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Abstract 

PREDICTING HIGH SCHOOL STUDENTS' STEM CAREER INTEREST 

THROUGH SUPERVISED MACHINE LEARNING ALGORITHMS AND 

CHI-SQUARE ANALYSIS 

by  

Zekeriya Gogebakan 

 

Dr. Hasan Deniz, Examination Committee Chair 

Professor of Teaching and Learning 

University of Nevada, Las Vegas 

 

The dearth of STEM students in the United States is a growing concern for policymakers and 

educators alike. With the increasing reliance on technology in the global economy, a STEM-

trained workforce is essential for the United States to remain competitive. However, the number 

of students majoring in STEM disciplines and pursuing STEM careers is not keeping pace with 

the demand for these skilled workers. As a result, understanding the characteristics that 

contribute to students' confidence in science and their desire to pursue professions in science 

remains a national priority. This research investigated the factors influencing the choice of 

STEM careers among high school graduates. To achieve this, the study analyzed data from 520 

high school graduates, using machine learning models and chi-square analysis to predict their 

propensity for choosing STEM careers. This study evaluated the performance of four machine 

learning models—Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, and Neural 
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Network—across various metrics, including accuracy, precision, recall, and F1 Score, to 

determine their effectiveness in classification tasks. The Logistic Regression model has a 

performance with an accuracy of 83.65%, precision of 88.83%, and recall of 84.12%. This 

indicates a slight preference for precision over recall. On the other hand, the K-Nearest 

Neighbors (KNN) model shows better accuracy (87.5%) and recall (93.6%), but with a slightly 

lower precision (86.7%). This suggests that the KNN model is effective in identifying relevant 

instances but with some compromises in precision. This study also explored the impact of 

socioeconomic status (SES), ethnicity, and access to Advanced Placement (AP) courses on the 

career choices of students in STEM fields. It found that gender did not significantly affect these 

decisions, but disparities in SES, ethnicity, and educational opportunities played a critical role. 

The study recommended that educational stakeholders work together to address these disparities 

by providing supportive measures and equitable resource allocation to promote a more inclusive 

and diverse STEM workforce.  

 Keywords: STEM career, machine learning, chi-square analysis, leakage in STEM 

pipeline 
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Chapter 1 The Problem 

Introduction 

The term "STEM" is a very common term that is widely used in both educational and 

occupational contexts. It stands for Science, Technology, Engineering, and Mathematics. In the 

1990s, the term "STEM" originated from the National Science Foundation, initially coined as 

"SMET" (Bejan, Miron, & Barna, 2015). Judith A. Ramaley, who was in charge of the 

Foundation's Education and Human Resources Division at the time, did not like the acronym 

SMET and changed it to STEM. She chose STEM deliberately to highlight the importance of 

science and mathematics, with technology and engineering providing additional real-world 

relevance (Christenson, 2011). Nevertheless, there is still some ambiguity regarding what 

subjects are included in STEM. There are differing views among various organizations and 

experts, with some considering areas like agriculture and health sciences as part of STEM while 

others do not. 

Definitions of STEM are categorized into two main types: educational and occupational. 

The National Center for Education Statistics Classification of Instructional Programs 2000 is 

used for educational and academic classifications, while the Standard Occupational 

Classification (SOC) system is used for occupational studies (Koonce, Zhou, Anderson, Hening, 

and Conley, 2011). According to the SOC, there are 819 different occupations, among which 414 

require a wide range of skills in STEM subjects (Noonan, 2017). According to the 2021 Census 

Bureau report, there are significant differences in the demographics of the American workforce, 

especially in STEM jobs, for those between the ages of 18 and 74. Although women make up 

more than half of the population at 51%, they only account for 35% of STEM jobs. Conversely, 
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men make up less than half of the population at 49% but hold a much larger share of STEM jobs 

at 65%. In terms of race and ethnicity, White people are overrepresented in STEM jobs, 

accounting for 64% of the workforce, compared to their population percentage of 61%. Asian 

people, who constitute 6% of the population, have a smaller role in the overall workforce at 6% 

but a larger role in STEM at 10%. Hispanic or Latino people make up 18% of the population and 

workforce but only 15% of STEM jobs. 

Similarly, Black or African American people constitute 12% of both the general 

population and workforce but only 9% of those in STEM. American Indians and Alaska Natives 

are the least represented, accounting for less than 1% in both the overall and STEM workforce. 

This data highlights the significant gaps and challenges in making STEM fields more diverse, as 

evidenced by the report from the Census Bureau in 2021, which indicates that out of the 146.4 

million people employed, 34.9 million or 24% work in STEM careers. You can find the complete 

list of STEM and non-STEM jobs in Attachment C. 

Statement of the Problem 

In reaction to the Soviet Union's 1957 Sputnik launch, the United States intensified its 

efforts in the global competition for technological and engineering excellence. As a result, 

educational priorities shifted markedly, with a heightened focus on science education for 

students, resulting in a surge of funding and resources for schools (Woodruff, 2013). 

Educators, administrators, and policymakers understand the crucial importance of STEM 

in our daily lives. The progress of STEM fields plays a vital role in fostering innovation and 

development, ultimately enhancing our overall quality of life. In 2020, the American Association 

for the Advancement of Science (AAAS) emphasized the significant impact of STEM on the 
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U.S. economy. It noted that STEM is responsible for two-thirds of all employment, contributes to 

69% of the country's GDP, and generates $2.3 trillion in annual tax revenue for the government. 

So, it is crucial to keep the workforce knowledgeable and skilled in STEM to keep the United 

States ahead globally and maintain its economic advantage. 

The Department of Labor and the U.S. Bureau of Labor Statistics projects a significant 

increase in demand for STEM specialists, anticipating the need for around one million more 

professionals in the next ten years. This expectation builds on the previous trend observed 

between 2009 and 2015, during which STEM jobs grew by 10.5%, notably higher than the 

5.25% increase seen in non-STEM fields. Looking ahead, STEM occupations are expected to 

expand by 10.8% from 2022 to 2032. Furthermore, these roles are projected to offer median 

annual wages substantially above those in non-STEM areas, highlighting the rewarding nature of 

STEM careers in terms of both job security and financial benefits. This increase shows how 

important STEM fields are in creating new ideas and helping the economy grow. Jobs in STEM 

help with making new inventions and keeping the U.S. economy competitive. 

In the following sections, different terms that will be used in this study are defined. 

Definition of Terms 

STEM: The disciplines of science, technology, engineering, and mathematics are included under 

the STEM umbrella of academic and career-relevant study topics (Koonce et al., 2011). 

STEM Education: STEM education is an interdisciplinary approach to learning that removes the 

traditional barriers separating the four disciplines of science, technology, engineering, and 

mathematics and integrates them into the real world, creating rigorous and relevant learning 

experiences for students (Vasques, Sneider, & Comer, 2013). 
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STEM Career: STEM careers require knowledge and skills in the scientific, technological, 

engineering, and mathematical fields. The SOC system will be utilized to identify which 

occupations are considered STEM careers. Attachment C classification will be utilized for STEM 

career choice in this study. 

STEM Identity: According to Kim, Sinatra, and Seyranian (2018), stem identity is a socially 

constructed identity in which individuals define themselves as involved in STEM fields and 

believe they are a part of the STEM community. In this type of stem identity, the individual also 

believes they are a STEM community member. 

Internal Factors: Internal influences include an individual's viewpoints, principles, and feelings 

regarding STEM fields, along with their self-perception, abilities, and sense of belonging. 

External Factors: External factors affecting an individual's choice to follow a career path in 

STEM encompass parental influence, societal and cultural norms and stereotypes, the academic 

environment, and early exposure to STEM fields. 
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Chapter 2 Literature Review 

This section will discuss the various factors that influence an individual's decision to pursue 

a career in STEM fields. According to the literature, several factors can impact this decision, 

including family support, socioeconomic status, available courses, teacher influence, educational 

settings, gender, ethnicity, and informal learning experiences. The purpose of this exploration is 

to uncover previously overlooked or underexplored aspects of the literature. Identifying these gaps 

will contribute to a more comprehensive understanding of the pathways to STEM careers. 

STEM Pipeline 

Berryman (1983) first introduced the concept of the "STEM pipeline," a term that describes 

the educational trajectory students follow from elementary school through various stages, 

culminating in a career in one of the STEM fields. Despite recognizing the significance of STEM 

and extensive efforts to foster interest in these areas, producing graduates ready for STEM careers 

remains challenging. 

As technology and scientific progress continue to advance, there is a growing demand for 

skilled professionals in STEM fields. Despite this, there has been a noticeable decrease in the 

proportion of U.S. students obtaining STEM degrees in recent years. According to Hagemann 

(2015), nearly 16 percent of students complete a degree in a STEM field. Every year, the need 

for STEM jobs increases, resulting in the creation of millions of new job opportunities across the 

country. According to the National Center for Education Statistics, in the academic year 2020-

2021, there were 5.2 million graduates across all fields in the United States, out of which 

790,752 graduates were in STEM fields. This means that approximately 15.2% of the total 

graduates in that academic year were in STEM fields. In the academic year 2020-21, a total of 



 

6 
 

790,752 students graduated in the STEM field. Out of these graduates, 514,323 were male, while 

276,429 were female. This means that the percentage of male graduates in STEM was 

approximately 65%, and the percentage of female graduates was around 35%. This gender 

distribution in STEM fields is significantly different from the general gender distribution in the 

United States, where the Census Bureau reports that approximately 50.8% of the population is 

female, while 49.2% is male. 

 

Figure 1:Gender distribution among STEM majors 

Source: National Center for Education Statistics 

 

Table 1.1 shows a comparison between the percentages of various racial and ethnic 

groups in the United States' general population and their representation within STEM majors, 

along with the actual number of STEM major graduates. Whites (non-Hispanic or Latino) 

comprise 58.9% of the U.S. population and represent 57.4% of STEM majors, which translates 

to 385,194 individuals. Hispanic or Latino individuals make up 19.1% of the population and hold 
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a slightly lower proportion in STEM at 15.1%, with 101,761 graduates. Black or African 

American people constitute 13.6% of the population but are less represented in STEM majors at 

8.9%, with 59,848 graduates. Asians, who are 6.3% of the population, are significantly 

overrepresented in STEM majors at 14%, with 92,217 graduates. Individuals of two or more 

races make up 3.0% of the population and a slightly higher 4.2% of STEM majors, with 28,389 

graduates. The American Indian/Alaska Native category, comprising 1.3% of the U.S. 

population, represents only 0.5% of STEM majors, which amounts to 4,731 graduates. This table 

highlights both the representation and underrepresentation of different groups within STEM 

education relative to their proportions in the general population. 

 

Table 1:Comparison of Racial and Ethnic Representation in STEM Majors Versus General 
Population-(2020-21) 
 

  
General Population      

Percentage (2020) 

STEM Major 

Percentage(2020-21) 

STEM Major 

Count (2020-21) 

    

White  58.90% 57.40% 385,194 

Hispanic or Latino 19.10% 15.10% 101,761 

Black or African 

American 
13.60%               8.90%        59,848 

Asian              6.30%               14% 92,217 

Two or more races               3.0% 4.20% 28,389 

American 

Indian/Alaska 

Native 

             1.30%                 0.5         3158 

Source: National Center for Education Statistics and 2020 Census Bureau Data 

Notes: Number and percentage distribution of science, technology, engineering, and mathematics 

(STEM) degrees/certificates conferred by postsecondary institutions, race/ ethnicity, level of 

degree/certificate, and sex of student: Academic years 2020-21. Numbers rounded up. 
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Leaky Pipeline in STEM Career 

College students frequently display eagerness for STEM fields, but a significant number 

of them end up choosing non-STEM careers or do not complete their STEM degrees. This trend, 

referred to as the "leaky pipeline," is especially noticeable in higher education when students 

switch their majors, resulting in a smaller pool of potential STEM professionals (Alper, 1993). 

Many high school graduates, particularly those proficient in mathematics, are not 

selecting STEM majors in college. It has been observed by the Business-Higher Education 

Forum (2011) that slightly more than a quarter of 12th graders skilled in mathematics are not 

pursuing STEM disciplines. Furthermore, studies indicate that nearly 50% of students initially 

pursuing degrees in STEM switch to majors outside of these areas for their final degree. (Chen, 

2013). Notably, while 28% of college students show interest in STEM fields, about 48% 

eventually shift from STEM majors to non-STEM careers or decide not to complete their degrees 

(Ball, Huang, Cotton, & Rikard,2017).  

To address this challenge, numerous academic sources have emphasized the need for 

enhanced STEM education to meet the increasing demand for experts in these areas, highlighting 

a significant concern for the future workforce (National Research Council, 2007; PCAST, 2012). 

Research has concentrated on identifying parameters that influence students' decisions to follow 

STEM majors and those that impact retention in STEM fields. The "leaky pipeline" is associated 

with various elements, such as gender disparities in student choices, the underrepresentation of 

minorities, socioeconomic status, and environmental influences (Bal et al., 2010). In the 

upcoming section, we will thoroughly explore the factors that influence STEM careers, aiming to 

gain a comprehensive understanding of their underlying dynamics. 
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Factors Affecting STEM Career Interest  

Family Influence on STEM Career Interest  

Understanding the impact of social relationships, particularly with family, is crucial for 

educators aiming to support STEM students in college. Young adults' well-being and career 

choices are significantly influenced by their closest relationships, which shape their emotional 

management, self-esteem, and feelings of loneliness. Bronfenbrenner (1977) described various 

levels of influence: the micro level (like your family), the macro level (society at large), the meso 

level (how different parts of your life connect, such as school and home), and the exo level 

(settings that affect you indirectly). For any young person, the family, particularly the 

relationship with parents, plays a critical role at the micro level. This emphasizes the importance 

of nurturing supportive social environments for young adults navigating pivotal life decisions, 

including choosing a college major. 

Though many variables impact a child's interest in science, one of the most powerful 

influencers has been demonstrated to be parental and caregiver involvement. Several studies 

indicate that parents significantly influence their children's career choices in STEM-related 

fields. The concept of family involvement is multidimensional and can be defined as the actions 

and activities of parents that are relevant to their child's education in the school environment 

(Hill & Taylor, 2004). 

Parental Support Disparities Across Genders. 

The type and amount of parental assistance can vary depending on the gender of the 

child. This disparity in support is rooted in societal norms and beliefs about gender roles, which 
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influence how parents interact with their sons and daughters. Cridge (2015) has suggested that 

parents critically influence their children's career choices, especially during the early stages of 

their lives. However, the parental approach to career choice can indeed differ significantly 

between daughters and sons. According to the results of a national survey conducted by the 

American Society for Quality (2012), 21% of parents of girls aged 8-17 encouraged their 

daughters to pursue a career in the entertainment industry, while only 10% of parents encouraged 

their adolescent girls to pursue a career in the engineering industry. On the other hand, 31% of 

boys reported that their parents encouraged them to consider a career as an engineer.  

Rowan-Kenyon, Swan, and Creager (2010) suggest that numerous girls report receiving 

help from their parents with their math homework and having high expectations set for their 

grades. Such support and expectations from parents are crucial for girls' success and sustained 

participation in mathematics as they age. According to teachers, parental encouragement and 

support are significant determinants of students' ability to succeed in mathematics (Rowan-

Kenyon et al.,2020). Moreover, the actions of parents have a substantial impact on the attitudes 

held by girls and boys. 

Consequently, girls find themselves at a disadvantage and require distinct approaches 

from parents to encourage a focus on STEM careers. Campbell (1991) suggests several ways in 

which parents can encourage their daughters to pursue careers in STEM fields, including: a) 

highlighting the importance of math and science in seventh and eighth-grade b) integrating 

science and math into their daily routine c) paying attention to career exposure d) being 

conscious of inaccurate information about women working in STEM careers e) participating 

actively in their child's academic environment f) assisting young women in overcoming the 

stereotype that people with math and science interests are "nerdy." 
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Parent Education. 

Parental education levels also significantly impact their children's decisions regarding 

careers. The education parents have received often dictates the advice and expectations they have 

for their children's education and future jobs, especially at the high school level. Svoboda et al. 

(2016) found that higher parental education positively impacts college students' enrollment in 

STEM courses. Research also shows that households where a parent or relative works as a 

professional engineer can significantly impact the career choices of the children in the family 

(Dorie & Cardella, 2013).  

As college students move away from their families and focus more on building 

relationships with peers, parents remain a significant influence, as the principles and behaviors 

instilled during early socialization can shape their children's choices as they begin their 

university studies (Steinberg, 2016). This influence can also extend to parents working in other 

STEM fields, as they can serve as positive role models and inspire their children's selection of 

majors. 

Family Support at Schools.  

Studies have shown that getting involved with STEM subjects in high school offers 

lasting benefits. Students who engage more with STEM are more likely to follow a career path in 

these fields in the future. This suggests that early exposure to STEM can have a significant 

influence on career preferences in the future (Tey, Moses, and Cheah,2020b). As such, the role 

of parents in encouraging science education is crucial for boosting the chances of their children 

choosing careers in the STEM fields. In the following paragraphs, I will discuss various methods 
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to strengthen parental school participation to improve student interest in science courses. This, in 

turn, is expected to encourage more students to pursue careers in STEM fields. 

The Coleman Report (Coleman et al., 1966) and the Jencks Report (Jencks et al., 1972), 

as well as more recent works, both in the United States, support the idea that family influences 

academic performance. The Coleman Report, widely considered one of the most pivotal policy 

documents of the twentieth century in the United States, played a crucial role in shaping 

educational strategies across various subjects during the civil rights era. Coleman et al. 

highlighted the substantial influence of family background on student academic achievement in 

their report. Not long after the Coleman Report, the Jencks Report came out. Jencks et al.(1972) 

used data collected by Coleman(1966) and the findings of additional surveys to explore whether 

students' cognitive abilities are significantly influenced by their families. 

Lee and Bowen (2006) explored the impact of family engagement on high school 

students' success, focusing on how racial/ethnic backgrounds and family income levels influence 

parental involvement. They found that race and socio-economic status significantly affect how 

parents participate in their children's education, underscoring the importance of these factors in 

students' academic achievements. Additionally, the level of parental involvement in educational 

activities tends to vary with socio-economic status, with parents from higher SES backgrounds 

generally showing more engagement than those from lower SES backgrounds. This suggests that 

both educational attainment and socio-economic factors play critical roles in shaping the extent 

and nature of parental participation in the educational landscape (Crowley,2015). 

Jeynes (2007) reviewed 52 empirical studies on urban secondary school students and 

parental involvement. These studies found that active parental involvement can lessen the 
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academic performance gap between students of racial minorities and their white counterparts in 

secondary school children. This highlights parental engagement's role in fostering academic 

success and mitigating educational inequalities among students from diverse racial backgrounds. 

Ellington (2006) investigated the mathematical abilities of eight successful African American 

female undergraduates to assess their performance. Participants linked their success in math to 

the support they received from their parents. The female students credited their parents for 

sparking their early interest in mathematics and their early success.  

Various models aim to enhance parental involvement in schools to foster stronger 

collaborations between families and educational institutions, ultimately benefiting student 

learning and development. These models emphasize the importance of mutual understanding and 

encourage the participation of parents from diverse backgrounds in their children's education. 

Models developed by researchers such as Hoover-Dempsey (2005), Epstein (1995), and Olivos 

(2016) underscore the significance of effective communication between homes and schools. 

Each model highlights the interrelated roles of students, parents, and schools in achieving better 

educational outcomes. 

Olivos' approach addresses the challenges parents from different cultural backgrounds 

face in engaging with public schools, aiming to tackle disparities and enhance inclusivity. This 

model pays particular attention to the experiences of bicultural families and seeks ways to 

improve their interactions with educational institutions. 

Conversely, the frameworks proposed by Epstein, Hoover-Dempsey, and Sandler offer a 

broader perspective on parental involvement, encompassing a wide range of cultural and social 

backgrounds. These models provide insights into how parents can contribute to their children's 
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education and how such involvement can positively impact students' academic achievements and 

development.  

In conclusion, the research underscores the critical influence of family and social 

relationships on students' interest and success in STEM fields. Bronfenbrenner's ecological 

systems theory highlights the pivotal role of familial support at the micro level in shaping career 

choices, with parental guidance and encouragement significantly affecting children's inclination 

towards STEM careers. While boys often receive more encouragement for careers in 

engineering, girls are less supported in STEM, indicating a need for increased parental support 

for daughters. Parents' educational background, socio-economic status, and involvement in 

STEM professions significantly influence students' decisions regarding careers in STEM fields. 

Engaging in STEM activities during high school further heightens interest in STEM careers, 

emphasizing the importance of parental involvement in education to foster a supportive 

environment for students exploring STEM fields. 

Informal Learning Effect on STEM Career Choice 

Informal learning is a learning environment that is voluntary, open-ended, and has less 

structure (Leblebicioglu et al., 2017). Eshach (2007) provides an alternative definition of 

informal learning, describing it as learning that can occur in any setting. His study further 

explains that an individual's informal learning is shaped by their experiences in various settings 

and circumstances throughout their lifetime.  

According to the After-school Alliance (2015), seven million students in the United 

States who are enrolled in middle school participate in STEM activities outside their regular 

school day (i.e., informally or outside of their traditional instruction). Outside the classroom, 

Lachapelle and Brennan (2018) found that engineering after-school and summer programs 
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positively influence students' attitudes toward STEM and their career aspirations. Kurz et al. 

(2015) noted that participation in an Engineering Expo significantly boosts students' interest and 

perception of STEM fields.  

Informal learning, such as that offered by an OST (Out of School Time) STEM program, 

provides educators with the chance to answer questions posed by students, promote the academic 

interests of students, and enhance students' motivation to study STEM subjects. Informal science 

may teach knowledge regarding science and the natural world, exemplify the use of scientific 

inquiry, and motivate students to become prospective scientists by fostering their interest in 

science learning through informal learning (Brisson et al., 2010). Students have the option to 

become self-directed learners through the use of the informal learning approach. Brown (2016) 

and Holmquist (2014) found that middle school students who participated in OST STEM 

activities learned more STEM content. Introducing middle school students to STEM activities 

outside of school hours allows them to develop their interest and identity in STEM, which can 

motivate them to follow a STEM-related path (Hazari, Sonnert, Sadler, & Shanahan, 2010). 

Informal learning emphasizes student interests and motivations, with various 

characteristics of these environments fostering skills like leadership, effective interaction, digital 

literacy, innovation, teamwork, and social and interpersonal abilities. When students are given 

the chance to experience the content of the curriculum in an informal setting and the context of 

the real world, they apply their academic knowledge in a new approach. Students can also 

broaden their understanding of STEM subjects by participating in informal educational activities 

such as excursions and after-school programs. These settings allow students to explore current 

topics and engage with innovative concepts. Students would have a more profound 

comprehension of STEM ideas by combining their previous academic education with the real-
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world experiences gained from participation in field excursions pertaining to STEM subjects 

(King and Pringle, 2019). Students exposed to these educational settings tend to develop a 

greater interest in STEM-related subjects and show increased enthusiasm for careers in these 

areas. 

Additionally, a study on a cohort of young female scouts participating in an informal 

educational setting revealed that such experiences enhanced their interest and confidence in 

fields related to STEM (Burrows, Lockwood, Borowczar, & Janak, 2018). Research has shown 

that students who engage in extracurricular activities, such as field excursions, are better at 

applying STEM concepts to real-world situations. Furthermore, these students are more likely to 

develop and maintain an interest in careers that are related to STEM. 

After-school Alliance (2015), the National Research Council (2015), and the National 

Research Council (2009) all found that increasing students' access to high-quality OST STEM 

experiences was one of the most critical factors in growing students' persistence in STEM 

careers. Haden et al. (2014) found that children exposed to direct teaching or information 

regarding STEM at a science museum showed a higher likelihood of remembering STEM-related 

content.  

Additionally, Kirchberg (1998) pointed out that entrance fees are a significant barrier 

preventing people from visiting museums. This suggests that children from families of higher 

SES tend to have greater access to science museums and various informal learning environments 

throughout their childhood and teenage years compared to those from lower SES backgrounds. 

This difference in access could have implications for their educational and developmental 

experiences. Therefore, researchers must investigate additional predictors such as SES, parental 
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support, and teacher encouragement in STEM to consider strategies for spreading young people's 

interest in science. These activities provide students with a real, hands-on learning experience 

using STEM tools (technology) and practices that enhance their understanding of STEM subjects 

and identity (Holmquist, 2014). The desire of middle school kids to grasp STEM subjects and 

develop a STEM identity has been experimentally associated with an individual's motivation or 

inherent willingness to study. Students are more motivated when they have a choice than when 

forced to comply (Deci, Vallerand, Pelletier, & Ryan, 1991). Therefore, assessing student 

engagement in OST STEM activities may contribute to understanding STEM career choices. 

In conclusion, like the activities in OST STEM programs, informal learning is essential 

for helping middle school students get excited about and feel connected to STEM careers. These 

programs, which can include after-school clubs and field trips, let students see and use STEM 

ideas in the real world, helping them understand their lessons better. Studies show that being part 

of these activities makes students more confident and interested in STEM and teaches them 

essential skills like how to work well with others and solve problems creatively. Access to real-

world OST STEM experiences is vital for keeping students interested in STEM careers as they 

grow up. However, only some get the same chance to join these activities, often because of 

differences in where they live or how much money their families have. This means we must find 

ways to ensure all students can get involved and benefit from these experiences. Doing STEM 

activities outside of regular school hours can inspire students to learn more independently and 

think about working in STEM fields one day by making learning fun and hands-on, sparking 

their curiosity and drive to discover new things. 

Educational Influences on STEM Career Choice 
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Education is crucial in promoting interest and developing a positive mindset towards 

STEM. Students build a solid foundation by engaging in interactive lessons and practical 

experiments, sparking their curiosity and passion for STEM. This section will examine the 

impact of academic coursework and the school environment in guiding students toward pursuing 

careers within the STEM fields. 

Most students are interested in science until they are approximately 10 years old, after 

which many students' interests tend to decline, particularly among girls, suggesting that the 

trajectory of early scientific interest may be particularly crucial to study (Lindahl, 2007). The 

Royal Society (2006) reported that in a survey conducted among STEM professionals in 

England, one-third of the respondents indicated that they had begun considering a STEM field by 

the age of 11, and an additional one-third had started contemplating this career path by the age of 

14. According to researchers who examined gifted children, by the age of nine, they had already 

decided whether or not they liked science (Joyce & Farenga, 1999).  

Lamb et al. (2015) compared kindergarten, second, and fifth-grade students in schools 

with and without a STEM-focused curriculum. The study, involving 254 students, showed that 

those in the STEM-integrated curriculum had more positive cognitive and affective outcomes in 

STEM fields, indicating the beneficial impact of STEM experiences in the classroom. 

Aschbacher and Ina (2017) conducted a study with fifth graders in California to examine 

their perceptions of learning opportunities in school science, their self-view as science learners, 

and their aspirations for taking more science courses, hoping to inspire STEM careers. The study 

surveyed 690 students and discovered a significant link between the science education 
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opportunities offered in schools, the student's inclination to take additional science classes, and 

their positive self-view regarding careers in science.  

In conclusion, early engagement in STEM disciplines is critical, as early exposure to 

STEM can influence career paths, with many STEM professionals deciding on their career 

direction by early adolescence. Studies involving younger students in STEM-focused 

curriculums show more favorable outcomes, underscoring the impact of early STEM 

experiences.  

In the upcoming section, having provided a general overview of education, I will 

concentrate on the specific impact teachers have within educational environments on guiding 

students toward careers in STEM. 

Teacher Influence. 

Teachers, in addition to parents, are key figures in students' lives who considerably 

influence their views on science. Effective scientific education primarily relies on instructors' 

efforts regardless of grade level. Teachers are important in promoting students' interest, 

perseverance, and curiosity in class subjects by arranging lessons and adjusting the difficulty of 

the content (NRC, 2007). Young et al. (1997) found that a teacher who shows enthusiasm for 

their topic can significantly develop students' interest in STEM fields.  

In addition to impacting students' enthusiasm for science, teachers' support may 

significantly affect students' career selections and expectations for their professional outcomes 

(Metheny, McWhirter, & O'Neil, 2008). These researchers emphasized the importance of 

teachers in increasing primary school science interest. Dick and Rallis' (1991) research states that 
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teachers have a significant impact on students when it comes to making career decisions. It is 

also essential that some other various factors can negatively impact students' decision to pursue 

STEM fields. These factors may include insufficient preparation of teachers, inadequate 

comprehension of the subject matter, ineffective teaching methods, and poor relationships with 

students (Jensen & Sjausted, 2014). This is especially important for underrepresented groups 

since environments that foster or pose a risk for stereotypes can have a negative impact on 

students (Makarova, Aeschlimann & Herzog, 2016). Multiple research projects have investigated 

how different elements influence pupils' desire to pursue STEM careers. These studies have 

found that the influence of educators is among the most significant factors determining whether 

students opt to pursue careers in STEM. It was also worth noticing that teachers significantly 

impacted females' decisions more than males. 

STEM Programs at Schools. 

Recent investigations have demonstrated the influential role of STEM-oriented high 

schools in steering students toward educational and career pathways in STEM. A significant 

insight from these studies is that the combination of academic courses and extracurricular 

activities within these schools motivates students to pursue STEM degrees at higher educational 

institutions (Sahin, Ekmekci, & Waxman, 2017). This educational strategy fosters a strong 

interest in STEM fields and provides a robust foundation for advanced studies. 

Further inquiry into the effectiveness of STEM-focused education reveals that students 

from these specialized schools are better prepared for the academic challenges of college STEM 

programs than their peers from traditional high schools. This preparation underscores the ability 
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of STEM-focused schools to equip students with the necessary skills and knowledge for success 

in higher education (Means, Wang, Young, Peters, & Lynch, 2016). 

Moreover, student involvement in STEM-centric educational settings increases 

participation in STEM-related courses and activities. This enhanced engagement promotes a 

more profound interest in STEM careers, establishing a clear connection between secondary 

education and future professional objectives (Bottia, Stearns, Mickelson, & Moller, 2018). 

Studies consistently indicate that students who have been part of a STEM-focused learning 

environment are more likely to pursue careers in STEM fields than those who have received a 

general education. 

The influence of high school engineering and engineering technology (E&ET) courses on 

students' decisions to attend two- or four-year colleges for STEM degrees has also been 

examined. These studies conclude that enrollment in E&ET courses positively impacts students' 

intentions to pursue further education in STEM, emphasizing the vital role these courses play in 

students' academic and career planning (Phelps, Camburn, & Min, 2018). 

In summary, evidence suggests that STEM-focused high schools are pivotal in encouraging 

students to follow paths leading to higher education and careers in STEM disciplines. By 

providing an immersive and comprehensive STEM education, these schools prepare students for 

the rigors of college STEM programs and nurture a lasting interest in STEM professions. 

STEM Related Courses. 

Taking advanced math and science classes in high school deepens students' 

understanding of intricate mathematical ideas and nurtures an increasing enthusiasm for careers 

in STEM. Starting with Algebra 1 in middle school lays a strong foundation for success. Middle 
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school students who complete Algebra 1 often perform better academically, preparing them for 

the challenges of more sophisticated math and science classes in their later years. Their 

educational path typically includes demanding courses like Geometry, Algebra II, Pre-Calculus, 

and Advanced Placement (AP) Calculus. Exposure to such advanced courses plays a crucial role 

in steering students toward STEM careers, greatly enhancing their interest and ambitions in these 

fields (Wang, 2013; Bayard, 2013). 

As mentioned earlier, AP courses play an indispensable role in the academic journey of 

high school students, particularly those aspiring to careers in the STEM field. These courses are 

designed to challenge students with college-level material, providing them with a solid 

foundation in subjects critical to STEM fields. Completing AP courses can significantly 

influence a student's decision to pursue a career in STEM, as it equips them with essential 

academic knowledge in the subject area. 

Concurrently, courses in engineering and technology are equally crucial for students 

aiming for success in STEM fields. These courses offer practical, hands-on experiences vital for 

understanding real-world applications of STEM principles. They foster innovative thinking, 

problem-solving skills, and creativity—attributes that are as essential as theoretical knowledge 

for anyone looking to enhance STEM careers. However, a notable challenge arises from the 

heavy workload demanded by AP courses, which often leaves students with little flexibility in 

their schedules to explore engineering and technology electives. This imbalance can lead to a gap 

in the comprehensive education necessary for a successful career in STEM. Students might excel 

in theoretical knowledge and exam preparation but need more practical skills and an innovative 

mindset that are increasingly valued in the STEM industry (Jang,2016). 



 

23 
 

To address this issue, there should be a concerted effort to balance the inclusion of AP 

and engineering/technology courses in students' schedules. Educational institutions and advisors 

must guide students in creating a balanced curriculum that allows for exploring both theoretical 

and applied STEM subjects. Encouraging a balanced approach ensures that students take 

advantage of the critical hands-on learning experiences provided by engineering and technology 

courses while benefiting from the rigorous academic preparation offered by AP courses. This 

balanced educational pathway is essential for developing the next generation of innovators, 

problem solvers, and leaders in STEM fields. 

Individual Difference Effect on STEM Career Choice 

Individuals' character traits can significantly impact their choice of profession. This is 

especially true for careers that require specific personality traits and characteristics. Just as the 

arts, including music, require special skills and talents, careers in STEM also demand specific 

traits. However, it is also important to understand the common traits among individuals who 

choose science-related professions. Studies have been conducted to identify common personality 

traits for science-oriented individuals. One such study administered the 16-factor Personality 

Questionnaire to individuals involved in chemistry and biology, revealing that they exhibit 

higher confidence and dominance than others. Interestingly, this difference is more pronounced 

among females than males. Females tend to show higher levels of confidence and dominance 

(Feist,1998) 

Another study by Lounsbery et al. (2012) used the Personal Style Inventory (PSI) to 

measure five personality aspects: Agreeableness, Conscientiousness, Emotional Stability, 

Extraversion, and Openness. This study supports the previous findings and suggests that 
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scientists excel in intrinsic motivation, such as challenge, purpose, autonomy, and diversity. 

Traits like openness, conscientiousness, dominance, and confidence are more prevalent in 

scientists than non-scientists. This highlights the importance of personality in career choice, 

particularly in science-related professions. It also suggests that certain innate qualities may 

predispose individuals to pursue and excel in scientific endeavors. 

To sum up, personality traits play a crucial role in determining career paths, especially in 

professions that demand specific attributes. Investigating the shared characteristics of individuals 

who pursue careers in science is equally important. 

Persistence Effect on STEM Career Choice 

Perseverance has been studied in various contexts, including task-oriented definitions and 

definitions that view persistence as an intrinsic trait. The two definitions of persistence that are 

most frequently encountered are "an objective feature of deliberate conduct" (Hebb, 1989) and "a 

goal-directed activity" (McDougall, 1908). STEM persistence is described as a student's capacity 

to continue STEM learning and pursue a logical STEM-based route (Sithole et al., 2017). 

Maintaining persistence in STEM fields is essential for the global STEM industry. The 

future workforce (Sithole et al., 2017) and the lack of significant STEM persistence toward a 

STEM degree in the U.S. is becoming an issue due to a rise in demand for STEM jobs in the 

USA (Carnevale, Smith, & Melton, 2011.). According to information provided by the Bureau of 

Labor Statistics (BLS) of the United States of America, positions related to the STEM fields are 

"projected to expand to more than 10 million between 2022 and 2032. Soldner, Rowan-Kenyon, 

Inkelas, Garvey, and Robbins (2012) reported that one out of seven U.S. students get a degree in 

science or engineering, compared to one out of two in China and two in three in Singapore. 
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Another serious problem that must be taken into consideration is the high dropout rate among 

students majoring in STEM fields (Ingersoll & May 2012). Over the past twenty years, there has 

been a fifty percent decline in the percentage of high school students opting for STEM fields in 

college. Furthermore, about fifty percent of students who enroll in STEM programs end up 

transferring to another institution before completing their degree. (Chen, 2013; Daempfle, 2003). 

The physical sciences and engineering are particularly at risk due to a significant drop in 

bachelor's degrees and doctorates awarded in these subjects over the last decade (National 

Science Foundation, 2013; Xie & Achen, 2009). It has also been shown that many college 

students change their majors throughout their time in school, especially those pursuing STEM 

degrees (Daempfle, 2003). Furthermore, studies also show that minority students and women are 

more prone than their male and white counterparts to switch majors or leave STEM programs 

(National Science Board, 2007). In the United States, this lower persistence is related to a variety 

of factors, such as negative stereotypes towards women and minority groups (Beasley & Fischer, 

2012), lack of high performance in math and science courses (Sadler, Sonnert, Hazari, & Tai, 

2014) and lack of early access to STEM learning. 

Students' persistence in STEM fields can be impacted by factors such as the quality of the 

curriculum, a sense of intrigue in STEM fields, prior experience, easy access to STEM education 

at a young age, and academic achievement in STEM classes (Anderson & Ward, 2014). 

Research on the issue of STEM persistence has been undertaken retrospectively by investigating 

STEM college students' academic readiness in high school, particularly their performance on 

math and science examinations and in AP courses (Sadler et al., 2014).  

The K-12 school system must support students' persistence in STEM fields  (Houssain & 

Robinson, 2010). Prospective STEM employees must be able to think logically, solve problems 
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creatively, and communicate effectively while working in a team-oriented environment. Students 

need to continue their studies in STEM fields if the opportunity is given to them to develop their 

skills and their understanding and interest in STEM-related fields. This will also help students 

have more positive learning experiences in mathematics and science (Maltese & Tai, 2011). 

Several strategies can be implemented to encourage STEM students to continue pursuing a 

career in engineering: a)OST (out-of-school programs), b)in-school engineering design 

enrichment programs, c)formal K-12 engineering curriculum, d)engineering guest speakers, and 

e)formal engineering teacher professional development (Reynolds, Mehalik, Lovell, & Schunn, 

2009). These activities improve students' STEM knowledge and attitudes while enhancing their 

STEM subject and skill acquisition (Brown, 2016). 

Another important approach to improve STEM persistence is to provide information 

about STEM careers in K-12 school settings. Activities that explicitly connect STEM learning 

with possible job pathways are one technique that may be used to raise awareness. These 

activities can assist in bridging the gap between STEM education and potential career paths in 

STEM (Christensen, Knezek, & Tyler-Wood, 2015). Wyss et al. (2012) discovered that exposing 

students to various STEM jobs and providing information about those careers enhanced their 

interest in STEM disciplines. In addition, research conducted by Reynolds et al. (2009) 

discovered that high school students who participated in engineering activities and career 

awareness topics had a greater interest in engineering and the occupations that are linked with it. 

Numerous Studies on Interest's Role in STEM Career Choice 

The link between interest and learning quality has been studied extensively, and many 

researchers have concluded that interest is associated with in-depth learning. A young person 
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may be inspired by motivation when determining their future goals. Depending on the situation, 

the motivation might be internal or external. Intrinsic motivation occurs when people do things 

because they like them and are interested in them; extrinsic motivation, on the other hand, occurs 

when people do things for different reasons, such as getting a price or grade (Wigfield, Eccles, 

Schiefele, Roeser, & Davis-Kean, 2007).   

Research indicates that participants' interests and aspirations significantly influence 

whether they choose to pursue STEM opportunities while still in high school. These interests and 

goals are critical in pursuing a STEM career (Heilbronner, 2013). Several studies have been 

conducted to explore student interests and ambitions in subjects heavily focused on mathematics 

during both high school and post-secondary education. According to these studies, some research 

indicates that interest does not predict career goals in mathematics-focused fields (Lent, Lopez, 

Lopez, & Sheu, 2008), while others suggest that interest reflects personal aspirations, particularly 

among high school and college engineering students (Moore, 2013). For example, in a study of 

173 high school students, the researchers found that the female participants were less interested 

in engineering than the male participants. They linked this to the fact that few women are in post-

secondary engineering programs, which fits with what they found in the more extensive literature 

(Riegle-Crumb & Moore, 2012).  

Some post-secondary studies have investigated the relationship between one's interests 

and goals. Gainor and Lent (1998) conducted an early study with 164 black university students in 

which they used a survey instrument with a reliability coefficient of .90 to assess students' 

interest in math and science-related tasks, along with the effect that interest had on students' 

decisions to enroll in math-related classes and choosing a math-related major. The study revealed 

a significant correlation (r = .37, p < .001) between interests and essential decision-making, with 
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interests having an impact on the choice of major (path coefficient of .22, p < .05). A survey 

instrument with a reliability coefficient of.82 was used in a global study that involved 579 

engineering students in Spain. The purpose of the survey was to measure student interest in 

engaging in activities related to engineering self-efficacy of females, which is related to their 

interests and personal goals as well as gender and socio-economic status (Myers, Jahn, Gaillard, 

& Stoltzfus, 2010). Hackett et al. (1992) used an interest in engineering scale to assess 197 post-

secondary engineering students' interest in 18 engineering careers in relation to self-efficacy. It 

was found that females had a lower interest in engineering than males (effect size = -0.3) and 

reported a strong correlation between interest and occupational self-efficacy (r =.39, p.01). 

Socio-economic Status Effect on STEM Career Choice 

Social scientists have used children's socioeconomic status, abbreviated as SES, for 

decades as a proxy for analyzing various aspects of child development. According to the United 

States Department of Education (2000), low-income students are identified as those coming from 

households with earnings that fall below a specified threshold of the federal poverty level. 

Roberts et al. (2018) analyzed the relationship between educational background and 

interest in pursuing a STEM profession. They discovered that students from underrepresented 

groups, such as students from low-income backgrounds or students from different backgrounds, 

had a lesser chance of entering a STEM field. This trend indicates that kids from less affluent 

families face more difficulties in obtaining STEM jobs. Furthermore, this problem is getting 

bigger as the demand for STEM workers is growing faster than the number of students being 

trained for these jobs. (Kitchen, Sonnert, & Sadler, 2018). Insufficient opportunities to 

participate in STEM-related extracurricular activities and a lack of early exposure to these 
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subjects at home have been highlighted as two possible causes of this problem (Kitchen et al., 

2018). These considerations influence ongoing efforts to expand access to informal STEM 

learning settings so that more students from underrepresented groups may study these subjects 

and enter STEM professions (Maiorca et al., 2021). On the other hand, they discovered that 

students from low-income families who attended specialized STEM high schools had a higher 

probability of entering a STEM career. 

Saw et al. (2018) noted variations in STEM career choices linked to socio-economic 

backgrounds. Parents' impact on their children's lives extends beyond their direct actions. For 

example, parents might influence their child's choice of college major by linking their financial 

support for education to selecting a specific major. This is evidenced by 49% of college students 

stating that their parents play a role in decisions regarding college finances (Dickler, 2018), and 

almost 50% of college students' parents offer some financial support to their kids (Priceonomics, 

2017). 

It is possible to influence the direction that education will take in the future and create 

pathways for other students by listening to the stories of students who come from families with 

little financial resources but have decided to choose STEM-related jobs. 

Current SES situation in STEM Career. 

As previously stated, SES is another key element that affects students' choices regarding 

their career paths. Researchers have been exploring the number of students affected by the reality 

that a student's socio-economic status impacts their educational success. In 2014, 21.1% of 

children eligible for school were living in poverty, with their family income falling below the 

federal poverty level (DeNavas-Walt & Proctor, 2015). The U.S. Census Bureau reported that in 
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2022, the poverty rate among children under 18 in the U.S. dropped to 16.3%. Their academic 

performance influences school success for students from low-income families, the availability of 

role models, and higher stress levels compared to their wealthier peers (Levin, 2007). Skilled 

teachers can reduce the negative impact of socio-economic status on students.  It has been shown 

that when teachers take the time to get to know their students on a personal level, they are better 

able to tailor lessons to each student's distinct needs and learning styles (U.S. Department of 

Education, 2000).  

Students from low-income families tend to face ongoing stress and stress-related 

challenges due to issues like parental separation, separation from brothers and sisters, increasing 

incidents of crime, and general economic difficulties. This raises the chances that these students 

will encounter social and educational challenges during their academic journey (McKenzie, 

2019). Students who come from these kinds of environments are unable to give their full 

attention to school; instead, they must divide their attention among a variety of responsibilities; 

as a result, they miss more classes, and as a direct consequence, they struggle more to maintain 

their academic motivation and perseverance (Jensen, 2009). Additionally, kids who originate 

from families with low incomes are more likely to attend schools where most of the other 

students also come from families with low incomes, which further contributes to a dynamic 

unfavorable to the educational system's efficiency (Boschma & Brownstein, 2016). This leads to 

a more significant obstacle for entry into STEM careers than their peers from wealthier families 

due to the difficulties they need to navigate and the necessary motivation. 

A further challenge faced by children from lower-income families is the lack of access to 

resources that could improve their enthusiasm for learning. Johnson et al. (2016) found that kids 

from these families usually find it harder to do well in school than those from wealthier families. 
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This happens because kids from more affluent families can access more learning materials. They 

noticed that kids with lots of different things to learn from when they are young tend to know 

more words and talk better. 

The Impact of Testing on STEM Choice. 

Due to its inability to take students' socioeconomic status into account, standardized 

testing was shown to discourage low-income students from pursuing careers in STEM (Reardon, 

2013). Students from low-income families are more likely to be negatively impacted by 

standardized testing than their middle- and upper-class counterparts because they face more 

challenges and pressures (Jensen, 2009). Because of an existing achievement gap that results in 

lower GPAs, exams have emerged as an additional barrier to entering STEM fields for numerous 

children from economically disadvantaged families (Sherman, Darwin, Song, Li,& Satchel, 

2015). Students are less likely to be college and job-ready in STEM fields when standardized 

testing is used as the only criterion; low-income students have always had a more challenging 

time succeeding academically when standardized tests were the major measure of success 

(Reardon, 2013). If students' test results were considered throughout the admissions process, 72 

percent of those granted admission to a university in North Carolina belonged to the highest 

income quartile on the national scale. 

Additionally, since many universities use standardized tests like the ACT and SAT as 

predictors of college fit, testing has a negative impact on student enthusiasm in STEM fields by 

functioning as a barrier. According to Soares (2015), a student's test score is a significant 

determinant of whether or not they are offered a place at a prestigious university. 
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Students from low-income families who took high-stakes tests in their STEM classes 

were more likely to suffer tension and anxiety, as revealed by Rozek, Ramirez, Fine, and Beilock 

(2019). As a result, these students had difficulty performing well on the tests, which became a 

significant obstacle to their advancement in STEM studies. 

Students from low socio-economic situations face many challenges regarding testing, but 

there are multiple strategies to overcome these challenges. According to Rozek et al. (2019), 

when students could emotionally regulate their worries and analyze their emotional state before 

taking tests in their STEM courses, they performed significantly better than when they did not 

have this space. After implementing emotional regulation techniques, economically 

disadvantaged students in STEM courses experienced a 50% reduction in failure rates. (Rozek et 

al., 2019).  

Perception and Student Desire to Pursue STEM Career Choice 

Students' beliefs and attitudes significantly influence their desire to explore careers in 

STEM. Access to non-traditional learning spaces boosts their confidence in STEM and guides 

their decisions about pursuing careers in this field. A key factor influencing a student's decision to 

pursue a specific field is their belief in their ability to achieve their goals in that area (Eccles & Wigfield, 

2002). Previous STEM experiences impact their self-efficacy and confidence in their ability. 

These kids were also more likely to have poor self-efficacy due to external stresses outside of 

school, as well as low test scores linked with academic success. Kids from low-income families 

were less likely to pursue STEM occupations owing to a widespread misconception that 

scientific programs were considerably more complex than non-STEM degrees (Cheryan, Master, 

& Meltzoff, 2015). Low self-efficacy reduces students' confidence that their goal of pursuing a 
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STEM profession is achievable, diminishing the action of choosing a STEM major that is viewed 

as more challenging. Sithole et al. (2017) discovered that tackling the barrier of negative STEM 

views by increasing student self-efficacy improved the number of students enrolled. Therefore, 

raising students' confidence that they will succeed in STEM fields is essential if we want them to 

pursue these fields. Increasing self-efficacy and encouraging students to believe in a satisfactory 

outcome would favorably affect achievement-related choices for kids from low-income families 

(Kitchen et al., 2018). 

Peer Influences in STEM Career Choice 

Children can be encouraged or influenced to follow similar professional aspirations if they 

are exposed to career-minded people through living with those people or being in their immediate 

environment. Students might be motivated to follow these people's career paths if they see them 

making positive career achievements (Alika, 2012; Scholastic, 2008). According to research, their 

classmates might influence kids' academic success and ambitions (Kindermann, 2007). Having 

high-achieving close friends, for example, is linked to a higher chance of enrolling in advanced 

courses throughout high school (Crosnoe, Riegle-Crumb, Field, Frank, & Muller, 2008). 

Furthermore, this relationship appears stronger for girls taking advanced math and science courses 

(Riegle-Crumb et al., 2006). Compared to adolescent boys, teenage females claim their classmates 

are less supportive of pursuing STEM professions (Robnett & Leaper, 2013). 

The network of friends and family around a person plays a crucial role in shaping their 

growth and development. These relationships influence their behaviors, beliefs, and choices 

throughout life. Students may find themselves in the wrong direction in life if they associate with 

the wrong people, as decisions are frequently influenced by the perspectives of others in their 
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surroundings. Many bright individuals have been pulled away from promising jobs by gangs, 

drugs, and crime because individuals around them criticized or embarrassed those students into 

keeping away from the positive path in life. Negative attitudes and misconceptions regarding 

STEM careers can prevent students from pursuing them (The Institution of Engineering and 

Technology, 2008). 

Peers are also crucial for women studying STEM in college and graduate school. 

Women's interest in coursework rapidly diminished when they felt alone in their struggles, under 

the impression that they were the only ones encountering difficulties. Several studies have found 

evidence to support the idea that some women who work in STEM fields experience a sense of 

social isolation (Zeldin & Pajares, 2000).  

As a result, the authors concluded that developing strong, mutually supportive 

relationships with other students may be essential for increasing the number of people who 

remain in the area. The advantages of peer support were also emphasized by Zeldin and Pajares 

(2000), who revealed that women's success in STEM professions and peer support were 

positively correlated. 

Underrepresented Groups (URGs) in STEM Career Choice 

The racial and ethnic composition of the United States has shifted considerably during 

the last several decades. In the United States, the minority population grows faster than the white 

majority population. According to the 2010 census, approximately 16 percent of the population 

is Hispanic/Latino(a), making them the fastest-growing and biggest ethnic minority group in the 

United States (U.S. Department of Commerce, Census Bureau, 2011). Blacks constitute 12 

percent of the population. Minorities accounted for one-third of the population in 2008 and are 
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predicted to account for the majority of the population by 2042. By 2025, the U.S. population 

will be 21% Hispanic, 58% White, 13% Black, 6% Asian, 1% American Indian, 1% Pacific 

Islander, and 2% other races and ethnicities (U.S. Department of Commerce, Census Bureau 

2008). According to predictions, ethnic and racial minorities will make up 62% of all school-

aged children by 2050 (U.S. Department of Commerce, Census Bureau, 2008). 

While it is clear that the minority population is growing in the U.S., minority 

participation in STEM areas is low and does not reflect the existing or predicted demographic 

trends. According to the National Science Foundation, women, African Americans, Hispanics 

and Latinos, Native Americans, Pacific Islanders, and Alaskan natives are among the groups that 

are underrepresented in STEM. In 2021, although women accounted for 51% of the U.S. 

population aged 18 to 74 years, they only represented about 35% of individuals employed in 

STEM occupations (NSF,2023). The figures for ethnic minorities are much more concerning. 

While blacks account for 12 percent of the population, they only account for 3 percent of the 

scientific and engineering fields. Hispanics account for 16 percent of the population but only 4 

percent of the science and engineering fields, respectively (National Science Foundation, 2013). 

Diversifying the STEM workforce will allow previously underrepresented groups to contribute 

to solving global challenges and improve their economic standing (National Academies, 2010). 

Diversity is beneficial not only to businesses but also to the nation as a whole. When it comes to 

tackling the difficulties we confront as a society, diversity brings a variety of methods and lenses 

to the table (National Academies, 2010). 

Despite the apparent benefits of a diversified STEM workforce, URGs do not pursue 

employment in STEM professions. Discrimination, poor prior academic accomplishment, lack of 
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financial help, and absence of role models and mentors are just a few of the difficulties facing 

today's youth in science (National Academies, 2010).  

Women in STEM Career 

For the majority of history, women have typically been viewed or regarded as second-

class citizens (Clabaugh, 2010). This was the case back when the United States was in its infancy 

and dame schools were being established within the communities. Women were only permitted 

to attend school when it was not in session, often during the summer or evenings ("Education of 

Women," 1997).  Even after completing and excelling in the dame schools, females were not 

encouraged to continue their education by enrolling in the town schools in the city (Madigan, 

2009).  

The colonization and growth of new territory in the American West throughout the 19th 

century brought significant social and cultural changes. At the time, fewer resources were 

available to pay instructors and supply classrooms. Therefore, men and women could attend the 

same schools (Madigan, 2009). Even though more women were receiving an education, the 

traditional tasks of a woman in society were still seen as caring for the house and raising children 

(Halsall, 1996). During the 1930s, it was widely believed that the place of a white woman from a 

middle-class family was in the home, serving as a mother and wife. This attitude persisted even 

after the Great Depression (Nash & Romero, 2012). On the other hand, there was a rise in the 

number of women enrolling in post-secondary schools as a direct result of the need for more 

educated primary school teachers brought about by the development of the educational system 

(Clabaugh, 2010). 
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In 1975, legislation was passed to ensure that students of all genders received equal 

opportunities in all educational realms, including classroom activities, physical education, sports, 

and competitive events (Gelbrich, 1999). The aim was to eliminate gender-based bias, fostering 

significant societal and educational advancements in understanding and addressing gender 

discrimination. During this period, there was a notable increase in the number of women 

pursuing and obtaining Bachelor of Science degrees in college. 

Over the last four decades, this advancement has resulted in more women than men 

attaining graduate degrees. Women have surpassed men when it comes to completing high 

school and earning a bachelor's degree. (Women in America, 2011). According to the National 

Center for Education Statistics, in 2021, approximately 88.6% of male students and 90.4% of 

female students graduated from high school. 

Women in Workforce. 

Previously, gender-based societal norms in the United States assigned specific roles to 

men and women. Men were expected to work outside the family farm, while women were tasked 

with managing household duties and caring for children. These roles were reinforced by 

stereotypes that labeled women as emotionally unstable, physically weak, and less inclined to 

take risks, which restricted their employment opportunities to roles such as educators, nurses, 

clerks, and house cleaners. Moreover, women who were married were discouraged from seeking 

employment outside the home, as nearly 80% of Americans believed it was improper (Bomarito 

& Hunter, 2005).  

However, the late 1950s and early 1960s marked a transformative cultural shift, with 

increased awareness and the burgeoning women's rights movement. Women achieved great 
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educational opportunities, and affirmative action policies were introduced. These changes 

collectively altered societal perceptions, significantly departing from the restrictive norms of the 

past and broadening the scope of work considered acceptable for women (Hall, Orzada, & 

Lopez-Gydosh, 2015). 

Woman in STEM Workforce. 

As highlighted earlier, societal expectations significantly influence women's career 

choices, leading to a notable underrepresentation in engineering and science fields. Even though 

women recognize the value of these disciplines and strive to overcome cultural barriers, they 

often end up working in more traditionally female-dominated fields, such as education and 

healthcare, rather than STEM-related roles. This trend is concerning because it means that 

women's diverse perspectives and innovative ideas, crucial for finding effective solutions to 

complex problems, are missing in the industry. With women accounting for half of the global 

population, their limited presence in STEM fields restricts their career opportunities and slows 

down societal progress and innovation (Fisher, 2013). 

Women face distinct challenges in the STEM fields, which contribute to a higher dropout 

rate in STEM careers compared to their male counterparts. Notably, there is a significant 

underrepresentation of women in specific areas such as physics, engineering, and computer 

science. This disparity highlights the need for targeted interventions and support. However, it is 

encouraging to see that women are better represented in the life sciences, such as chemistry and 

biology (Dawson, Bernstein, & Bekki, 2015). The recruiting and retention efforts of programs 

and initiatives in computer science and engineering will probably not be able to meet the needs 

of women, especially the requirements of women from underrepresented groups. Consequently, 
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women are deprived of high-quality employment prospects and the advantages associated with 

STEM areas. In contrast, STEM sectors lack varied workforce expertise (Corbett & Hill, 2015). 

The representation of women in STEM fields decreases consistently throughout their 

educational and professional journeys. Even though there is evidence that more females are 

enrolling in higher-level STEM-related courses during high school, there is also evidence that 

more girls are not continuing their education in these fields during college (Wee Teo, 2014). A 

breakdown of precisely which girls of different ethnicities and socio-economic classes are 

enrolling in such courses is sometimes missed from the statistics. Furthermore, starting in middle 

school, females tend to opt out of STEM-related courses, and research has shown that academic 

success does not solely explain this phenomenon. Instead, the persistent gender gap in 

enrollment for advanced high school scientific courses may be attributed to students' perceptions 

of the societal acceptance of STEM-related subjects (Master, Cheyan, & Meltzoff, 2016). 

The "leaky pipeline" phenomenon, where students disengage from STEM fields, starts in 

secondary school and persists through university, into their careers, and beyond. This trend is 

particularly evident in computer science, where the proportion of women in the workforce has 

significantly decreased over the past two decades (Blickenstaff, 2005). This is a challenge, 

considering engineering and computer science account for 80 percent of all available STEM 

employment (Corbett & Hill, 2015). According to Metcalf (2018), the number of women 

pursuing mathematics degree programs has declined. The current figures are similar to those 

from the 1970s. Recent statistics reveal that women comprise only 35% of all mathematics 

degree holders. Additionally, these women hold only 27% of jobs associated with this field and 

less than 16% of tenure-track faculty positions in mathematics. 
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Barriers of Females in Nontraditional STEM Careers. 

According to Social Cognitive Carrier Theory (SCCT), personal characteristics such as 

gender significantly affect career choice. Various factors, including confidence in gender roles, 

education readiness, and societal stereotypes, have been proposed as possible causes for the 

underrepresentation of women in certain employment sectors. However, there is no single 

identified root cause for this phenomenon (Blickenstaff, 2005). 

Alper (1993), in one of his early studies, identified several contributing causes, one of 

which was the inadequate mathematical education obtained by most female high school students. 

Culture plays a role when there are disparities in expectations for women and men regarding 

aptitude and professional options. Female students' low self-esteem is another early leak in 

STEM majors. Blickenstaff (2005) conducted a meta-analysis on the participation of women in 

STEM careers. He identified reasons, including a lack of female role models in STEM 

professions, the impact of scientific curriculum on female students, and the challenges women 

encounter when pursuing careers in STEM fields. 

Despite various initiatives aimed at fostering girls' interest in and access to science 

careers, women continue to be underrepresented in STEM fields. Researchers have proposed 

multiple theories to elucidate the differing interests, attitudes, and perceptions of science between 

male and female students. Nevertheless, studies indicate that the gap in scientific interest 

emerges early in education, with sociocultural factors exerting a considerable influence (Jacobs, 

2005). 

Girls as young as five begin to receive implicit signals that math and science are just for 

males. As their gender identity grows and gender disparities expand between eighth and twelfth 
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grades, an increasing number of girls say they cannot perform science (Perez-Felkner, 

McDonald, Schneider, & Grogan, 2012). In the male-dominated STEM fields, women often face 

subtle signs that their gender (and maybe their ethnicity, religion, or other identification 

attribute) might be a disadvantage (Walton, Logel, Peach, Spencer, & Zanna, 2015). This 

indicates that a woman's choice to enter and remain in a STEM field is heavily influenced by her 

gender and how she identifies with her gender. Additionally, if women believe their gender is a 

disadvantage in STEM, they are more likely to abandon these fields. 

Gender identification refers to how much a person aligns with the qualities and 

characteristics associated with a particular gender. According to several studies, women who 

have a strong sense of their own female identity are statistically more inclined to choose 

professional routes closely aligned with their gender and are statistically more likely to be 

affected by stereotypes. This could explain why female students with higher gender 

identification tend to have lower math scores. It could also explain why girls tend to have an 

overly optimistic view of their scientific skills and why many high school girls develop a 

negative association between the female gender and math and physics classes. (Rozek et al., 

2014). 

Gender disparities also influence the path that women choose in STEM fields. At the high 

school level, male students were found to exhibit a stronger preference for math and science, 

enroll in more STEM courses, and achieve higher scores in math and science on standardized 

tests. Women enter STEM fields at a comparable rate to men, with over 50% of degrees in 

biology, chemistry, and mathematics awarded to women. Despite similar entry rates, women 

tend to enter STEM careers later in life and face challenges negotiating family, work, and 
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cultural barriers. Work hours, social dynamics, and career misconceptions influence women's job 

choices (Davis, 2014). 

Summary 

According to the studies that were presented, the following were found to have a positive 

influence on scientific self-efficacy and the intention to pursue a career in STEM: a)early 

engagement, b)activities based on hands-on inquiry, c)science, technology, engineering, and 

mathematics role models and mentors d)learning opportunities in the field of science that are 

both inside and outside of the classroom e)encouragement from friends, family, and adults in the 

community as well as educators' parental support f)activities in the scientific field that are 

relevant to students' points of entry and everyday life g)mechanisms of support at each stage of 

the STEM education pipeline. 

One obvious limitation of SCCT research in STEM is that it has primarily been done 

using quantitative and qualitative research methods. Alternatively, a machine learning algorithm 

can predict career interest or choice. Machine learning is not commonly employed in educational 

research, and this study intends to fill these gaps by applying various machine learning 

algorithms. On the other hand, few studies have studied the role of gender, SES, AP courses, 

GPA, and ethnicity on career development. This study also seeks to fill these gaps by examining 

the importance of learning experiences, contextual affordances, and personal input in STEM 

career development through machine learning and traditional chi-squared statistical methods. 
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Chapter 3 Theoretical Framework 

Social Cognitive Career Theory (SCCT) 

Social Cognitive Career Theory (SCCT) is based on the Social Cognitive Theory 

developed by Albert Bandura in 1980. SCCT is a well-regarded theory in career development 

emphasizing the significance of self-efficacy in determining career paths and results. The theory 

suggests that people are inclined to choose and continue in careers where they feel confident in 

their ability to succeed and reach their objectives. SCCT also highlights the role of personal and 

environmental influences in career development, including interests, values, social support, and 

the resources at one's disposal. The theory has been widely applied in career counseling, 

vocational education, and organizational development, generating a large body of research on 

career development. His theory explores how three fundamental elements interact: (1) 

environmental influences, (2) individual characteristics, and (3) behavioral tendencies. 

To better recruit and retain teenagers in STEM fields, we must first understand the 

processes that lead someone to choose a profession. SCCT is a valuable theoretical lens for 

understanding what factors contribute to STEM career choices. SCCT is a comprehensive social 

cognition theory focusing on several cognitive-person characteristics (self-efficacy, outcome 

expectations, and goals) and their interactions. This concept provides a comprehensive approach 

to comprehending an individual's growth and conduct by considering various factors. These 

factors include a person's inclinations, abilities, morals, and the conditions surrounding them. 

Inclinations indicate the activities a person finds attractive, and abilities indicate the skills they 

have developed. Morals represent the fundamental values and principles a person adheres to, and 

the context encompasses the physical, societal, and cultural surroundings with which an 
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individual interacts. The SCCT provides a guideline for examining how individuals develop their 

academic and vocational interests, make informed decisions regarding their education and career 

paths, and ultimately achieve success in their chosen fields. The theory also explores the origins 

of individual interests and preferences, examines the elements that impact decision-making in 

educational and career choices, and identifies the tactics that contribute to achieving success in 

both academic and professional environments. 

This theory suggests that an individual's belief in their ability to perform a task, or self-

efficacy, plays a crucial role in determining their career trajectory. Additionally, the theory 

highlights the significance of outcome expectations, which refer to an individual's anticipated 

results or consequences of their actions and personal goals in shaping their career path. By 

understanding and harnessing these factors, individuals can effectively navigate their 

professional development and achieve success in their chosen field. 

Self-Efficacy 

According to SCCT, individuals are often more attracted to and perform better in tasks 

where they feel confident in their abilities and have strong convictions about their success. Four 

primary types of information shape these self-efficacy beliefs: personal achievements, observing 

others' experiences, receiving encouragement from others, and considering their physiological 

and emotional conditions. 

Self-efficacy is a belief that can change depending on circumstances, affecting one's 

ability to perform tasks. Bandura (1986) says that "self-efficacy" is "people's beliefs about their 

abilities to plan and carry out the actions needed to achieve certain types of performances. "A 

poor sense of self-efficacy may cause someone to abandon challenging work because they 
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believe they will be unable to do it successfully; they may also get disheartened or overwhelmed 

by the task. When considering career interests and choices, it is essential to consider the kind of 

work involved, the people and surroundings you interact with, and how skilled you feel based on 

similar past experiences. How people view their skills plays a bigger role in what careers they 

are interested in and choose than how they rate their talents (Brown, Lent, & Gore, 2000). 

Outcome Expectations 

The term "outcome expectations" refers to viewpoints about the impacts or outcomes of 

specific actions. People's decisions regarding the activities in which they will participate, as well 

as social effort and commitment, are influenced by their outcome expectations and their abilities' 

beliefs. For instance, individuals are more inclined to engage in an activity when they believe it 

will result in desirable outcomes for themselves and others, such as gaining social and self-

approval, financial rewards, and appealing work environments. 

Numerous studies have established that a person's expectations regarding the outcome of 

their employment play a significant role in determining their actual employment outcomes, and 

research has demonstrated that outcome expectancies are the most potent predictor of 

employment outcomes for individuals (Morrow et al., 1996). Fouad and Gillen (2006) used if-

then expressions to define outcome expectancies; i.e., if one participates in a specific activity, 

one may anticipate certain outcomes. The difference between the action and its consequences is 

critical because people make decisions based on their perceptions of prospective outcomes. 

Outcome expectations are tied to self-efficacy beliefs because individuals feel that they have a 

greater chance of succeeding if they believe they can accomplish whatever goal they set for 

themselves. Lent et al. (1994) proposed that individuals' career choices are influenced by their 
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expectations regarding job-related outcomes, including the anticipated salary and prestige 

associated with the positions. 

Outcome expectations are the estimated chances of a specific result happening. Questions 

like "What benefits will someone see if they excel in swimming?" or "What happens if someone 

applies to MIT?" and "What outcome can someone expect if they seek a recommendation from 

Mr. G?" illustrate this concept. On the other hand, self-efficacy is about whether someone 

believes they can complete a task. For instance, asking, "Can someone perform well in 

swimming?" demonstrates a belief in self-efficacy. 

As a result, outcome expectancies are concerned with what could happen, while self-

efficacy estimates one's capacity to execute a task or task set. Bandura (1986, 1997, 2002) has 

categorized outcome expectancies such as physical, social, and self-evaluative. Getting income 

from employment is an example of a physical outcome expectation. In contrast, an appraisal 

from your father for educational success is an example of a social outcome expectation, and 

being happy with your performance at school is a self-evaluative outcome expectation. Bandura 

finds that self-efficacy generally outweighs outcome expectations when deciding on an action.  

Goals 

Personal goals may be characterized as one's intent to participate in a particular activity 

(for example, pursuing a specific academic major) or to achieve a specific degree of performance 

(e.g., to receive an A in a particular course). People choose objectives according to their 

perceptions of their skills and the purposes they hope to achieve by following a specific path. 

Whether people succeed or fail in reaching their goals, they learn lessons that affect their future. 

Success can boost confidence and show what one is capable of, while failure, though 
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disheartening, teaches valuable insights for improvement. These experiences shape beliefs about 

one's abilities and potential for future achievements. 

Individuals develop goals that assist them in organizing their behavior and guiding their 

behaviors throughout various periods. They could wonder, "To what extent and degree does she 

wish to succeed in achieving her goal?" (Lent, 2005). For instance, a student aiming to become 

an attorney must establish multiple goals and select specific actions that will assist in reaching 

those objectives. Pursuing goals serves as a significant motivation. It offers a sense of purpose 

and direction, and the satisfaction derived from achieving these goals can be highly fulfilling. 

Whether it involves completing a doctoral program, becoming an attorney, or reaching any other 

significant milestone, the sense of accomplishment associated with realizing aspirations is 

immensely rewarding. 

As a result, understanding how our goals, self-belief, and anticipated outcomes play a 

role in career decision-making is crucial. These three elements are interconnected and affect each 

other. Setting goals gives us something to work toward, believing in our abilities increases the 

likelihood of success, and considering potential outcomes helps us decide if it is worth the effort. 

Our perspective on these factors is vital in determining our future careers (Blanco, 2011) 

Background or Contextual Factors 

Early and continuous learning experiences have been shown to alter self-efficacy, 

affecting interests, goals, and professional choices. According to the SCCT model, contextual 

variables such as environmental supports and barriers may impact job choices mediated by 

learning experiences. SCCT also recognizes the importance of environmental and personality 

factors in career success. Environmental predictors, which are supports and obstacles, are 
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thought to directly and indirectly affect outcomes via self-efficacy, outcome expectancies, and 

goals (Lent, Brown & Smith, 2013).  

Lent, Brown, and Hackett (2000, 2002) and Lent (2005) define two main categories of 

contextual components: background contextual factors and contextual influences close to 

choosing behavior. Background contextual elements emerge when people learn about and engage 

with their culture and become more aware of gender role expectations. Contextual influences 

proximal to choice are important at specific academic and professional decision points. 

Contextual factors may support or impede an individual's choice to follow a specific 

career route, depending on the circumstances. Present (proximal) effects rather than contextual 

elements influence most supports and barriers. For instance, attempting to solve a financial 

issue by seeking financial help is significantly easier than overcoming the challenge of growing 

up in a household with little food. Support and motivation to the children from parents can be 

provided even in significant background contextual factor limits (such as a lack of sufficient food 

supplies). Aside from personal characteristics, interests, talents, and perspectives, budgetary 

constraints and help and motivation from teachers are essential components in choosing a career 

(Lent, Brown, Talleyrand, 2002). Both support and impediments can impact self-efficacy, 

affecting professional objectives. (Lent et al., 2003). An investigation conducted among college 

students found that several forms of assistance, including family and peer support, financial 

background, and employment prospects, all impacted their self-efficacy (Dahling & Thompson, 

2010). In research on racial-ethnic minority and white engineers, social support and obstacles 

were shown to predict self-efficacy and other outcomes (Cardenas, 2010). In tenth to twelfth-

grade adolescents, external support, encompassing job exploration and moral encouragement, 
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was significantly connected with professional self-efficacy and outcome expectations (Conkel 

Ziebell, 2011).  

 

Figure 2:Social Cognitive Career Theory 

 

Social Cognitive Model of Career Choice 

Self-efficacy, outcome expectations, goals, choice, outcome, and contextual variables 

interact in the social cognitive model of career choice. The iterative approach implies that the 

Note: Adopted from " Toward a unifying social cognitive theory of career and academic 

interest, choice, and performance " . By R.W. Lent, S. D. Brown,& G. Hackett. (1994). Journal 

of Vocational Behavior, 45 ,p. 93 III. 
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ideas impact one another, whether direct or indirect, and this cycle continues throughout a 

person's life. The model of career choice behavior is shown in Figure 14.1, which shows the 

channels of interaction between the concepts. To illustrate the process of making career choices, 

this discussion employs the SCCT framework to examine the academic and professional 

challenges faced by an individual. The subsequent sections will break down and highlight the 

various aspects of this model. This analysis aims to uncover the critical factors social cognitive 

career theorists identify as essential in selecting a profession. The exploration starts with the key 

principles fundamental to understanding career decisions and job selection. 

According to Bandura (1986), interests are generally stable over time, shaped by the 

belief in one's ability to succeed and the expectation that effort will lead to success. When 

individuals engage in new activities, such as sports, and discover a lack of skill, they may lose 

interest in those areas. For example, a person who believes they cannot master math might 

anticipate a low score on a math test. This lack of confidence and negative expectation 

contributes to losing interest in the subject. 

Individuals' interests significantly impact their willingness to engage in certain activities 

and set goals related to those activities. When a person loses interest in mathematics, they no 

longer wish to study it and prefer to explore other interests. Suppose this individual discovers a 

passion for singing, particularly feeling confident as a talented soprano with positive outcomes. 

In that case, their interest can be further reinforced by opportunities such as being invited to 

perform solo in church. Consequently, their aspirations in music start to overshadow their goals 

in mathematics, indicating a shift in priorities based on their interests and perceived abilities. 
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Individuals' goals shape the actions they undertake to achieve these objectives. For 

instance, when someone sets their sights on improving their singing abilities, they might start 

taking vocal lessons and dedicate more time to practice. Conversely, suppose mathematics is no 

longer a primary focus for them. In that case, they might allocate significantly less time, such as 

only 10 minutes a day, indicating a shift in priorities where their efforts are concentrated on areas 

of higher interest and perceived competence. The activities individuals engage in play a crucial 

role in shaping their outcome expectations. For instance, when someone focuses on enhancing 

their singing skills through dedicated practice, they will likely see improvement in this area. 

However, if they neglect other areas like mathematics, their skills in that domain may decline. 

The outcomes of these activities influence their learning experiences, affecting their beliefs in 

their abilities (self-efficacy) and their expectations about future outcomes. In the case of an 

individual who has positive experiences participating in a choir and performing as a soloist, these 

successes can boost their confidence in their singing abilities and lead to an increased 

expectation of being offered more performance opportunities. 

In contrast, her low performance on math examinations has a negative impact on her 

learning experience. She feels that she does not possess a strong sense of self-efficacy in 

mathematics, and as a result, she anticipates scoring poorly on upcoming math exams.  

Outcome expectations may have a direct impact on how people view goals. If an 

individual cannot locate professional singing chances, her ambition of becoming a professional 

singer will be affected, as will her future career choices. Individual appreciates the aspiration of 

becoming a professional singer but does not have high hopes for success. 
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Individuals' belief in their capabilities significantly impacts their career ambitions, 

actions, and performance levels. For example, a person's self-doubt in their math skills can shape 

their interests, goals, and the range of career options they consider, influencing their vocational 

decisions. Social cognitive theorists point out that various other factors also affect learning and 

performance. Individual and contextual elements, including gender, disabilities, natural talents, 

race, and family background, play a crucial role in shaping career choices. In the scenario 

described, the individual's natural aptitude for music notably boosts their performance and, as a 

result, strengthens their belief in their singing abilities. Conversely, societal stereotypes 

suggesting women are less adept at math contribute to negative learning experiences for these 

individuals, diminishing their confidence in their mathematical skills. 

An individual's career path choice is also influenced by contextual factors, which are 

conditions beyond their immediate control. For example, financial constraints and limited job 

opportunities can hinder someone's pursuit of a career in singing. Additionally, the influence of 

family can play a significant role. For instance, the achievements of a sibling who attends one of 

the nation's top universities can serve as a motivational factor. Regular discussions with a 

successful older sibling can encourage an individual to focus more on their academic pursuits, 

such as improving their math skills. This family dynamic is a motivational contextual factor that 

can positively impact decision-making behaviors related to career choices. As depicted in 

theoretical models, the decision-making process regarding career choices underscores the 

importance of both self-efficacy and outcome expectations. While self-efficacy and outcome 

expectations play crucial roles, Lent and colleagues (Lent 1994, 2002) and Lent (2005) also 

consider past biological, social, or environmental influences and current contextual factors in 

their evaluations. These authors point out that as individuals age, altering their interests, goals, 
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and overall performance becomes increasingly challenging due to the influence of their past 

experiences. 

Social Cognitive Model of Interest Model 

The model of career choice and the interest model within social cognitive career 

development share significant similarities. The main distinction is that personal interest is 

emphasized on interest rather than a career choice. The encouragement from teachers, family, 

and peers to engage in various activities during childhood, along with self-efficacy and outcome 

expectations, leads to the formation of goals. Having goals motivates individuals to practice, 

leading to successful outcomes, and individuals draw on their past experiences to evaluate and 

pursue new opportunities. Recursive cycles occur as new opportunities and activities present 

themselves, as well as new interests, are explored. Adults tend to have generally focused and 

stable career interests (although these can change due to changing circumstances, restricted 

options, and experiences yielding new ideas, such as pursuing a career in student affairs). SCCT  

holds that shifts in interest are primarily due to changing self-efficacy beliefs and outcome 

expectations (Lent, 2012). Outcome expectations and self-efficacy beliefs influence interest, and 

interests help predict goals, which help predict behaviors associated with selecting and practicing 

activities (Lent,2013). The SCCT recognizes that individuals' career decisions are influenced by 

their environments and personal circumstances, including permanent and conditional factors 

such as ethnicity, disability status, socioeconomic conditions, and gender (Lent, 2012). 

Background and contextual variables may be interpreted as impediments or facilitators of 

outcome expectations. For example, a young man with a strong desire to serve others and a 

strong interest in medical subjects may be discouraged from pursuing a career in nursing because 

he believes that nursing is not a proper profession for a male. 



 

54 
 

Social Cognitive Model of Performance Model 

SCCT is a concept that has caught the attention of many experts who are studying careers 

and education. It explains how success in past activities can make people feel more confident and 

have certain expectations about their abilities to achieve goals. For instance, take a young woman 

who was good at basketball in high school. Because she did well before, she felt confident about 

her basketball skills and decided to try out for the basketball team at her college. After she makes 

the team, she sets high goals for herself, like scoring at least double-digit points in every game, 

based on her past success and her belief that she can do well in the future (Lent et al., 2002; Lent, 

2013). 

Summary 

Social cognitive career theory focuses on individuals' belief in their ability to accomplish 

specific tasks. This confidence is pivotal in shaping one's career trajectory and influencing one's 

interests, values, and skills. The theory examines the interplay among three key elements. 

Numerous external elements, such as the availability of resources, personal attributes including 

one's experiences, convictions, preferences, and identity, as well as behavioral tendencies, 

significantly influence an individual's life. Within this context, self-efficacy is recognized as a 

crucial component. The degree of an individual's self-efficacy can profoundly impact their 

capacity to set and achieve goals, overcome challenges, and ultimately lead a fulfilling and 

successful life. 

As a result, Lent, Brown, and Hackett's SCCT sheds light on the processes that lead 

individuals, particularly teenagers, to choose careers in STEM fields. SCCT focuses on self-

efficacy beliefs, outcome expectancies, and goals, providing a comprehensive framework for 
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examining how interests develop, decisions are made regarding education and employment, and 

success is achieved in STEM careers. Understanding these processes is crucial for developing 

effective strategies to recruit and retain teenagers in STEM fields, which will contribute to a 

more diverse and skilled workforce in these critical areas of innovation and development. 

 In conclusion, SCCT offers valuable insights into the development of careers in STEM 

fields and is an essential tool for creating a brighter future for individuals and society. After 

exploring SCCT career theory, I would like to assess the effect of gender, GPA, math score, 

science score, ethnicity, parent education, and SES. The SCCT model will be the best fit for my 

study. Figure 14.1 helps to understand my model if SCCT is applied in my research: 

Person Input: Gender, Ethnicity 

Background Contextual Affordance: SES  

Learning Experience: Number of STEM-related AP courses, ACT Reading, Math and 

Science Score, and GPA. 
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Chapter 4 Methodology 

This study will investigate the career development processes of high school students 

using the Social Cognitive Career Theory. Additionally, this investigation will examine the 

relationships between the variables that influence students' decisions to participate in STEM 

careers. This section begins with an overview of the terminology used throughout the study. This 

research places significant emphasis on terms related to STEM. 

Definition of Terms 

STEM: The disciplines of science, technology, engineering, and mathematics are included under 

the STEM umbrella of academic and career-relevant study topics (Koonce et al., 2011). 

STEM Career: STEM careers require knowledge and skills in the scientific, technological, 

engineering, and mathematical fields. These fields include science, technology, engineering, and 

mathematics. STEM careers are highly varied and can be found in a wide variety of industries and 

fields, such as healthcare, finance, manufacturing, education, and research, to name a few. 

Appendix A classification will be utilized to determine STEM career choice in this study. 

GPA: The grade point average will be treated as a continuous independent variable and measured 

on a scale from 1 to 4. 

Ethnicity: The following categories will be used to categorize ethnicity: In statistical analyses, 

ethnicity is typically treated as a categorical variable through the creation of dummy variables for 

each ethnic group, with one group serving as the reference category. This method involves 

assigning a value of '1' to indicate an individual's association with a particular ethnic group and '0' 

to indicate their absence from that group. 
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Math, Science, Reading ACT Score: The results of the ACTs will be used to determine students' 

scores in mathematics and science; these scores will fall into a range from 1 to 36. These 

observations will be utilized in an analysis using a continuous independent variable. 

STEM-Related AP Score: The number of STEM-related AP courses will be treated as a 

continuous variable, representing the total count of AP exam courses a student has received.  

Socioeconomic Status: Students will be divided into two groups based on their parents' income. 

Those who receive free or reduced lunch are classified as low-income, while the rest are high-

income. 

The study aimed to investigate the factors influencing students to pursue STEM careers. 

The research utilized data collected from 520 students attending a charter school in the 

Henderson area. The study employed machine learning models and chi-square analysis to 

analyze the data.  

The development of machine learning models centered on classification will be used to 

forecast students' intentions toward careers in STEM fields. The method of examining the 

various machine learning models and establishing the significance of the variables will be 

discussed. The following research topics and associated hypotheses will be presented in light of 

the demanding need for more professionals in STEM fields and the importance of addressing the 

depth of inequity when analyzing demographic shifts in STEM participation. 

Research Question 1: Does gender, ethnicity, GPA, math, reading, and science scores (ACT), 

STEM-related AP courses, and socioeconomic status influence high school students' career 

selection? 
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Research Question 2: How can we predict the students' STEM career intent through various 

machine learning models? 

Research Question 3: Does ethnicity influence the choice of a STEM career? 

Research Question 4: Does socioeconomic status play a role in selecting a STEM career? 

Research Question 4: Does gender affect the decision to pursue a career in STEM? 

Data Collection 

The demographic data presented here is collected from a charter school located in the 

Henderson area of Nevada. The school is recognized for its focus on science education. It holds a 

5-star rating within the state's educational system. The data was collaboratively collected with the 

involvement of the school principal and central office and sourced from various channels, 

including counselor records, Infinite Campus, and ACT data from the school's database. The data 

underwent analysis utilizing Python libraries such as Keras, NumPy, Pandas, Seaborn, 

TensorFlow, and sci-kit-learn within Google Colab. STEM and non-STEM classifications were 

aligned with the Standard Occupational Classification (SOC) system, as detailed in the Bureau of 

Labor’s Attachment C documents. 

The demographic breakdown of the charter school reveals that 56% of the population is 

male, while 44% is female. The demographics further show that 37.14% of the population 

identifies as White, 24.94% as Asian, 17.63% as Hispanic, and 11.97% as Two or More Races. 

Smaller segments include Black (6.21%), Native Hawaiian/Pacific Islander (1.88%), and 

American Indian/Alaska Native (0.22%). Notably, 23% of the students are enrolled in the Free 

Lunch Program, with an additional 5% benefiting from the Reduced-Price Lunch Program. 
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Moreover, 8% of the population comprises students with disabilities. The average ACT score is 

22, and a significant 42% of students are engaged in Advanced Placement (AP) courses, indicating 

their commitment and academic enthusiasm. 

Data Analysis 

The dataset comprises 520 student records that contain information collected between 

2020 and 2023. It includes various details such as ACT scores in Math, Reading, and Science, 

enrollment in Advanced Placement (AP) courses related to STEM, socioeconomic background, 

ethnicity, gender, GPA, and the selection of a STEM career path. The dataset includes 2 Amer 

Ind/Alaskan Natives, 154 Asians, 26 Black/African-Americans, 93 Hispanic/Latinos, 10 Native 

Hawaiian/Pacific Islanders, 73 individuals of two or more races, and 162 Whites. Out of the total 

students, 225 identified as female, and 295 identified as male. The SES was categorized into two 

groups: 69 individuals were in the lower group (SES 0), and 451 were in the higher group (SES 

1). A preprocessing phase was performed to prepare the data for analysis using machine learning 

techniques. This phase included missing entries, which were ultimately found to be absent, and 

verifying that all data points were correctly formatted. Specifically, academic scores were 

denoted as integers, while SES and STEM interests were categorized as binary variables, and 

ethnicity and gender were represented through one-hot encoding. 

During the feature selection process, I evaluated all variables to identify those 

significantly impacting STEM outcomes. Because the dataset was not too large, methods such as 

Principal Component Analysis (PCA) that reduce dimensionality were unnecessary and skipped. 
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Machine Learning 

During the 1950s and 1960s, machine learning research mainly focused on developing 

machines that could think logically, much like how humans solve problems using reason. One of 

the early successes in this field was the Logic Theorist program created by A. Newell and H. 

Simon. This program could independently solve mathematical problems, leading people to 

believe that making machines intelligent made them good at reasoning. From the 1960s to the 

1980s, machine learning research explored methods like neural networks and symbolic learning, 

leading to its recognition as a distinct field in the 1980s. This period was focused on teaching 

machines through examples, either by direct instruction or observation. During the 1980s and 

1990s, innovations such as the backpropagation algorithm improved neural networks. As we 

entered the 21st century, significant enhancements in neural networks occurred due to the 

progress of deep learning. This was mainly due to the abundance of available data and improved 

computing power, which enabled applying these technologies without requiring a detailed 

comprehension of their inner workings (Zhou,2021). 

Taking advantage of advancements in machine learning, this study will use logistic 

regression, which is well-suited for binary classification. We will also use the K-Nearest 

Neighbors (KNN) algorithm, decision trees, and neural networks to help predict the STEM 

career choice. 

Logistic Regression 

Logistic regression is a valuable statistical tool utilized across many fields to understand 

the correlation between a binary outcome variable and one or more predictor variables (Agresti, 

2015). While linear regression is better suited for continuous outcome variables, logistic 
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regression can be employed in forecasting categorical outcomes or events that follow a binary 

distribution (Hosmer, Lemeshow, & Sturdivant, 2013).  

This model employs a sigmoid curve to forecast classifications, starting with calculating 

a weighted sum of the input variables, adding an intercept, and then applying the sigmoid 

activation function (Young, Holland, & Weckman, 2008). Logistic regression is a highly 

regarded machine learning technique known for its effectiveness in classification tasks. It has 

yielded fewer classification mistakes than other statistical approaches (Fienberg, 2007). Given its 

prevalence in machine learning, logistic regression is used as a standard point of comparison in 

this study. 

Logistic regression is a discriminative classifier that uses the maximum likelihood 

method to determine its parameters. The relationship between the log odds of the probability 

p(X) and the predictors is expressed as the natural logarithm of the ratio of p(X) over 1 minus 

p(X), which equals the intercept (b0) plus the sum of each predictor variable (x1, x2, ..., xk) 

multiplied by their respective coefficients (b1, b2, ..., bk). This formula indicates that the log 

odds are directly calculated from the model's dependent variable, necessitating an iterative 

approach rather than linear regression or ordinary least squares for optimization. The 

optimization process starts with an initial guess of the parameters, then refined through iteration 

until the likelihood of observing the given data under the model is maximized (Hosmer, 

Lemeshow, & Sturdivant, 2013). 

         Specifically, the logistic regression framework assumes that the probability of y being 

either 0 or 1 can be modeled as p, which equals the exponential of Z divided by 1 plus the 

exponential of Z. This simplifies to 1 over 1 plus the exponential of minus Z, where Z equals b0 
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plus b1x1 plus b2x2 plus .... This formulation allows the model to estimate the probability of 

different outcomes within a bounded [0, 1] range (Hosmer, Lemeshow, & Sturdivant, 2013). 

The log odds of the binary outcome are modeled through the logarithm of the odds ratio, 

establishing a linear relationship with the predictor variables (Cox & Snell, 1989). The log of the 

odds ratio is a mathematical technique frequently used to create a linear connection between 

predictor variables and the log of the probabilities of binary outcomes.  

Steps for Logistic Regression.  

In conducting logistic regression analysis, I employed the methodology described in "An 

Introduction to Statistical Learning" by James, Hastie, and Tibshirani. 

1. Split the data into validation, training, and test sets. 

First, I divide my dataset into training, validation, and test sets. The training set is where I 

train or build my model. The validation set is where I fine-tune the model parameters and make 

decisions about the model, like choosing the best hyperparameters. Finally, the test set is where I 

evaluate the model's performance on new, unseen data to assess its effectiveness objectively. 

2. Standardize the Data. 

Data standardization involves adjusting the data to have a mean of zero and a standard 

deviation of one, transforming it into z-scores. This step is crucial because it ensures that all 

features contribute equally to the model's performance, avoiding situations where features with 

larger scales dominate those with more minor scales.  

3. Apply K-Fold Cross-Validation. 



 

63 
 

In K-Fold Cross-Validation, I assess the model's performance and generalizability to an 

independent dataset by dividing the training data into K-equal subsets. Each subset is used once 

as a test set, while the rest serve as a training set. This process repeats K times, with each of the 

K subsets used exactly once as the test set. Opting for K=10 often balances the variance and bias 

in the model's estimated performance. 

4. Find the Best C Value for L2 Regularization. 

When applying L2 regularization, also known as Ridge regularization, a penalty equal to 

the square of the magnitude of coefficients is added to the loss function. The C parameter 

controls the strength of this regularization. Finding the optimal C value involves using 

techniques like grid search and cross-validation to balance model simplicity and predictive 

performance on the validation set. 

5. Find the Coefficients for the model. 

After determining the best regularization strength, I use this parameter to train my model 

on the entire training set. The model then provides coefficients for each feature in the dataset. 

These coefficients reflect the importance or influence of each feature on the prediction outcome, 

with higher absolute values indicating greater significance. 

6. Find the Best F1 Score and Threshold for the dataset. 

The F1 score, which considers precision and recall, measures a model's accuracy, which 

is especially important when dealing with imbalanced classes. To find the best F1 score, I 

experimented with different threshold values to classify a prediction as positive or negative. 

Adjusting this threshold helps me discover the value that maximizes the F1 score, thus achieving 

a balance between recall and precision for my dataset. Through these steps, I ensure that my 
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model is accurate and generalizes well to new data, providing reliable predictions while avoiding 

the risk of overfitting. 

K-Nearest Neighbors (KNN)  

The K-Nearest Neighbors (KNN) algorithm is a sophisticated tool for classification and 

prediction tasks. Due to its intuitive approach, the k-Nearest Neighbors (k-NN) algorithm is widely 

used in machine learning, especially in classification and regression tasks (Cover & Hart, 1967). 

It operates on a simple, intuitive principle: to classify a new item, KNN looks at the 'K' closest 

labeled items and uses their classifications to inform its decision. Despite this simplicity, KNN is 

effective on complex tasks. 

The basic idea behind the KNN algorithm is that similar items are usually grouped in the 

data space, as Tobler (1970) observed. Implementing KNN involves selecting a way to measure 

how far apart items are, typically using Euclidean distance for its straightforward calculation and 

interpretation. The 'K' value, a key parameter, dictates how many neighboring items the algorithm 

considers in its classification process. Choosing the correct 'K' value and distance metric is crucial 

(Hastie, Tibshirani, & Friedman, 2009). If 'K' is too small, the algorithm can become too sensitive 

to random noise, which might result in wrong classifications. On the other hand, a 'K' that is too 

large may overwhelm the algorithm with irrelevant information, leading to confused decisions 

(Tobler, 1970). 

Steps for The KNN Model. 

1. Splitting the Data. 
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To begin, it is essential to divide the dataset into three subsets: the training, validation, and test 

sets. This division is critical to develop a robust model. The training set enables the model to learn 

the patterns within the data. The validation set is then used to fine-tune the model's 

hyperparameters and conduct initial evaluations. Lastly, the test set assesses the model's 

performance on previously unseen data, objectively evaluating its predictive capabilities. 

2. Standardizing the Data. 

Standardization is a crucial preprocessing step that transforms the data into a mean of zero and 

a standard deviation of one. This step is significant for models such as KNN, which rely on distance 

calculations. Standardization guarantees that all features contribute equally to the distance 

computation, preventing bias towards features with larger scales (Han, Kamber, & Pei, 2011). 

3. Applying K-Fold Cross-Validation. 

One effective way to validate a model's effectiveness is through K-Fold Cross-Validation, 

where K is set to 10. This involves dividing the training data into ten equal parts and then training 

and testing the model ten times, each subset serving as the test set (James, Witten, Hastie, & 

Tibshirani, 2013). 

4. Finding the Best 'K' Value. 

When working with KNN, it is crucial to identify the best 'K' value. This requires testing 

various 'K' values and evaluating their effect on the model's effectiveness. The aim is to identify a 

'K' that balances bias and variance, capturing the data without overfitting (James, Witten, Hastie, 

& Tibshirani, 2013). In this study, the best K was found to be 17. 
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Decision Tree 

Decision trees, or classification trees, represent a machine learning technique characterized 

by its visual nature, utilized for classification and regression analysis (Young, 2017). Unlike other 

machine learning methodologies, decision trees focus on examining variables individually. 

According to Quinlan, J.R. (1986), a decision tree is a predictive model that simplifies 

complex decision-making into a sequence of straightforward questions. In a decision tree, every 

internal node corresponds to a question about the data. As we move down the branches, the answers 

lead to further questions until we reach a leaf node. This node contains the final decision or 

classification based on the chosen path through the tree. Constructing these trees involves selecting 

attributes that reduce uncertainty with each step to group data with similar characteristics while 

minimizing confusion. This process consists of maximizing "information gain" and minimizing 

"impurity" or "entropy." 

Steps for Decision Tree Analysis. 

1-Splitting the Data:  

In the initial phase of my model development, I divide my dataset into three key sections: 

training, validation, and test sets. I use the training set to introduce the Decision Tree to the patterns 

within the data. The validation set is crucial for me to fine-tune the model's parameters, like the 

depth of the tree, ensuring it is straightforward enough and simple. The test set is my model's 

ultimate challenge, unbiasedly evaluating its predictive power (Breiman, Friedman, Olshen, & 

Stone, 1984). 

2-Standardizing the Data. 
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Though decision trees can easily handle varied data scales, I did not standardize my dataset. 

3-Optimizing Clarity: Gini Coefficients. 

A central part of my methodology involves optimizing the Gini coefficients, which 

measure how mixed the data is within each tree node. My goal is to lower these indices, aiming 

for purer nodes. This means I meticulously assess potential splits in the data, choosing those that 

significantly lower impurity. Such precision is vital for ensuring that the decisions made by the 

Decision Tree are clear and well-founded (Esposito, Malerba, & Semeraro, 1997). 

Neural Network 

Neural networks are critical within machine learning. These computational models are 

inspired by the biological neural networks in animal brains (LeCun, Bengio, & Hinton, 2015). At 

the core of neural networks are interconnected nodes or "neurons," each designed to perform 

specific computations. The input layer receives the data, which then passes through a series of one 

or more hidden layers, where the actual processing takes place. Finally, the output layer delivers 

the model's prediction. During the training process, the connections, or "weights," between these 

neurons are adjusted using a mechanism known as backpropagation, which iteratively minimizes 

the difference between the predicted and actual outcomes (Goodfellow, Bengio, & Courville, 

2016). 

Steps for Neural Network Model. 

Here are several steps that can be followed during Neural Network: 

1-Define the Neural Network Architecture:  
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In my neural network design, I ensured that the input layer had as many neurons as there 

were features in the dataset. I started with one or two hidden layers. Based on the model's 

performance, I adjusted their number and the neurons within them, usually choosing a neuron 

count that fell between the input and output layer sizes. The output layer's configuration was 

tailored to my specific task; for example, I used a single neuron for classification tasks like 

predicting STEM career choices. 

2-Normalize the Data:  

I used StandardScaler to ensure that the features in my dataset have a mean of 0 and a 

standard deviation of 1. 

3-Split the Data: 

I divided the dataset into training and testing sets to evaluate the model's performance on unseen 

data. 

4-Compile the model and determine the best learning rate: 

I used binary_crossentropy for binary classification, used Adam as the optimizer, and 

measured accuracy. I also adjusted the learning rate based on the model's performance during 

training. 

5-Train the model:  

I fitted the model to the training data, utilizing the validation data to monitor overfitting. 

6-Evaluate the model: 
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After training, I assessed the model's performance on the test set to understand its accuracy. 

Chi-Square Analysis 

The Chi-square test is a method used to compare the differences between groups when the 

outcome is categorized. It is useful because it does not assume a specific distribution of the data. 

Essentially, this test works well even if the groups being compared do not have similar variances, 

and it can handle both yes-or-no-type questions and comparisons across several groups. What 

makes the chi-square test powerful is its ability to provide detailed insights into how different 

groups contribute to the overall outcome of the study.  

One of the key characteristics of the Chi-square test is that it is non-parametric, and tests like 

the chi-square are preferred under certain conditions: 

1. When all variables are on a nominal or ordinal scale. 

2. When the sizes of the groups are not the same 

How to Perform Chi Square Analysis? 

When conducting statistical analysis using the Chi-square test, we start by establishing two 

hypotheses - the Null Hypothesis (H0) and the Alternative Hypothesis (H1). The null hypothesis 

states that there is no significant difference between the observed frequencies and the expected 

frequencies, which means that there is no relationship between the variables being studied. On the 

other hand, the alternative hypothesis posits that there is a significant difference between these 

frequencies, indicating an association between the variables. To test these hypotheses, we collect 

data and organize it into a contingency table, which categorizes the frequency count of each 
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variable. We then calculate the expected frequencies for each cell in the table using a specific 

formula. This helps us determine if the observed frequencies significantly deviate from what was 

expected under the assumption of no association, guiding us to either support or reject the null 

hypothesis. 
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Chapter 5 Results 

Logistic Regression Model Performance Evaluation 

The intercept value from logistic regression analysis is 0.820560, which shows the 

logarithm of the odds of achieving a positive outcome when all predictor variables are set to zero. 

This analysis explains the effects of input features on the likelihood of a positive outcome. A higher 

Math Score (0.634630) demonstrates a strong positive correlation, significantly increasing the 

chance of a positive outcome. The Reading Score (0.006538) exhibits a moderate positive effect 

and is less than the math scores. Conversely, the Science Score (-0.0575390) shows a negative 

association, indicating that higher science scores decrease the likelihood of a STEM career choice. 

Participation in AP STEM courses is a highly positive predictor (1.757750), highlighting 

the substantial positive influence of these courses on the outcome. Socioeconomic status (SES) 

also shows a strong positive relationship (0.602031), suggesting that higher SES is closely linked 

to an increased likelihood of choosing a STEM career.  

The results of the model demonstrate how ethnicity affects the predictions. People with 

Asian heritage (0.410921) are more likely to have positive outcomes, while those who identify as 

Black/African-American (-0.378317) have lower chances. White ethnicity (0.128007) slightly 

increases the likelihood of STEM career choice. Hispanic/Latino (-0.253157), Native 

Hawaiian/Pacific Islander (-0.094278), and people of multiple races (-0.181566) are less likely to 

have favorable outcomes.  

Gender differences show a slight indication of marginal differences. The logistic regression 

model assigns a coefficient of 0.06 to females, which is small and insignificant. This suggests that 
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when all other variables are kept constant, the log odds of the event occurring are approximately 

0.06 units higher for females than for males. In logistic regression, typically, one category is 

compared to a reference category. This implies that the coefficient for males is implicitly set to 0. 

Therefore, the coefficient of 0.06 for females represents the difference in log odds between females 

and males. However, it is important to note that this coefficient is statistically insignificant. 

The coefficient of GPA in a logistic regression model examining its relationship with the 

choice of a STEM career indicates a positive but small impact on the likelihood of selecting such 

a career.   

The model's performance metrics underscore its predictive accuracy and reliability. The 

accuracy rate of 83.65% indicates a high proportion of correct predictions for both positive and 

negative outcomes. The precision rate of 88.83% reflects the accuracy of positive class predictions. 

The recall rate of 84.12% shows the model's ability to identify actual positive cases correctly. 

Finally, an F1 Score of 86.17% offers a balanced measure of precision and recall, confirming the 

model's effectiveness in predicting positive outcomes based on the examined predictors.  

The model correctly identified 34 non-STEM cases as True Negatives (TN), demonstrating 

its ability to recognize cases that do not belong to the STEM field. However, there were 7 False 

Positives (FP), where non-STEM cases were mistakenly classified as STEM, indicating a slight 

error in over-predicting STEM outcomes. On the other hand, 10 False Negatives (FN) were 

observed, where actual STEM cases were misclassified as non-STEM, reflecting a challenge in 

capturing all genuine STEM instances.  

On a positive note, the model has successfully identified 53 True Positives (TP), correctly 

predicting STEM cases as STEM and demonstrating a strong capability in recognizing true STEM 
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instances. Overall, this matrix highlights the model's effectiveness and areas for improvement in 

distinguishing between STEM and non-STEM categories. The following confusion matrix 

describes the performance of a logistic regression model with Non-Stem and STEM Careers. The 

following confusion matrix table shows the outcome of the logistic regression.  

 

Table 2:Confusion Matrix for Logistic Regression Model 

 Predicted-Non STEM Predicted-STEM 

True-Non STEM 34 7 

True-STEM 10 53 

Note: The table displays the number of true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) predictions made by the classification model for STEM and Non-STEM 

categories. 

 

 

K-Nearest Neighbors (KNN) Model Performance Evaluation 

This study identified that the best value for K was determined to be 17. The accuracy of 

the model, standing at 87.5%, indicates a high level of predictive reliability. This metric signifies 

that, on average, the model correctly predicts the classification of approximately 87 out of every 

100 instances within the test dataset. Such accuracy underscores the model's proficiency in 

generalizing its learned patterns to new data (American Psychological Association, 2020). 

Precision, at 86.7%, reflects the model's ability to identify true positive outcomes from 

those it labels as positive. When the model predicts an instance to belong to the positive class, it 

does so with a reliability of about 86.7%. The precision metric is essential for applications where 
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the cost of false positives is significant. Recall, or sensitivity, measured at 93.6%, reveals the 

model's capacity to capture most positive instances. This high recall rate indicates the model's 

effectiveness in minimizing false negatives, a critical aspect in scenarios failing to detect positive 

cases. 

The F1 score, calculated at 90.07%, combines precision and recall to give a single score 

showing how well the model performs. Given the imbalance in the data, the F1 metric helps 

compare models and assess the model's performance because it provides a balanced measure of 

precision and recall. This is particularly important in imbalanced datasets where accuracy alone 

can be misleading. 

 

Table 3:Confusion Matrix for K-Nearest Neighbors (KNN) Model 

 Predicted-NON-STEM Predicted-STEM 

True-NON-STEM 32 9 

True-STEM 4 59 

Note: The table displays the number of true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) predictions made by the classification model for STEM and Non-STEM 

categories. 

 

 

This KNN model correctly identified 59 STEM instances (True Positives) and 32 Non-

STEM instances (True Negatives), while misclassifying 4 non-STEM instances as STEM (False 

Positives) and 9 STEM instances as Non-STEM (False Negatives). This breakdown highlights the 
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model's strength in accurately identifying STEM cases. It points out the need for improvement in 

minimizing the misclassification of non-STEM as STEM and STEM as non-STEM. 

Decision Tree Model Performance Evaluation 

We derive precision, recall, and the F1 score from the matrix. The decision tree achieved 

an F1 score of 0.77, signifying a balance between precision and recall (James et al., 2013). After 

using K-fold cross-validation, the best ccp_alpha value found for the decision tree model is 

0.016203. This helps the model balance between being too complex and accurate and avoids 

overfitting by removing less essential tree parts. 

 

Table 4:Confusion Matrix for Decision Tree 

 Predicted-NON-STEM Predicted-STEM 

True-NON-STEM 5 36 

True-STEM 

 

 

 

1 62 

 

The confusion matrix reveals that the model accurately identified 62 instances as STEM 

(True Positive) while incorrectly classifying 5 non-STEM instances as STEM (False Positive). It 

also mistakenly identified 1 STEM instance as Non-STEM (False Negative) and correctly 

recognized 5 instances as Non-STEM (True Negative). The model has an overall accuracy rate of 

approximately 64.42%. This means that it can correctly predict both STEM and NON-STEM 

categories with around 64% accuracy. Specifically, when it comes to identifying STEM 

predictions, it has a precision rate of about 63.27%, indicating that it can accurately predict STEM 
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cases more than 63% of the time. The model's recall rate for STEM classifications is notably high 

at approximately 98.41%, which means that it can correctly identify almost all of the actual STEM 

instances. These performance metrics highlight the model's effectiveness, particularly in 

accurately detecting STEM cases, while also reflecting on the precision and accuracy balance in 

its predictive capabilities. 

Neural Network Model Performance Evaluation 

The confusion matrix is represented as [[25 7], [16 56]], and it reveals how well the 

neural network model performed. The model achieved an accuracy rate of approximately 

77.88%, indicating its ability to classify most instances correctly. The model also exhibits an 

88.89% precision, which showcases its ability to make precise positive class predictions (e.g., 

STEM), and the recall is approximately 77.78%, meaning that the model correctly identifies 

about 78% of all actual STEM instances. The F1 Score of 82.96% confirmed the model's 

balanced performance, making it a dependable choice for classification tasks. 

 

Table 5:Confusion Matrix for Neural Network 

 Predicted-NON STEM Predicted-STEM 

True-NON STEM 25 7 

True-STEM 16 56 

Note: The table represents the confusion matrix of career path predictions, showing the number of 

true positive (TP), true negative (TN), false positive (FP), and false negative (FN) instances for 

the STEM and Non-STEM careers. 
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These metrics collectively underscore the effectiveness of our neural network model in 

categorizing individuals into STEM and non-STEM categories. Below is the confusion matrix for 

the neural network, which offers a more detailed view of the model's effectiveness. 

Machine Learning Model Comparison 

We compared the performance of four machine learning models: Logistic Regression, K-

Nearest Neighbors (KNN), Decision Tree, and Neural Network. Among these models, Logistic 

Regression showed a good performance with an accuracy rate of 83.6%, indicating its ability to 

predict outcomes accurately for both positive and negative classes. It also demonstrated a precision 

rate of 88.83%, which means it could correctly identify positive class predictions, and a recall rate 

of 84.1%, indicating its ability to identify actual positive cases correctly. The F1 Score of 86.17% 

confirmed the model's balanced performance, making it a dependable choice for classification 

tasks. 

On the other hand, the K-Nearest Neighbors (KNN) model achieved a great accuracy rate 

of 87.5%, with a slightly lower precision rate of 86.7%. However, it excelled in recall, matching 

Logistic Regression with a rate of 93.6%, indicating its proficiency in capturing actual positive 

instances and minimizing false negatives. The F1 Score of 90.07% suggested a balanced trade-

off between precision and recall. This makes KNN a crucial option when minimizing false 

negatives. 

The Decision Tree model did not provide explicit accuracy metrics. Still, it achieved an 

F1 Score of 0.77. This indicates a balanced performance between precision and recall and 

suggests the potential for further optimization with varying thresholds or pruning techniques. 

This model was also achieved with an accuracy of around 64.42%. Its precision in identifying 
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STEM topics is approximately 63.27%, meaning it is accurate in these predictions over 63% of 

the time. Notably, its recall rate for STEM is about 98.41%, showing it almost always identifies 

true STEM instances correctly. 

Lastly, the Neural Network model achieved an accuracy and precision rate of 77.78% and 

recall rates of 88.89%. Although effective, this model may require additional fine-tuning or 

architectural adjustments to optimize its performance fully. 

In the comparison of machine learning models, Logistic Regression and KNN 

demonstrate strong performance across various metrics. Logistic Regression achieves an 

accuracy of 83.65%, with high precision (88.83%) and recall (84.12%). Similarly, KNN exhibits 

impressive accuracy at 87.5%, with a balanced precision of 86.7% and a notably high recall of 

93.6%. However, the Decision Tree model lags with an accuracy of 64.0%, reflecting its lower 

performance. While it achieves relatively high recall (98.4%), its precision is substantially lower 

at 12.2%, indicating a higher rate of misclassification. On the other hand, the Neural Network 

model shows competitive accuracy (77.88%), precision (77.78%), and recall (88.89%), although 

slightly lower than Logistic Regression and KNN. Overall, Logistic Regression and KNN 

emerge as the top-performing models in terms of accuracy, precision, and recall, illustrating their 

effectiveness in this context. 

Chi-square analysis is also utilized to explore and clarify more how different 

characteristics influence the choice of a career in STEM fields. 

A Chi-square test of independence was used to understand the relationship between 

ethnicity and career choice. The results indicated a significant association, χ2(6, N=520)=91.285, 
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p<.001, with a Cramer's V of 0.419, with a Cramer's V of 0.419, suggesting a moderate to a strong 

association between ethnicity and preference for STEM or Non-STEM careers. 

A Chi-square test of independence was also employed to assess the association between 

gender and career choice (STEM vs. Non-STEM). The results showed no significant association, 

χ2(1,N=520)=0.0,p=1.0,, with a Cramer's V of 0.0. This indicates that, within the dataset, gender 

does not significantly influence the preference for STEM or Non-STEM careers. This result 

suggests that gender does not significantly influence whether a student is in a STEM field. 

Lastly, a chi-square test of independence was conducted to explore the association between 

socioeconomic status (SES) and career preference (STEM vs. non-STEM). The analysis showed 

a significant effect, χ2(1, N=520)=23.05,p<.001, with a Cramer's V of 0.211, indicating a moderate 

association between SES and career choice in STEM versus non-STEM fields. 

Table 5 summarizes the performance metrics for several models, including KNN (K-

Nearest Neighbors), Decision Tree, Neural Network, and Logistic Regression, illustrating how 

each model fares in terms of its predictive capabilities. 

 

Table 6:Machine Learning Model Comparison 

 Accuracy (%) Precision (%) Recall (%) 

    

Logistic Regression 83.65 88.83 84.12 

KNN 87.5 86.7 93.6 

Decision Tree  64.42 63.27 98.4 

Neural Network 77.88 77.78 88.89 

    

Note: This table presents a comparison of four machine-learning models  
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Chapter 6 Discussion and Implications 

This study has examined how gender, socioeconomic status (SES), ethnicity, and 

participation in Advanced Placement (AP) courses influence students' decisions to pursue STEM 

careers. The findings provide a detailed understanding of these dynamics, which can offer 

valuable insights to educators, policymakers, and researchers. 

The Role of Gender in STEM Career Choices 

The findings of this study indicate that gender may not have a significant impact on the 

career choices of students in STEM fields. However, it is important to note that gender continues 

to be a crucial consideration in STEM fields overall. Although existing literature often highlights 

differences between male and female participation in STEM fields, this study's results suggest 

otherwise. One possible explanation is that the data were collected from schools with a strong 

emphasis on science education, where students are primarily interested in science subjects. This 

indicates that such schools provide an environment that encourages female students to pursue 

careers in STEM. Nevertheless, it is still essential to recognize that the absence of significant 

findings regarding gender does not diminish the importance of creating supportive environments 

for female participation in STEM. Further research is needed to understand these dynamics better 

and develop strategies for promoting STEM in females. 

Moreover, recent research indicates that women are equally represented in various STEM 

disciplines, such as biology and chemistry. This suggests a balanced participation across these 

fields. In my study, I found that a significant number of female students chose biological science, 

which influenced both female and male students' choices within STEM fields. As a result, my 
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research revealed no gender disparities, aligning with the broader trend of balanced 

representation in STEM disciplines. 

The Importance of AP Courses and SES 

Participation in AP STEM courses and students' socioeconomic status emerged as 

significant factors affecting the likelihood of choosing a STEM career. Students who have access 

to and succeed in AP STEM courses are more inclined towards STEM fields, underscoring the 

value of these courses in preparing students for STEM careers. Additionally, a student's family 

income level plays a significant role, with students from wealthier families being more likely to 

lean toward STEM subjects. This indicates the need for targeted interventions to provide 

equitable access to AP STEM courses, particularly for students from lower SES backgrounds. 

Support for SES-Disadvantaged Students 

Findings from this study indicate that students from SES-disadvantaged backgrounds 

require additional support, particularly in terms of financial resources, to pursue STEM careers. 

Scholarships, grants, and other financial aid programs targeted at these students could help 

alleviate some barriers to accessing STEM education and careers. Schools and educational 

institutions should also focus on creating supportive environments that encourage and facilitate 

the participation of SES-disadvantaged students in STEM subjects. 

Ethnic Disparities in STEM Career Choices 

The research identified notable disparities in STEM career choices among different 

ethnic groups, with Asian and White students showing a higher inclination toward STEM fields 

compared to their Hispanic and Black counterparts. Given demographic projections indicating a 

growing Hispanic and Black population in the future, efforts must be made to encourage these 

groups toward STEM. This calls for policymakers and educational leaders to devise strategies 
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that address cultural, educational, and financial barriers preventing these students from pursuing 

STEM careers. 

The Role of ACT Scores in STEM Career Choice 

Intriguingly, science and reading scores do not serve as strong predictors of STEM career 

choice. According to existing literature, one would expect science scores to be indicative, but this 

was not the case. Upon receiving the ACT science score, it became apparent that the science 

section primarily focuses on comprehension rather than assessing content knowledge. Its format 

resembles that of the reading section. This could explain why the science score is not a reliable 

predictor of STEM career choice. Further exploration is necessary to delve into why this result 

was obtained, thus enhancing our understanding of the phenomenon. 

Additionally, it is worth considering that the period during which the students took the 

ACT, possibly during the COVID-19 pandemic, could have influenced their science scores. The 

disruptions caused by the pandemic might have impacted their ability to effectively prepare for 

and perform on the science section of the exam. This factor could also contribute to the diminished 

predictive power of science scores in determining STEM career choices. Further investigation 

would provide valuable insights into the observed results. 

Availability of STEM-Related AP Courses 

The availability of STEM-related AP courses is crucial in nurturing interest and 

competence in STEM fields. The study suggests that making these courses accessible, especially 

to underrepresented groups, could significantly impact students' career trajectories. Schools 
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should work towards expanding their AP course offerings and ensure these opportunities are 

known and available to all students, regardless of their income level or ethnic background.  

The Role of GPA in STEM Career Choice 

The logistic regression model indicates that the coefficient of GPA is 0.007910. This 

value helps us understand the relationship between a student's GPA and their likelihood of 

choosing a career in STEM. Although academic achievement and choosing a career in STEM 

fields are related, the effect of GPA is relatively small. One possible explanation for this weak 

effect could be the context in which the data was collected, especially during the COVID-19 

pandemic. Teachers may have adopted more lenient grading practices, considering the added 

stress and challenges students faced. This approach, along with the possibility of inflated grades, 

might have contributed to a situation where GPA was not strongly correlated with career choices, 

as it would have been under normal circumstances. 

Limitations and Future Implications 

This study is subject to certain limitations that could affect the applicability of its 

findings. Understanding these limitations is essential for interpreting the results and guiding 

future research directions.  

The study has provided valuable insights into the factors that affect students' decisions to 

pursue STEM careers. However, it is important to note that parental education and informal 

education could also play significant roles in this regard. Unfortunately, due to limitations in 

available data, these elements were not examined. Therefore, future research that incorporates 



 

84 
 

data on parental education levels and informal educational experiences could provide a more 

nuanced understanding of the complexities surrounding career choices in STEM fields. 

A fundamental limitation of the study is having access to a limited dataset. A larger and 

more diverse dataset could help us better understand the effect of the STEM career choice. More 

data points could allow us to conduct a more detailed analysis.  

Another significant limitation is the inadequate representation of all ethnic groups, 

particularly Black individuals and those identifying with two or more races. This 

underrepresentation cannot fully capture these groups' experiences or challenges with STEM 

career paths. The lack of sufficient data on these populations restricts the study's ability to 

comprehensively analyze how ethnicity intersects with educational achievement and career 

choices.  

As the data obtained from science-focused high schools indicates a greater preference 

among students for STEM careers compared to those attending regular schools, it is evident that 

these types of schools attract students with more interest in STEM subjects. Therefore, this 

dataset may not accurately depict a broader population of students. 

Addressing these limitations in future research efforts is essential for advancing our 

understanding of the factors influencing STEM career choices. Expanding the dataset to include 

more participants and ensuring that all ethnic groups are adequately represented would 

significantly improve the study's robustness and the generalizability of its findings. 
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Conclusion 

In conclusion, while gender and GPA may not have been identified as a significant factor 

in this study, the importance of SES, ethnicity, and access to AP courses in determining STEM 

career choices cannot be overstated. AP course demonstrates the highest correlation with STEM 

career choice, although correlation does not imply causation. Addressing these disparities 

requires a concerted effort from all stakeholders involved in education. We can move towards a 

more inclusive and diverse STEM workforce by implementing supportive measures and ensuring 

equitable access to resources and opportunities. 

I suggest that schools take proactive steps to encourage STEM careers nationwide. This 

could involve expanding the availability of STEM-related courses and actively promoting 

enrollment in AP courses. Additionally, schools should consider the impact of SES on students' 

STEM choices and explore alternative financial resources to ensure equal access to study materials 

and resources for all students. It's worth noting that the reliability of GPA as an indicator of STEM 

career choices was affected by the disruptions caused by the COVID-19 pandemic. In the future, 

conducting similar research under normal circumstances could provide deeper insights into the 

influence of GPA on STEM career decisions. 
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