

asymptotic variance is zero. For the saturated model in Eq. (3.6), however, the estimated

asymptotic variance is

V̂(log X̂AB) =
1

f11
+

1

f12
+

1

f21
+

1

f22
.

See Christensen [4, pp. 40–41].

4.3.2 The asymptotic distribution of log X̂AB under product multi-

nomial sampling

In the case of product multinomial sampling, a point estimate of the log odds ratio, logXAB,

is

log X̂AB = log m̂1|1 − log m̂2|1 − log m̂1|2 + log m̂2|2 = c⊤ log m̂.

The estimate has an asymptotic normal distribution with mean c⊤ logm and asymptotic

variance is given by

V(log X̂AB) = c⊤(A−Az)D
−1c = c⊤AD−1c, (4.13)

where D is an IJ × IJ = 4× 4 diagonal matrix with the vector m in its main diagonal, A

is defined by Eq. (4.9), and Az is defined by Eq. (4.10). As usual, we get the estimated

asymptotic variance of log X̂AB by replacing m with the MLE m̂.

For most of the conditional log-linear models in Chapter 3, log X̂AB = 1, and the asymp-

totic variance is zero. For the saturated model in Eq. (3.8), however, the estimated asymp-

totic variance is

V̂(log X̂AB) =
1

f11
+

1

f12
+

1

f21
+

1

f22
.

Remark 4.3.1. Even though the asymptotic variance-covariance matrices of log m̂ for multi-

nomial sampling and product multinomial sampling are different, Eqs. (4.12) and (4.13) show

that the asymptotic variance of log X̂AB are the same for both sampling schemes. This is

also true for multiway contingency tables.
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4.4 Goodness-of-fits tests for log-linear models

Two of the most common goodness-of-fit statistics for log-linear models are the Pearson

chi-square test statistic and the likelihood ratio test statistic.

4.4.1 The Pearson chi-square test statistic

Assuming multinomial sampling, consider Tables 3.1 and 3.3 in Section 3.1. The Pearson

chi-square test statistic is defined by

X2 =
∑
i,j

(fij − m̂ij)
2

m̂ij

. (4.14)

For product multinomial sampling, we consider Tables 3.1 and 3.5 and the Pearson chi-square

test statistic is given by

X2 =
∑
i,j

(fij − m̂j|i)
2

m̂j|i
. (4.15)

For each type of sampling, under any of the log-linear models in Chapter 3, the X2

statistic has an asymptotic chi-square distribution with degrees of freedom equal to

df = IJ − (number of free parameters),

where I is the number of rows and J is the number of columns of the contingency table.

Tables 4.1 and 4.2 give the number of free parameters and the residual degrees of freedom

for the hierarchical log-linear models in Chapter 3.

Table 4.1: Degrees of freedom for multinomial sampling

Model Number of free parameters Degrees of freedom

logmij = λ 1 IJ − 1 = 3

logmij = λ+ λA
i I = 2 IJ − I = 2

logmij = λ+ λB
j J = 2 IJ − J = 2

logmij = λ+ λA
i + λB

j I + J − 1 = 3 (I − 1)(J − 1) = 1

logmij = λ+ λA
i + λB

j + λAB
ij IJ = 4 0
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Table 4.2: Degrees of freedom for product multinomial sampling

Model Number of free parameters Degrees of freedom

logmj|i = λA
i I = 2 IJ − I = 2

logmj|i = λA
i + λB

j I + J − 1 = 3 (I − 1)(J − 1) = 1

logmj|i = λA
i + λB

j + λAB
ij IJ = 4 0

4.4.2 The likelihood ratio test statistic

Assuming multinomial sampling, consider Tables 3.1 and 3.3 in Section 3.1. The likelihood

ratio test statistic is defined by

G2 = −2
∑
i,j

fij log
m̂ij

fij
. (4.16)

For product multinomial sampling, we consider Tables 3.1 and 3.5 and the likelihood ratio

test statistic is given by

G2 = −2
∑
i,j

fij log
m̂j|i

fij
. (4.17)

For each type of sampling, under any one of the log-linear models in Chapter 3, the G2

statistic has an asymptotic chi-square distribution with degrees of freedom equal to

df = IJ − (number of free parameters),

where I is the number of rows and J is the number of columns in the contingency table.

For a given log-linear model, the degrees of freedom for X2 are the same as the degrees

of freedom for G2.

4.5 The Akaike Information Criterion

The different likelihoods of the two sampling schemes were discussed in Section 3.1. For the

multinomial sampling scheme, the log-likelihood is

ℓ(θ;f) = logN !−N logN −
∑
i,j

log fij! +
∑
i,j

fij logmij(θ).

For the product multinomial sampling scheme, the log-likelihood is
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ℓ(θ;f) = logN1!−N1 logN1 −
∑
j

log f1j! +
∑
j

f1j logmj|i=1(θ)

+ logN2!−N2 logN2 −
∑
j

log f2j! +
∑
j

f2j logmj|i=2(θ).

For each sampling scheme, the Akaike Information Criterion of a log-linear model is defined

by

AIC = 2k–2ℓ(θ̂;f),

where k is the number of free parameters and θ̂ is the estimate of parameter vector θ. When

comparing log models using the AIC we prefer the model with the lowest AIC value.

4.6 Estimation of the expected counts

In this section, we use the statistical software R and the formulas in Sections 4.1 and 4.2

to estimate the expected counts, mij or mj|i, and find the estimated asymptotic standard

errors (ASE) of the logarithms of their estimates. We also estimate the log odds ratio using

the theory in Section 4.3.

Asymptotic variance-covariance matrices for the estimates of the logm under both sam-

pling schemes are given in Appendix B.2.

4.6.1 Estimation of the parameters is the case of multinomial sam-

pling

Consider the five standard hierarchical log-linear models of Section 3.3.1 under multinomial

sampling. Tables 4.3–4.7 contain the estimates of the expected counts and their natural

logarithms. The tables also include the estimates of the asymptotic standard errors (ASE)

of the estimates of the logarithms of the counts.

Below each table, we give the estimate of the log odds ratio and the estimate of the

asymptotic standard error of the estimate. It is non-zero only for the saturated model (see

Table 4.7).

It turns out that the five non-standard log-linear models in Section 3.3.2 (the submodels

of the log-linear version of Worcester’s multiplicative model from Table 3.6) are equivalent to

the previous five standard hierarchical log-linear models. For contingency tables that cross-

classify three or more categorical variables, this is not necessarily true (see Hasan [10]).
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Table 4.3: Estimation of the expected counts for the log-linear models logmij = λ

and logmij = w (multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 43.5
(log m̂11 = 3.7728)

(ASE = 0)

m̂12 = 43.5
(log m̂12 = 3.7728)

(ASE = 0)

87

Control

m̂21 = 43.5
(log m̂21 = 3.7728)

(ASE = 0)

m̂22 = 43.5
(log m̂22 = 3.7728)

(ASE = 0)

87

Total 87 87 N = 174

(log X̂AB = 0,ASE = 0)

Table 4.4: Estimation of the expected counts for the log-linear models logmij =

λ+ λA
i and logmij = w + δiwA (multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 29
(log m̂11 = 3.3673)
(ASE = 0.1071)

m̂12 = 29
(log m̂12 = 3.3673)
(ASE = 0.1071)

58

Control

m̂21 = 58
(log m̂21 = 4.0604)
(ASE = 0.0536)

m̂22 = 58
(log m̂22 = 4.0604)
(ASE = 0.0536)

116

Total 87 87 N = 174

(log X̂AB = 0,ASE = 0)

32



Table 4.5: Estimation of the expected counts for the log-linear models logmij =

λ+ λB
j and logmij = w + δjwB (multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 18
(log m̂11 = 2.8904)
(ASE = 0.1484)

m̂12 = 69
(log m̂12 = 4.2341)
(ASE = 0.0387)

87

Control

m̂21 = 18
(log m̂21 = 2.8904)
(ASE = 0.1484)

m̂22 = 69
(log m̂22 = 4.2341)
(ASE = 0.0387)

87

Total 36 138 N = 174

(log X̂AB = 0,ASE = 0)

Table 4.6: Estimation of the expected counts for the log-linear models logmij =

λ+ λA
i + λB

j and logmij = w + δiwA + δjwB (multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 12
(log m̂11 = 2.4849)
(ASE = 0.1830)

m̂12 = 46
(log m̂12 = 3.8286)
(ASE = 0.1140)

58

Control

m̂21 = 24
(log m̂21 = 3.1781)
(ASE = 0.1578)

m̂22 = 92
(log m̂22 = 4.5218)
(ASE = 0.0661)

116

Total 36 138 N = 174

(log X̂AB = 0,ASE = 0)
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Table 4.7: Estimation of the parameters for the saturated log-linear models

logmij = λ + λA
i + λB

j + λAB
ij and logmij = w + δiwA + δjwB + δijwAB (multi-

nomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 26
(log m̂11 = 3.2581)
(ASE = 0.1809)

m̂12 = 32
(log m̂12 = 3.4657)
(ASE = 0.1597)

58

Control

m̂21 = 10
(log m̂21 = 2.3026)
(ASE = 0.3070)

m̂22 = 106
(log m̂22 = 4.6634)
(ASE = 0.0607)

116

Total 36 138 N = 174

(log X̂AB = 2.1532,ASE = 0.4233)

Consider the three standard non-hierarchical log-linear models of Section 3.3.1.2 under

multinomial sampling. (As mentioned before, due to time constraints, we do not consider

all the standard non-hierarchical log-linear models in this thesis.) Tables 4.8–4.10 contain

the estimates of the expected counts and their natural logarithms. The tables also include

the estimates of the asymptotic standard errors (ASE) of the estimates of the logarithms of

the counts.

Below each table, we give the estimate of the log odds ratio and the estimate of the

asymptotic standard error of the estimate. We comment about the value of the estimated

log odds ratio only for the best models that we choose in Section 4.7.
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Table 4.8: Estimation of the expected counts for the non-hierarchical log-linear

model logmij = λ + λAB
ij with

∑
i λ

AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i

(multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 66
(log m̂11 = 4.1897)
(ASE = 0.0428)

m̂12 = 21
(log m̂12 = 3.0445)
(ASE = 0.1344)

87

Control

m̂21 = 21
(log m̂21 = 3.0445)
(ASE = 0.1344)

m̂22 = 66
(log m̂22 = 4.1897)
(ASE = 0.0428)

87

Total 87 87 N = 174

(log X̂AB = 2.2904,ASE = 0.3542)

Table 4.9: Estimation of the expected counts for the non-hierarchical log-linear

model logmij = λ + λAB
ij with λAB

1j = 0 for each j, and λAB
21 = 0 (multinomial

sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 22.67
(log m̂11 = 3.1210)
(ASE = 0.0946)

m̂12 = 22.67
(log m̂12 = 3.1210)
(ASE = 0.0946)

45.33

Control

m̂21 = 22.67
(log m̂21 = 3.1210)
(ASE = 0.0946)

m̂22 = 106
(log m̂22 = 4.6634)
(ASE = 0.0607)

128.67

Total 45.33 128.67 N = 174

(log X̂AB = 1.5424,ASE = 0.1552)
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Table 4.10: Estimation of the expected counts for the non-hierarchical log-linear

model logmij = λ + λAB
ij with λAB

i2 = 0 for each i, and λAB
21 = 0 (multinomial

sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂11 = 26
(log m̂11 = 3.2581)
(ASE = 0.1809)

m̂12 = 49.33
(log m̂12 = 3.8985)
(ASE = 0.0318)

75.33

Control

m̂21 = 49.33
(log m̂21 = 3.8985)
(ASE = 0.0318)

m̂22 = 49.33
(log m̂22 = 3.8985)
(ASE = 0.0318)

98.67

Total 75.33 98.67 N = 174

(log X̂AB = −.6404,ASE = 0.2126)

4.6.2 Estimation of the parameters is the case of product multi-

nomial sampling

Consider the three standard hierarchical log-linear models of Section 3.4.1 under product

multinomial sampling. Tables 4.11–4.13 contain the estimates of the expected counts and

their natural logarithms. The tables also include the estimates of the asymptotic standard

errors (ASE) of the estimates of the logarithms of the counts.

It turns out that the three non-standard log-linear models in Section 3.4.2 (the submodels

of the log-linear version of Worcester’s multiplicative model from Table 3.7) are equivalent

to the previous three standard hierarchical log-linear models.
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Table 4.11: Estimation of the expected counts for the log-linear models logmj|i =

λA
i and logmj|i = vi (product multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂1|1 = 29

(log m̂1|1 = 3.3673)

(ASE = 0)

m̂2|1 = 29

(log m̂2|1 = 3.3673)

(ASE = 0)

N1 = 58

Control

m̂1|2 = 58

(log m̂1|2 = 4.0604)

(ASE = 0)

m̂2|2 = 58

(log m̂2|2 = 4.0604)

(ASE = 0)

N2 = 116

Total 87 87 174

(log X̂AB = 0,ASE = 0)

Table 4.12: Estimation of the expected counts for the log-linear models logmj|i =

λA
i + λB

j and logmj|i = vi + δjvB (product multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂1|1 = 12

(log m̂1|1 = 2.4849)

(ASE = 0.1484)

m̂2|1 = 46

(log m̂2|1 = 3.8286)

(ASE = 0.0387)

N1 = 58

Control

m̂1|2 = 24

(log m̂1|2 = 3.1781)

(ASE = 0.1484)

m̂2|2 = 92

(log m̂2|2 = 4.5218)

(ASE = 0.0387)

N2 = 116

Total 36 138 174

(log X̂AB = 0,ASE = 0)
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Table 4.13: Estimation of the parameters for the saturated log-linear models

logmj|i = λA
i + λB

j + λAB
ij and logmj|i = vi + δjvB + δj|ivAB (product multino-

mial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂1|1 = 26

(log m̂1|1 = 3.2581)

(ASE = 0.1457)

m̂2|1 = 32

(log m̂2|1 = 3.4657)

(ASE = 0.1184)

N1 = 58

Control

m̂1|2 = 10

(log m̂1|2 = 2.3026)

(ASE = 0.3023)

m̂2|2 = 106

(log m̂2|2 = 4.6634)

(ASE = 0.0285)

N2 = 116

Total 36 138 174

(log X̂AB = 2.1532,ASE = 0.4233)

Consider the three standard non-hierarchical log-linear models of Section 3.4.1.2 under

product multinomial sampling. (As mentioned before, due to time constraints, we do not

consider all the standard non-hierarchical log-linear models in this thesis.) Tables 4.14–

4.16 contain the estimates of the expected counts and their natural logarithms. The tables

also include the estimates of the asymptotic standard errors (ASE) of the estimates of the

logarithms of the counts.

Below each table, we give the estimate of the log odds ratio and the estimate of the

asymptotic standard error of the estimate. We comment about the value of the estimated

log odds ratio only for the best models that we choose in Section 4.7.
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Table 4.14: Estimation of the expected counts for the non-hierarchical log-linear

model logmj|i = λA
i + λAB

ij with
∑

i λ
AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i

(product multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂1|1 = 44

(log m̂1|1 = 3.7842)

(ASE = 0.0428)

m̂2|1 = 14

(log m̂2|1 = 2.6391)

(ASE = 0.1344)

58

Control

m̂1|2 = 28

(log m̂1|2 = 3.3322)

(ASE = 0.1344)

m̂2|2 = 88

(log m̂2|2 = 4.4773)

(ASE = 0.0428)

116

Total 72 102 N = 174

(log X̂AB = 2.2902,ASE = 0.3545)

Table 4.15: Estimation of the expected counts for the non-hierarchical log-linear

model logmj|i = λA
i + λAB

ij with λAB
1j = 0 for each j, and λAB

21 = 0 (product

multinomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂1|1 = 29

(log m̂1|1 = 3.3672)

(ASE = 0.0000)

m̂2|1 = 29

(log m̂2|1 = 3.3672)

(ASE = 0.0000)

58

Control

m̂1|2 = 10

(log m̂1|2 = 2.3025)

(ASE = 0.3022)

m̂2|2 = 106

(log m̂2|2 = 4.6634)

(ASE = 0.0285)

116

Total 39 135 N = 174

(log X̂AB = 2.3608,ASE = 0.3307)
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Table 4.16: Estimation of the expected counts for the non-hierarchical log-linear

model logmj|i = λA
i + λAB

ij with λAB
i2 = 0 for each i, and λAB

21 = 0 (product multi-

nomial sampling)

Oral contraceptive (B)

Diagnostic group (A) Used Did not use Total

Thromboembolism

m̂1|1 = 26

(log m̂1|1 = 3.2580)

(ASE = 0.1456)

m̂2|1 = 32

(log m̂2|1 = 3.4657)

(ASE = 0.1184)

58

Control

m̂1|2 = 58

(log m̂1|2 = 4.0604)

(ASE = 0.0000)

m̂2|2 = 58

(log m̂2|2 = 4.0604)

(ASE = 0.0000)

116

Total 84 90 N = 174

(log X̂AB = −0.2077,ASE = 0.2638)

4.7 Comparison of the different log-linear models

Table 4.17 contains the results of the Pearson X2 test and the likelihood ratio G2 test for all

the models we examined in Section 4.6 under multinomial sampling. In each case, we reject

the model in favor of the saturated model logmij = λ+ λA
i + λB

j + λAB
ij .

Table 4.18 gives the AICs of all the models under multinomial sampling. Clearly, the

saturated model has the smallest AIC and it is thus the best model for fitting the data. 2

(The AIC from R corresponds to Poisson sampling and it differs from the actual AIC under

multinomial sampling by a constant.)

From Table 4.7, we see that, for the saturated model, log X̂AB = 2.1532 and ASE(log X̂AB) =

0.1791. Thus, an asymptotic 95% confidence interval for the true log odds ratio, logXAB, is

2.1532± 1.96× 0.1791 = (1.8021, 2.5042).

Since the asymptotic 95% confidence interval does not contain 0, the logXAB is positive with

95% confidence, and thromboembolism and oral contraceptives are positively associated.

2There is a standard non-hierarchical model with a smaller AIC, but we do not consider it in this thesis.
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Table 4.17: Goodness-of-fit statistics for the unconditional models abc

Model Df Pearson X2 test G2 test

X2 statistic p-value G2 statistic p-value

logmij = λ 3 125.68 0 113.01 0

logmij = λ+ λA
i 2 80.07 0 93.3 0

logmij = λ+ λB
j 2 46.79 0 49.21 0

logmij = λ+ λA
i + λB

j 1 30.89 0 29.5 0

logmij = λ+ λAB
ij (R1) 2 60.01 0 64.12 0

logmij = λ+ λAB
ij (R2) 2 11.41 0 12.84 0

logmij = λ+ λAB
ij (R3) 2 102.54 0 102.54 0

logmij = λ+ λA
i + λB

j + λAB
ij 0 0 NA 0 NA

aR1:
∑

i λ
AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i.

bR2: λ
AB
1j = 0 for each j, and λAB

21 = 0.
cR3: λ

AB
i2 = 0 for each i, and λAB

21 =0.
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Table 4.18: AIC for the unconditional models abc

Model AIC (from R) AIC (actual)

logmij = λ 136.0793 129.0814

logmij = λ+ λA
i 118.3710 111.3731

logmij = λ+ λB
j 74.2800 67.2821

logmij = λ+ λA
i + λB

j 56.5717 49.5738

logmij = λ+ λAB
ij (R1) 89.1914 82.1935

logmij = λ+ λAB
ij (R2) 37.90926 30.8914

logmij = λ+ λAB
ij (R3) 127.5935 120.6156

logmij = λ+ λA
i + λB

j + λAB
ij 29.0712 22.0733

aR1:
∑

i λ
AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i.

bR2: λ
AB
1j = 0 for each j, and λAB

21 = 0.
cR3: λ

AB
i2 = 0 for each i, and λAB

21 =0.

We get similar conclusions by looking at the goodness-of-fit statistics and the AIC for

the conditional models (the ones under the product multinomial sampling). See Tables 4.19

– 4.20. The saturated model logmj|i = λA
i + λB

j + λAB
ij is the best model. (The estimate

of logXAB and the ASE of the estimate of logXAB in Table 4.13 are the same as those in

Table 4.7.)

Table 4.19: Goodness-of-fit statistics for conditional models abc

Model Df Pearson X2 test G2 test

X2 statistic p-value G2 statistic p-value

logmj|i = λA
i 2 125.68 0 113.01 0

logmj|i = λA
i + λB

j 1 30.89 0 29.5 0

logmj|i = λA
i + λAB

ij (R1) 1 45.76 0 44.41 0

logmj|i = λA
i + λAB

ij (R2) 1 0.62 0.43 0.62 0.43

logmj|i = λA
i + λAB

ij (R3) 1 79.45 0 92.68 0

logmj|i = λA
i + λB

j + λAB
ij 0 0 NA 0 NA

aR1:
∑

i λ
AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i.

bR2: λ
AB
1j = 0 for each j, and λAB

21 = 0.
cR3: λ

AB
i2 = 0 for each i, and λAB

21 =0.
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Table 4.20: AIC for the conditional models abc

Model AIC (from R) AIC (actual)

logmj|i = λA
i 118.3710 105.8769

logmj|i = λA
i + λB

j 56.5717 44.0776

logmj|i = λA
i + λAB

ij (R1) 71.4831 58.9890

logmj|i = λA
i + λAB

ij (R2) 27.6930 15.1989

logmj|i = λA
i + λAB

ij (R3) 119.7492 107.2550

logmj|i = λA
i + λB

j + λAB
ij 29.0712 16.5771

aR1:
∑

i λ
AB
ij = 0 for each j and

∑
j λ

AB
ij = 0 for each i.

bR2: λ
AB
1j = 0 for each j, and λAB

21 = 0.
cR3: λ

AB
i2 = 0 for each i, and λAB

21 =0.

There is one exception to what we said above. From the three standard non-hierarchical

models (under product multinomial sampling) that we considered in this thesis, the one with

the equation logmj|i = λA
i + λAB

ij and restriction (R2) has an AIC smaller than the AIC of

the saturated model. In addition, using both the Pearson X2 test and the G2 likelihood

ratio test, we fail to reject the null model in favor of the alternative model.

Choosing the above standard non-hierarchical log-linear (under product multinomial sam-

pling) as the best model might be controversial because such models are difficult to interpret.
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APPENDIX A

APPENDIX TO CHAPTER 3

A.1 Appendix to Section 3.3

In this appendix, we prove that the standard hierarchical log-linear model

logmij = λ+ λA
i + λB

j (A.1)

is equivalent to the independence model

πij = πi·π·j, for all i, j, (A.2)

under the assumption of multinomial sampling. See Table 3.2 in Section 3.1 and the theory

of Section 3.3.

(a) (A.1) ⇒ (A.2). Assume Eq. (A.1) holds. Since mij = Nπij, we get

Nπij = eλeλ
A
i eλ

B
j

⇒ πij =
1

N
eλeλ

A
i eλ

B
j

⇒ πij = g(i)h(j),

where g(i) = 1
N
eλeλ

A
i and h(j) = eλ

B
j . By Lemma 4.2.7 in Casella and Berger [3], we conclude

that factors A and B are independent, and thus Eq. (A.2) holds.

(b) (A.2) ⇒ (A.1). Assume Eq. (A.2) holds. Since mij = Nπij, we have

mij = Nπi·π·j ⇒ logmij = logN + log πi· + log π·j

We may not write logmij = λ + λA
i + λB

j with λ = logN , λA
i = log πi· and λB

j = log π·j

because we need one of the three sets of restrictions of Section 3.3.1 to hold.
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i. To get the zero-sum constraints, we let

λ = logN(
√
π1·π2·π·1π·2),

λA
i = log

πi·√
π1·π2·

, and

λB
j = log

π·j√
π·1π·2

.

Then Eq. (A.1) holds with λA
1 + λA

2 = 0 and λB
1 + λB

2 = 0.

ii. To get zero constraints for the first categories (R constraints), we let

λA
1 = λB

1 = 0,

λ = log(Nπ1·π·1),

λA
2 = log

π2·

π1·
,

λB
2 = log

π·2

π·1
.

Then Eq. (A.1) holds with λA
1 = λB

1 = 0.

iii. To get zero constraints for the last categories (SAS constraints), we let

λA
2 = λB

2 = 0,

λ = log(Nπ2·π·2),

λA
1 = log

π1·

π2·
,

λB
1 = log

π·1

π·2
.

Then Eq. (A.1) holds with λA
2 = λB

2 = 0.

A.2 Appendix to Section 3.4

In this appendix, we prove that the standard hierarchical log-linear model

logmj|i = λA
i + λB

j , (A.3)

which is suitable for product multinomial sampling, is equivalent to the independence model

π1|1 = π1|2. (A.4)

See Table 3.4 in Section 3.1 and the theory of Section 3.4 .
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(a) (A.3) ⇒ (A.4). Assume Eq. (A.3) holds. Since mj|i = Niπj|i, we get that

logmj|i = λA
i + λB

j ⇒ πj|i =
1

Ni

eλ
A
i eλ

B
j .

Now,

π1|1π2|2

π2|1π1|2
=

1
N1N2

eλ
A
1 eλ

B
1 eλ

A
2 eλ

B
2

1
N1N2

eλ
A
1 eλ

B
2 eλ

A
2 eλ

B
1

= 1,

and so,

π1|1

π2|1
=

π1|2

π2|2
⇒

π1|1

π2|1 + π1|1
=

π1|2

π2|2 + π1|2
⇒ π1|1 = π1|2.

Thus Eq. (A.4) holds.

(b) (A.4) ⇒ (A.3). Assume Eq. (A.4) holds.

i. To get the zero-sum constraints, we let

λA
1 = log(N1π

1/2
1|2 π

1/2
2|1 ),

λA
2 = log(N2π

1/2
1|2 π

1/2
2|2 ), and

λB
1 = −λB

2 =
1

2
log

π1|2

π2|2
.

Since mj|i = Niπj|i and π1|1 = π1|2, we may prove that logmj|i = λA
i + λB

j and∑
j λ

B
j = 0.

ii. To get zero constraints for the first categories (R constraints), we let

λA
1 = log(N1π1|1),

λA
2 = log(N2π1|2), and

λB
2 = log

π2|1

π1|1
.

Since mj|i = Niπj|i and π1|1 = π1|2, we may prove that logmj|i = λA
i + λB

j and

λB
1 = 0.
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iii. To get zero constraints for the last categories (SAS constraints), we let

λA
1 = log(N1π2|1),

λA
2 = log(N2π2|2), and

λB
1 = log

π1|1

π2|1
.

Since mj|i = Niπj|i and π1|1 = π1|2, we may prove that logmj|i = λA
i + λB

j and

λB
2 = 0.

47



APPENDIX B

APPENDIX TO CHAPTER 4

B.1 Variance-covariance matrices for the estimates of

the w-parameters in Section 3.3.2

To derive the results below, we use the theory and formulas of Chapter 4.

B.1.1 Variance-covariance matrices of the estimates of w for multi-

nomial sampling

We list the variance-covariance matrices of ŵ under multinomial sampling for the uncondi-

tional log-linear models.

Model logmij = w:

ŵ = (ŵ) =
(
3.7728

)
and V̂ (ŵ) =

(
0
)

Model logmij = w + δiwA:

ŵ =

(
ŵ

ŵA

)
=

(
4.0604

−0.6931

)
and V̂ (ŵ) =

(
0.0029 −0.0086

−0.0086 0.0259

)
Model logmij = w + δjwB:

ŵ =

(
ŵ

ŵB

)
=

(
4.2341

−1.3438

)
and V̂ (ŵ) =

(
0.0015 −0.0072

−0.0072 0.0350

)
Model logmij = w + δiwA + δjwB:

ŵ =


ŵ

ŵA

ŵB

 =


4.5218

−.6932

−1.3437

 and V̂ (ŵ) =


0.0044 −0.0086 −.0072

−0.0086 0.0259 −0.0000

−0.0072 0.0000 .0350


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Model logmij = w + δiwA + δjwB + δijwAB:

ŵ =


ŵ

ŵA

ŵB

ŵAB

 =


4.6634

−1.1977

−2.3608

2.1532

 and V̂ (ŵ) =


0.0037 −0.0094 −0.0094 0.0094

−0.0094 0.0407 0.0094 −0.0407

−0.0094 0.0094 0.1094 −0.1094

0.0094 −0.0407 −0.1094 0.1791



B.2 Appendix to Section 4.6

B.2.1 Variance-covariance matrices of the estimates of logmij for

multinomial sampling

Here m̂ = (m11,m12,m21,m22)
⊤. We list the variance-covariance matrices of m̂ under multi-

nomial sampling for the unconditional log-linear models in Section 3.3.

Log-linear model logmij = λ (multinomial sampling):

V̂ (log m̂) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Log-linear model logmij = λ+ λA

i (multinomial sampling):

V̂ (log m̂) =


0.0115 0.0115 −0.0058 −0.0058

0.0115 0.0115 −0.0058 −0.0058

−0.0058 −0.0058 0.0029 0.0029

−0.0058 −0.0058 0.0029 0.0029


Log-linear model logmij = λ+ λB

j (multinomial sampling):

V̂ (log m̂) =


0.0220 −0.0058 0.0220 −0.0058

−0.0058 0.0015 −0.0058 0.0015

0.0220 −0.0058 0.0220 −0.0058

−0.0058 0.0015 −0.0058 0.0015


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Log-linear model logmij = λ+ λA
i + λB

j (multinomial sampling):

V̂ (log m̂) =


0.0335 0.0058 0.0163 −0.0115

0.0058 0.0130 −0.0115 −0.0043

0.0163 −0.0115 0.0249 −0.0029

−0.0115 −0.0043 −0.0029 0.0044


Log-linear model logmij = λ+ λA

i + λB
j + λAB

ij (multinomial sampling):

V̂ (log m̂) =


0.0327 −0.0058 −0.0058 −0.0058

−0.0058 0.0255 −0.0058 −0.0058

−0.0058 −0.0058 0.0943 −0.0058

−0.0058 −0.0058 −0.0058 0.0037


Log-linear model logmij = λ+ λAB

ij (zero sum constraint, multinomial sampling):

V̂ (log m̂) =


0.0018 −0.0057 −0.0057 0.0018

−0.0057 0.0181 0.0181 −0.0057

−0.0057 0.0181 0.0181 −0.0057

0.0018 −0.0057 −0.0057 0.0018


Log-linear model logmij = λ+λAB

ij (first category zero constraint, multinomial sampling):

V̂ (log m̂) =


0.0090 0.0090 0.0090 −0.0057

0.0090 0.0090 0.0090 −0.0057

0.0090 0.0090 0.0090 −0.0057

−0.0057 −0.0057 −0.0057 0.0036


Log-linear model logmij = λ+λAB

ij (last category zero constraint, multinomial sampling):

V̂ (log m̂) =


0.0327 −0.0057 −0.0057 −0.0057

−0.0057 0.0010 0.0010 0.0010

−0.0057 0.0010 0.0010 0.0010

−0.0057 0.0010 0.0010 0.0010



B.2.2 Variance-covariance matrices of the estimates of logmij for

product multinomial sampling

Here m̂ = (m1|1,m2|1,m1|2,m2|2)
⊤. We list the variance-covariance matrices of m̂ under

product multinomial sampling for the conditional log-linear models in Section 3.4.

50



Log-linear model logmj|i = λA
i (product multinomial sampling):

V̂ (log m̂) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Log-linear model logmj|i = λA

i + λB
j (product multinomial sampling):

V̂ (log m̂) =


0.0220 −0.0058 0.0220 −0.0058

−0.0058 0.0015 −0.0058 0.0015

0.0220 −0.0058 0.0220 −0.0058

−0.0058 0.0015 −0.0058 0.0015


Log-linear model logmj|i = λA

i + λB
j + λAB

ij (product multinomial sampling):

V̂ (log m̂) =


0.0212 −0.0172 0.0000 0.0000

−0.0172 0.0140 0.0000 0.0000

0.0000 −0.0000 0.0914 −0.0086

0.0000 −0.0000 −0.0086 0.0008


Log-linear model logmj|i = λA

i + λAB
ij (zero sum constraint, product multinomial sam-

pling):

V̂ (log m̂) =


0.0018 −0.0057 −0.0057 0.0018

−0.0057 0.0180 0.0180 −0.0057

−0.0057 0.0180 0.0181 −0.0057

0.0018 −0.0057 −0.0057 0.0018


Log-linear model logmj|i = λA

i +λAB
ij (first category zero constraint, product multinomial

sampling):

V̂ (log m̂) =


0 0 0.0000 0.0000

0 0 0.0000 0.0000

0 0 0.0914 −0.0086

0 0 −0.0086 0.0008


Log-linear model logmj|i = λA

i +λAB
ij (last category zero constraint, product multinomial
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sampling):

V̂ (log m̂) =


0.0212 −0.0172 0 0

−0.0172 0.0140 0 0

0.0000 0.0000 0 0

0.0000 0.0000 0 0



B.3 R programs for some of the calculations in Section

4.6

In this part of the appendix, we give some R programs to estimate the parameters of the

log-linear models in Section 3.3. We use three kinds of log-linear models. The results

are summarized in Section 4.6. For brevity, we only include R programs for multinomial

sampling.

(a) Standard hierarchical log-linear models (with zero constraints for the first categories)

## lambda

freq <- c(26,32,10,106)

m<-data.frame(diagonostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagonostic<-relevel(diagonostic, ref = "1"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "1"))

m

## diagnostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X <- model.matrix( ~ diagonostic*contraceptive,

data = m, contrasts.arg = list(diagonostic = "contr.sum",

contraceptive="contr.sum"))

X<-X[,-c(2:4)]

X

## 1 2 3 4

## 1 1 1 1
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fit_a <- glm(freq~X, family = poisson)

summary(fit_a)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## -2.870 -1.830 -6.132 7.989

## Coefficients: (1 not defined because of singularities)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.77276 0.07581 49.77 <2e-16 ***

## X NA NA NA NA

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.01 on 3 degrees of freedom

## Residual deviance: 113.01 on 3 degrees of freedom

## AIC: 136.08

## Number of Fisher Scoring iterations: 5

fit_a$fitted.values

## 1 2 3 4

## 43.5 43.5 43.5 43.5

-------------------------------------------------------

## lambda+lambda(A)

freq <- c(26,32,10,106)

m<-data.frame(diagonostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagonostic<-relevel(diagonostic, ref = "1"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "1"))

m
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## diagonostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X <- model.matrix( ~ diagonostic*contraceptive,

data = m, contrasts.arg = list(diagonostic = "contr.sum",

contraceptive="contr.sum"))

X<-X[,-1]

X<-X[,-c(2,3)]

X

## 1 2 3 4

## 1 1 -1 -1

fit_a <- glm(freq~X, family = poisson)

##summary(fit_a)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## -0.5671 0.5479 -7.8002 5.6423

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.71387 0.08041 46.19 < 2e-16 ***

## X -0.34657 0.08041 -4.31 1.63e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.01 on 3 degrees of freedom

## Residual deviance: 93.30 on 2 degrees of freedom
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## AIC: 118.37

##

## Number of Fisher Scoring iterations: 5

fit_a$fitted.values

## 1 2 3 4

## 29 29 58 58

##-------------------------------------------------------

## lambda+lambda(B)

freq <- c(26,32,10,106)

m<-data.frame(diagonostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagonostic<-relevel(diagonostic, ref = "1"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "1"))

m

## diagonostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X <- model.matrix( ~ diagonostic*contraceptive,

data = m, contrasts.arg = list(diagonostic = "contr.sum",

contraceptive="contr.sum"))

X<-X[,-c(1,2,4)]

X

## 1 2 3 4

## 1 -1 1 -1

fit_a <- glm(freq~X, family = poisson)

summary(fit_a)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## 1.767 -4.982 -2.060 4.125
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##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.56224 0.09357 38.07 < 2e-16 ***

## X -0.67187 0.09357 -7.18 6.96e-13 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.008 on 3 degrees of freedom

## Residual deviance: 49.209 on 2 degrees of freedom

## AIC: 74.28

##

## Number of Fisher Scoring iterations: 4

fit_a$fitted.values

## 1 2 3 4

## 18 69 18 69

##---------------------------------------------------------

## lambda+lambda(A)+lambda(B)

freq <- c(26,32,10,106)

m<-data.frame(diagonostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagonostic<-relevel(diagonostic, ref = "1"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "1"))

m

## diagonostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X <- model.matrix( ~ diagonostic*contraceptive,

data = m, contrasts.arg = list(diagonostic = "contr.sum",

contraceptive="contr.sum"))

X<-X[,-c(1,4)]
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X

## diagonostic1 contraceptive1

## 1 1 1

## 2 1 -1

## 3 -1 1

## 4 -1 -1

fit_b <- glm(freq~X, family = poisson)

summary(fit_b)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## 3.494 -2.185 -3.239 1.425

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.50335 0.09734 35.99 < 2e-16 ***

## Xdiagonostic1 -0.34657 0.08041 -4.31 1.63e-05 ***

## Xcontraceptive1 -0.67187 0.09357 -7.18 6.97e-13 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.01 on 3 degrees of freedom

## Residual deviance: 29.50 on 1 degrees of freedom

## AIC: 56.572

##

## Number of Fisher Scoring iterations: 5

fit_b$fitted.values

## 1 2 3 4

## 12 46 24 92
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##--------------------------------------------------------

## lambda+lambda(A)+lambda(B)+lambda(AB)

freq <- c(26,32,10,106)

m<-data.frame(diagonostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagonostic<-relevel(diagonostic, ref = "1"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "1"))

m

## diagonostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X <- model.matrix( ~ diagonostic*contraceptive,

data = m, contrasts.arg = list(diagonostic = "contr.sum",

contraceptive="contr.sum"))

X<-X[,-1]

X

## diagonostic1 contraceptive1 diagonostic1:contraceptive1

## 1 1 1 1

## 2 1 -1 -1

## 3 -1 1 -1

## 4 -1 -1 1

fit_b <- glm(freq~X, family = poisson)

summary(fit_b)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## [1] 0 0 0 0

##

## Coefficients:

## Estimate Std. Err. z val. Pr(>|z|)

## (Intercept) 3.42246 0.10581 32.344 < 2e-16 ***
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## Xdiagonostic1 -0.06055 0.10581 -0.572 0.567

## Xcontraceptive1 -0.64212 0.10581 -6.068 1.29e-09 ***

## Xdiagonostic1:contraceptive1 0.53830 0.10581 5.087 3.63e-07 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 1.1301e+02 on 3 degrees of freedom

## Residual deviance: -7.5495e-15 on 0 degrees of freedom

## AIC: 29.071

##

## Number of Fisher Scoring iterations: 3

fit_b$fitted.values

## 1 2 3 4

## 26 32 10 106

##-------------------------------------------------------------

(b) Standard non-hierarchical log-linear models

For brevity, we only show some of the calculations for the standard non-hierarchical log-

linear model logmij = λ+ λAB
ij with the restrictions λAB

1j = 0 for each j and λAB
21 = 0.

##lambda+lambda(AB)

freq <- c(26,32,10,106)

m<-data.frame(diagonostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagonostic<-relevel(diagnostic, ref = "1"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "1"))

m

## diagnostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X <- model.matrix( ~ diagonostic*contraceptive,

+ data = m)
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x_ab <- c(0,0,0,1)

X <- cbind(X,x_ab)

X<-X[,-c(1:4)]

X

## 1 2 3 4

## 0 0 0 1

fit_ab <- glm(freq~X, family = poisson)

summary(fit_ab)

## Call:

## glm(formula = freq ~ X, family = poisson)

## Deviance Residuals:

## 1 2 3 4

## 0.6839 1.8448 -2.9945 0.0000

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.1209 0.1213 25.736 <2e-16 ***

## X 1.5425 0.1554 9.928 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

## (Dispersion parameter for poisson family taken to be 1)

## Null deviance: 113.008 on 3 degrees of freedom

## Residual deviance: 12.838 on 2 degrees of freedom

## AIC: 37.909

## Number of Fisher Scoring iterations: 4

fit_ab$fitted.values

## 1 2 3 4
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## 22.66667 22.66667 22.66667 106.00000

##----------------------------------------------------

(c) Non-standard log-linear models (log-linear versions of Worcester’s models)

## w

freq <- c(26,32,10,106)

m<-data.frame(diagnostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagnostic<-relevel(diagnostic, ref = "2"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "2"))

m

## diagnostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X<-model.matrix( ~ diagnostic*contraceptive, data = m)

X<-X[,-c(2:4)]

X

## 1 2 3 4

## 1 1 1 1

fit_b <- glm(freq~X, family = poisson)

summary(fit_b)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## -2.870 -1.830 -6.132 7.989

##

## Coefficients: (1 not defined because of singularities)
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## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.77276 0.07581 49.77 <2e-16 ***

## X NA NA NA NA

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.01 on 3 degrees of freedom

## Residual deviance: 113.01 on 3 degrees of freedom

## AIC: 136.08

##

## Number of Fisher Scoring iterations: 5

fit_b$fitted.values

## 1 2 3 4

## 43.5 43.5 43.5 43.5

##____________________________________________________________

## w+w(A)

freq <- c(26,32,10,106)

m<-data.frame(diagnostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagnostic<-relevel(diagnostic, ref = "2"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "2"))

m

## diagnostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X<-model.matrix( ~ diagnostic*contraceptive, data = m)

X<-X[,-1]

X<-X[,-c(2,3)]

X

## 1 2 3 4

## 1 1 0 0
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fit_a <- glm(freq~X, family = poisson)

summary(fit_a)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## -0.5671 0.5479 -7.8002 5.6423

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.06044 0.09285 43.73 < 2e-16 ***

## X -0.69315 0.16082 -4.31 1.63e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.01 on 3 degrees of freedom

## Residual deviance: 93.30 on 2 degrees of freedom

## AIC: 118.37

##

## Number of Fisher Scoring iterations: 5

fit_a$fitted.values

## 1 2 3 4

## 29 29 58 58

##_________________________________________________________

## w+w(B)

freq <- c(26,32,10,106)

m<-data.frame(diagnostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagnostic<-relevel(diagnostic, ref = "2"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "2"))

m
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## diagnostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X<-model.matrix( ~ diagnostic*contraceptive, data = m)

X<-X[,-c(1,2,4)]

X

## 1 2 3 4

## 1 0 1 0

fit_b <- glm(freq~X, family = poisson)

summary(fit_b)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## 1.767 -4.982 -2.060 4.125

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.23411 0.08512 49.74 < 2e-16 ***

## X -1.34373 0.18715 -7.18 6.96e-13 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.008 on 3 degrees of freedom

## Residual deviance: 49.209 on 2 degrees of freedom

## AIC: 74.28

##

## Number of Fisher Scoring iterations: 4
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fit_b$fitted.values

## 1 2 3 4

## 18 69 18 69

##_______________________________________________________

## w+w(A)+w(B)

freq <- c(26,32,10,106)

m<-data.frame(diagnostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagnostic<-relevel(diagnostic, ref = "2"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "2"))

m

## diagnostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X<-model.matrix( ~ diagnostic*contraceptive, data = m)

X<-X[,-c(1,4)]

X

## diagnostic1 contraceptive1

## 1 1 1

## 2 1 0

## 3 0 1

## 4 0 0

fit_b <- glm(freq~X, family = poisson)

summary(fit_b)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## 1 2 3 4

## 3.494 -2.185 -3.239 1.425

##

## Coefficients:
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## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.5218 0.1006 44.95 < 2e-16 ***

## Xdiagnostic1 -0.6931 0.1608 -4.31 1.63e-05 ***

## Xcontraceptive1 -1.3437 0.1871 -7.18 6.97e-13 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 113.01 on 3 degrees of freedom

## Residual deviance: 29.50 on 1 degrees of freedom

## AIC: 56.572

##

## Number of Fisher Scoring iterations: 5

fit_b$fitted.values

## 1 2 3 4

## 12 46 24 92

##_____________________________________________________

## w+w(A)+w(B)+w(AB)

freq <- c(26,32,10,106)

m<-data.frame(diagnostic=gl(2,2,4), contraceptive=gl(2,1,4))

m<-within(m, diagnostic<-relevel(diagnostic, ref = "2"))

m<-within(m, contraceptive<-relevel(contraceptive, ref = "2"))

m

## diagnostic contraceptive

## 1 1 1

## 2 1 2

## 3 2 1

## 4 2 2

X<-model.matrix( ~ diagnostic*contraceptive, data = m)

X<-X[,-1]

X

## diagnostic1 contraceptive1 diagnostic1:contraceptive1

## 1 1 1 1
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## 2 1 0 0

## 3 0 1 0

## 4 0 0 0

fit_b <- glm(freq~X, family = poison)

##

##

summary(fit_b)

##

## Call:

## glm(formula = freq ~ X, family = poisson)

##

## Deviance Residuals:

## [1] 0 0 0 0

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.66344 0.09713 48.013 < 2e-16 ***

## Xdiagnostic1 -1.19770 0.20170 -5.938 2.89e-09 ***

## Xcontraceptive1 -2.36085 0.33081 -7.137 9.56e-13 ***

## Xdiagnostic1:contraceptive1 2.15321 0.42326 5.087 3.63e-07 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 1.1301e+02 on 3 degrees of freedom

## Residual deviance: -9.3259e-15 on 0 degrees of freedom

## AIC: 29.071

##

## Number of Fisher Scoring iterations: 3

fit_b$fitted.values

## 1 2 3 4

## 26 32 10 106

##_____________________________________________________
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