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Abstract 

Predicting the Response of an Underactuated,  
3D Printed Prosthetic Hand 

By 

Lucas Gallup 

Dr. Mohamed Trabia, Examination Committee Chair  
Associate Dean for Research, Graduate Studies & Computing  

Dr. Brendan O'Toole, Examination Committee Co-Chair  
Professor of Mechanical Engineering  

University of Nevada, Las Vegas 
 

 The continuing need for hand prostheses has led to incredible developments in this area. 

However, due to the cost of the most sophisticated models, it is vital to develop simpler, low-cost, 

underactuated prostheses that can be produced rapidly. 3D printing is an important tool to 

achieve this goal. In particular, the 3D printed Flexy-Hand 2 has been one of the most common 

low-cost designs. A key feature of the Flexy-Hand 2 is its use of tendons and thermoplastic 

polyurethane (TPU) for joints that are strong and flexible. TPUs, however, lack a thorough 

understanding of their mechanical behavior, which makes it difficult to discern the forces needed 

to flex the prosthetic hand or to grip an object. The purpose of this research is to develop, and 

experimentally verify, a model that can predict the relationship between tendon forces and the 

flexion of the TPU joints of a prosthetic finger. First, a constitutive model for 3D printed TPU, 

NinjaFlex® was developed. This model accounts for the effect of filament extrusion temperature 

and material deposition orientations. Next, flexural tests of cantilevered specimens representing 

the finger joints were conducted to study the bending behavior of the TPU under realistic 
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conditions to simulate finger flexion. Lastly, the results of these two tasks were incorporated in a 

quasi-static model relating finger flexion to tendon tension inducing it. This model was verified 

experimentally.  
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Chapter 1: Overview 

Early hand prostheses were intended to replace the missing limb segment for cosmetic 

purposes or to increase limb functionality for the user, but were limited by available technology, 

materials, and techniques. Since then, recent developments in this field have allowed for all kinds 

of hand prosthetics to become more complex, functional, and realistic. For example, haptic 

feedback can provide vibration to simulate touch, and thermal sensors can allow users to feel the 

temperature of the object they are grasping, [1,2]. Similarly, more anthropomorphic designs have 

been developed which have near-human level articulation and motion, [3]. However, the high 

cost of modern prosthetics, ranging from a few thousand to hundreds of thousands of dollars [4], 

restricts the users from access to advanced options, especially for families of children who will 

often outgrow their prostheses multiple times throughout their life, causing costs to stack. This 

problem becomes even more prevalent as the number of children born with underdeveloped 

upper limbs increases by approximately 2000 children annually, [5]. Therefore, there needs to be 

research and development focused specifically on affordable, accessible hand prostheses. 

Specifically, underactuated hand prostheses that do not require electronic control and are open 

source to allow for customization and alterations for repeat users. 3D printing provides the 

opportunity for almost anyone to design and build their own hand prosthesis at an affordable 

rate and with very little startup time and experience needed. Customized prosthetics could 

address the most common reasons for prosthesis adoption: functionality and cost [6]. 

The expansion and potential of 3D printing has led to advancements in many aspects, from 

technology, to methodology, to available materials, which in turn has helped develop 3D printing 
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methods. Over the last few decades, 3D printers have increased in accuracy, size, and speed, while 

decreasing cost. This means that more people and researchers have access to printers and can 

design their own objects to print. The downside to this rapid development is that materials and 

impact of the manufacturing processes have not all been well-understood, especially since recent 

studies show that the printing parameters have been found to have a definite impact on the 

mechanical performance of a 3D printed object, [7–10]. Therefore, a model of both the filament 

material and the printing parameters used is required to fully understand a 3D printed object, 

particularly one that has to perform functions and withstand certain stress levels like a prosthetic 

hand.  

In this study, we investigated the 3D printed TPU, which is commonly used for joints in 

underactuated upper limb prosthetics. The study started by identifying constitutive model for the 

material. Effects of various 3D printing parameters were considered. The constitutive model was 

incorporated in finite element analysis to predict the behavior of these joints in bending. The 

results of the FEA were compared with experiments. Finally, the information obtained about 3D 

printed TPU joints was incorporated in a quasi-static model that described the relation between 

tendon tension and the flexion of a three-digit prosthetic finger. Experimental verification 

indicated that this model is accurate. 
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1.1 Workflow diagram 

The flowchart below represents the major steps that were needed to complete the goals of this 

research, Figure 1.1.  

 

Figure 1.1: Flowchart of the work done to achieve the research goals 

  

Modeling of Flexy-Hand 2 flexion 

behavior under tendon tension 

Understand the behavior of 3D printed 

joints (NinjaFlex®) 

Study Effects of: 

1. Printing Regions 

2. Printing Parameters 

Modeling of Finger joints through: 

1. Uniaxial Tensile Constitutive 

Model 

2. Finite Element Analysis 

Verification through Bending 

Experiment and Finite Element 

Analysis 

Modeling of the relationship 

between finger flexion under 

given Tensile Loads 
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Chapter 2: Literature review and scope of work 

In this literature review, we will introduce the topic of 3D printed prosthetic hands as well 

as the two common actuation methods: tendon and 4-bar mechanism. Next, we will discuss 3D 

printing polymer filaments commonly used in prosthetics and the characterization studies 

conducted thus far. Impactful and relevant research will be reviewed, and key gaps will be 

identified and highlighted.  

2.1 3D Printed prosthetic hands 

Prosthetic hands have been used to help people as early as the Roman Empire, [11]. Since 

then, developments in materials and technology have allowed for great leaps in design and 

functionality. The advent of 3D printing has ushered in a new vector of prosthetic design. Rapid, 

small batch, easily accessible machines allow for research and industry production of new 

prosthetic hands. Prosthetic hand designs aim to be anthropomorphic, mimicking human 

anatomy, [3,12–17], containing the same three phalanges: proximal, middle, and distal. Two 

common features of current 3D printed prosthetic hand designs are the actuation source and the 

actuation method. The actuation source is what provides the energy needed to move the fingers, 

such as the user’s body, a motor, or pneumatics. The actuation method is the mechanism through 

which the source causes the hand to move, namely tendons or multi-bar mechanisms.  

Of the actuation sources, there are two common options: body driven, and motor driven. 

Body driven hands utilize the user’s intact body motions and forces for actuation of the prosthetic 

hand and tend to be the most utilized actuation source for prostheses, [18]. When a user actuates 
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a limb the motion transfers to the prosthetic hand, often through some amount of wire, tendons, 

and cords like with the Cyborg Beast, Flexy Hand 2, Phoenix Hand, and Falcon Hand [19–22]. 

Commonly, these hands are designed for people with underdeveloped hands and therefore the 

user’s wrist actuation acts as the actuation source. Body-driven prosthetic hands benefit from 

simpler, and therefore less expensive, designs since they do not need batteries, motors, and 

controllers. However, they have a limited output force proportional to the user’s own strength 

and range of motion. Prosthetic hands can also be motor driven. Onboard motors are attached to 

the actuation method and bend the fingers, such as with the Mark V hand, [23]. Motor driven 

hand prosthetics provide higher force output and reduce the need for input force from the user. 

Major downsides to motor-actuated prostheses come in the forms of the need for maintenance, 

cost, and weight, [18]. 

Two of the most common actuation methods are tendons and multi-bar mechanisms. 

Tendons are characterized by one or more wires or cables running the length of the finger through 

the digits. Pulling on the wire causes the finger to curl in order to compensate for the shorter 

length of tendon. Tendon actuation is common among prosthetic hands, [19,21–26]. This method 

is often used due to its high functionality and ease of use in simple prosthetic designs, as well as 

in advanced, anthropomorphic hands due to the ability to actuate higher degrees of motion by 

adding more tendons. The tendons are typically light weight and take up very little space, allowing 

for a high number of wires with little increase in weight or hand size. The second actuation 

method is a multi-bar mechanism. This design is not as common due to the fixed range of motion. 

Typically, a multi-bar mechanism is designed to be anthropomorphically accurate while allowing 

for full finger closure, [27–30]. These designs benefit from a predictable movement of the finger 
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under actuation, as well as a typically more robust design. However, the predictable, fixed motion 

limits the possible grasping techniques and holdable objects due to the set digit rotation upon 

actuation.  

The Flexy-Hand 2 is a unique 3D printed prosthetic hand, Figure 2.1, [21]. It is designed to 

be utilized by those with under-developed or partially amputated hands.  The hand is body-

driven; a gauntlet is fixed to the user’s forearm, and tendons run from the gauntlet through the 

back side of the prosthetic hand. These tendons then go through the palmer side of the fingers, 

as a typical tendon actuated prosthetic hand does. What sets the Flexy-Hand 2 apart from typical 

prosthetics is the novel method of finger joint design. A typical finger joint in a prosthetic is 

composed of a number of revolute joints. These types of joints fixed the rotation about a single 

axis and require extra actuation or energy storage to move and return to the neutral position. For 

instance, a tendon driven finger will use the wire for flexion but needs either another wire or 

spring to return the finger to a neutral position. This increases the number of parts necessary, as 

well as the weight. The Flexy-Hand 2 uses a hyperelastic cantilever beam as the joint to overcome 

this challenge. The joint beam is 3D printed from a thermoplastic polyurethane (TPU) filament 

called NinjaFlex®, which can undergo the large deflection bending common in finger flexion 

without experiencing permanent deformation. This configuration presents a unique solution to 

creating a functional, low-cost prosthetic hand design.  
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Figure 2.1: Flexy-Hand 2 

 

2.2 Hyperelastic polymers in 3D printing 

Scientific and technological advancements have allowed the use of polymer synthesis to 

develop materials for many applications. An example of these new materials is the hyperelastic 

thermoplastic polyurethanes (HTPUs). HTPUs offer the manufacturing advantage of being 

processed as a thermoplastic while maintaining rubber-like properties due to their molecular 

structure, which contains two specific regions: soft and hard. The soft regions allow for high 

flexibility, while the hard ones contribute to preventing permanent deformation, tensile strength, 

and hysteresis of the material, [31,32]. This combination provides HTPUs with a composite-like 

behavior that is hyperelastic and nonlinear, [32]. 

Simultaneously, hardware development has allowed 3D printing to speed up the process 

of developing prototypes and part production, especially when a relatively small number of 

components are needed. However, incorporating 3D printing in the industry has been limited by 
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changes that the materials, especially polymers, experience during material deposition. These 

changes affect the mechanical behavior as compared to traditionally manufactured materials 

because 3D printing introduces a plethora of factors including: print orientation, which is the 

angle and direction of an object in the printer workspace; infill raster angle, which describes the 

angle of the material that composes the inner volume of an object; infill density, which is the 

amount of material used to fill the inner closed volume of an object typically denoted from 0-

100% infill; and shell thickness, which is the thickness of the outer-most surface of a printed 

object. In the following, a brief overview of research in this area is presented. 

Some mechanical properties of hyperelastic polymers can be readily determined using 

uniaxial tensile testing. A brief overview follows of relevant research in this area. By 3D printing 

dog-bone shaped specimens from Elastosil M4061 and translucent soft silicones, stress–strain 

curves as well as elastic moduli were obtained, [33]. The effects of infill density on uniaxial tensile 

strength of 3D printed Polylactic acid (PLA) specimens were considered, [34]. Increasing the infill 

density consistently increased the modulus of elasticity, yield strength, and ultimate strength. The 

variation in the mechanical characteristics of Polyamide 12 (PA12 or Nylon 12) was studied with 

respect to changing the laser power and hatch orientation; it was found that 95% full power at 0⁰ 

with respect to the printer’s x-axis resulted in higher tensile strength, modulus of elasticity, and 

elongation at break, [35]. The effects of varying the printer platform temperature and print speed 

were studied for Onyx, a Nylon filament mixed with carbon fibers, [36]. It was found that 

increasing either printer platform temperature or print speed caused an increase in modulus of 

elasticity and tensile strength. The effects on tensile properties of polyetherimide (PEI) caused by 
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print speed and nozzle temperature were studied, and it was found that increasing either 

parameter caused a decrease in modulus of elasticity, [37]. 

The influence of infill raster angle on various polymers including NinjaFlex® was assessed 

under uniaxial tensile loading, [8]. It was found that as the raster angle approached the loading 

direction, these materials’ moduli of elasticity increased. The ultimate tensile strength of 

NinjaFlex® increased as the raster angle approached the loading direction. The infill density of 

NinjaFlex® was varied, and its effects on hardness, maximum stress, and flexure force were 

studied, indicating that the hardness increased as the infill density increased, [38]. The maximum 

stress increased with infill density for NinjaFlex®. The flexural force increased to 70/80% infill 

density, then dropped slightly for the higher density values. The effects of infill density were 

evaluated on 3D printed NinjaFlex® hollow cells with gyroid units of varying unit sizes while under 

compressive loads, [10]. The resulting stress–strain curves showed that as the size of cell unit 

increased, the stress at any given strain decreased. Similarly, the modulus of elasticity increased 

as the cell size decreased. The influence of infill density and print orientation on NinjaFlex® under 

uniaxial tensile loading was considered with respect to ultimate strength and modulus of 

elasticity, [7]. When varying the printing orientation, it was found that ultimate stress increased 

when the printing orientation was parallel to the loading direction rather than perpendicular to 

it. The modulus of elasticity remained relatively constant for specimens with a print orientation 

parallel to the direction of loading when the infill density increased. On the other hand, 

specimens with a printing orientation perpendicular to the loading direction had the modulus of 

elasticity increase as the infill density increased. The effects of the shell thickness on NinjaFlex® 

3D printed specimens with shell thickness varying between one and four filament lines were 
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considered, [9]. Uniaxial tensile testing showed that tensile strength and modulus of elasticity 

increased in proportion to the number of wall lines.  

While these studies addressed important questions related to the mechanical behavior of 

the 3D printed polymers, they did not study the regions of the material individually, namely the 

infill and wall material. Rather than varying the infill density of a test specimen, the wall and infill 

material will be tested separately to understand their individual characteristics. These studies also 

show a wide variety of material characteristics, so further testing should be conducted to form a 

more consistent model, Table 2.1. Similarly, the behavior of 3D printed HTPUs under bending 

causing large deformation is not well-understood. The bending behavior of NinjaFlex® will be 

studied to create a more complete model.  

 

Table 2.1: NinjaFlex Mechanical Characteristics 

Source 
Yield 

Strength, 
(MPa) 

Ultimate 
Strength, 

(MPa) 

Tensile 
Modulus, 

(MPa) 

Elongation 
at Yield, 

(%) 

Elongation 
at Break, 

(%) 

Toughness, 
(m×N/m3 × 

106) 

Hardness, 
(Shore) 

Manufacturer [15] 4.00 26.00 12.00 65.00 660 82.70 85A 
Pitaru et al. [8] 2.80 - 8.51 51.85 - - - 
Mogan et al. [9] - 13.19 - - - - 55.7D 

Holmes et al. [10] 1 0.16 - 1.50 - - - - 
Messimer et al. [11], 25% infill - 7.01 5.17 - 476 - - 
Messimer et al. [11], 50% infill - 8.61 5.19 - 487 - - 
Messimer et al. [11], 75% infill - 10.21 5.22 - 497 - - 

Messimer et al. [11], 100% infill - 11.81 5.24 - 508 - - 
Reppel and Weinberg [12] - 27.80 12.2 - 1200 133.40 - 

1 The values reported are for gyroid printed samples. 
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2.4 Modeling and analysis of robotic and prosthetic fingers 

Traditional robotic finger design typically uses simple hinges to connect digits which are typically 

actuated using separate motors located in the gauntlet, in an enclosure that surrounds the lower 

arm, or in the palm of the hand. Each of these motors is connected to the digit it controls though 

a separate set of cables (tendons) that move in respective channels, Figure 6.1. Gears are also 

sometime used to connect the hinges with the motors. These designs are typically complex and 

require sophisticated control algorithms. Additionally, such configurations are bulky even when 

miniature motors are used.  

 

 
Figure 2.2: Example of a tendon-actuated robotic hand, [39] 

 

An alternative to these designs is an underactuated finger where a single tendon goes 

through all the finger digits, Figure 6.2(a). When the tendon is subjected to a tensile load the 
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finger bends in a predetermined manner. While such a design lacks the versatility of multiple 

motors, it is relatively simple and can achieve the kinematic and gripping goals of the prosthetic 

hand. Recently, advances in 3D printing of thermoplastic polyurethane (TPU) resulted in 

innovative designs where simple hinges are replaced by 3D printed TPU beam joints. Each of these 

beams are fitted into two opposite recesses on two digits thereby connecting them, Figure 6.2(b). 

The TPU beam fulfills two objectives simultaneously: connecting the digits and providing spring 

action that would return the finger to its original configuration once the tendon tension is 

removed. These two areas, tendon-actuated underactuated fingers and TPU hinges, have 

received relatively limited attention and are not fully understood yet. In the following, we present 

a brief survey of research in these two topics. 

 

  
(a) (b) 

Figure 2.3: Underactuated prosthetic finger designs; a) a hinged finger with a single actuation tendon; 
b) flexible beam joints with a single actuation tendon 
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Some researchers proposed various models to relate tension of tendons to flexion of 

fingers and grasping forces. For example, a model for the kinematic behavior of a 3D printed, 

tendon-driven robotic hand was derived, [40]. The deflection of the digits was modeled and 

qualitatively compared to experimental results. This model did not relate tension in tendons and 

joint angles. The dynamic behavior of a tendon-actuated prosthetic finger while contacting and 

grasping a simple object was modeled, [41]. It was found that an appropriate reaction force was 

necessary to achieve a certain level of control of the finger while grasping. Likewise, the ability to 

perform a quality grasp depends on the size of the grasped object. No experiments were 

presented. This model used torsional springs at the joints as potential energy components rather 

than flexible beams. The joint design of a prosthetic finger was proposed using elastic ligaments 

to store energy during deflection from tendon actuation, [42]. The minimum tendon force 

required for static joint deflection was derived, and experiments were conducted to test joint 

durability and grasp capabilities. Tendon force calculations were not confirmed through 

experimentation, and a relationship between finger deflection and tendon force was not 

proposed. A kinematic model of a tendon-actuated robotic hand with torsional springs at the 

joints was proposed, [43]. The proposed model was simulated, and the workspace of the fingers 

was described. No experiments were conducted to validate the model. A relationship between 

the finger tendon tension and finger deflection was not derived.  

The deflection of a 3D printed, tendon-actuated prosthetic finger was studied with both 

tendon extension and tendon force as an independent input as well as for an unobstructed and 

an obstructed grasp, [44]. Equations for the joint angles at static equilibrium were derived. This 

work does not consider the nonlinear behavior of the elastomer joints, which would experience 
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stiffening or softening under large strains. A molded polymer finger actuated by two tendons was 

presented to relate the parameters that affect the workspace and abduction/adduction angles of 

±45°, [45,46]. This model, which did not consider the nonlinearity of the urethane elastomer 

joints, resulted in approximately 35% error in terms of the force needed to achieve full flexion. A 

fully 3D printed tendon-actuated robotic finger with flexible beam joints was studied and 

compared to a human finger, [47]. It was found that varying the dimensions of the beam joints 

affect the digits trajectories and consequentially the joint angles. This work did not consider the 

effects of printing parameters on the behavior of the flexible joints, nor the typical nonlinear 

behavior of a highly material, LB-313J. Similarly, the authors do not derive a relationship between 

the load on the tendon and the deflection of the finger digits. The kinematic and dynamic 

behavior of a 3D printed, tendon-actuated prosthetic hand was modeled using the Lagrangian 

Method, [48]. Similar flexion when the finger was unobstructed and digit deflection when an 

object was grasped was achieved. However, a quantitative comparison was not provided. 

 This work investigated the flexion of the Flexy-Hand 2 prosthetic hand, which combines 

TPU flexible joints and tendon-actuation. This prosthetic hand design has not received sufficient 

attention relative to understanding the relationship between tendon tension and finger flexion. 

Our quasi-static model, which incorporated the nonlinear behavior of the joints, was derived 

using the principle of virtual work to account for the nonlinear behavior of the TPU beam joints. 

Experimental setup was developed to validate the proposed model. 
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2.3 Scope of work 

First, a series of uniaxial tensile tests was conducted to study the mechanical behavior of 

two common print geometries found in most printed objects: infill geometry and wall geometry. 

Similarly, sets of the two regions were printed at 225 C, 235 C and 250 C. This allowed the 

creation of a 3D printing parameters material model that was based on experimental data. Force-

time data and image processing were used to create stress-strain curves for each specimen. We 

hypothesized that the infill material will be softer than the wall material. Similar to composites, 

the printed material that lies parallel to the loading direction should increase the strength of an 

object in that direction. Infill region specimens are printed, by default, with lines at ±45° from 

the loading direction, while wall region specimens are printed with lines parallel to the loading 

direction. We also hypothesized that increasing the extrusion temperature will increase the 

strength and stiffness of both regions, as described by modulus elasticity, stretch modulus, and 

stress at various strain values. Increasing the extrusion temperature of a printed specimen should 

allow for an increase in internal material adhesion as well as a reduction in the number of internal 

voids. The material models for both infill and wall materials were compared to results from earlier 

papers. 

Next, a bending experiment was conducted using NinjaFlex in eighteen different 

dimensional configurations to create a comprehensive model of the bending characteristics of 

the material. The bending data was compared to modeling using the previously found material 

characteristics. The deflection from the experiments was recorded and analyzed with image 

processing. A closed form solution was derived to model the deflection of the bending specimens 
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based on Euler-Bernoulli beam theory, which we call Modified Euler-Bernoulli (MEB) method. A 

finite element analysis (FEA) model was also made to describe the specimen bending. The two 

modeling methods were compared to the experiment, and a mean non-dimensional difference 

value was calculated to compare the deflection-per-load of the three sets of data. We 

hypothesized that the MEB method would be just as accurate at predicting the deflection of the 

flexible beams as the FEA method, due to the inclusion of retraction and use of virtual work and 

strain energy. 

Then, the results of the bending experiments and modeling were applied to the Flexy-

Hand 2. A series of quasi-static bending experiments using a 3-digit prosthetic finger were 

conducted by applying weights to the tendon and recording the deflection. By applying the 

modeling to the 3-digit finger, its validity was confirmed. Three sets of joints will be bent in three 

trials each. The resultant deflection will be averaged and compared to ensure consistency. Lastly, 

FEA modeling was applied to the whole finger, and the results compared to the experiment. We 

hypothesized that substituting the flexible beams for torsional springs and hinged joints would be 

sufficient at modeling the behavior of the flexible beam joints. This is due to the consistent 

rotation seen in the experiments, and the elastic behavior exhibited by the flexible joints.  We 

also hypothesized that the flexion of the 3-digit finger will accurately simulated due to the 

consistency of the TPU and flexible joint modeling.  
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Chapter 3: Influence of 3D printing parameters on the constitutive 

model of hyperelastic thermoplastic polyurethane 

 The infill and wall material of a 3D printed object behave differently. The printed material 

in the infill region commonly runs in ±45° alternating angles from the orthogonal x-y axis of the 

printer, while the material printed in the wall region is limited to the outer surface and edges of 

the object. The influence of wall thickness on the percent elongation at failure, tensile strength, 

Young’s Modulus, and toughness of NinjaFlex® was studied [9]. Using tensile specimens, 

increasing the thickness of the wall region results in an increase in all these properties: 5% in 

percent elongation, 45% in tensile strength, 14% in Young’s Modulus, and 50% in toughness. The 

number of wall lines, or the “shell thickness,” was tested in flexion and uniaxial tension [49]. The 

results were generally consistently with [9], suggesting that mechanical properties of wall regions 

are higher than infill, as the properties increase with as wall thickness increased. 

Similarly, parts printed at different extrusion temperatures have different mechanical 

properties as well, [49–53]. PLA tensile specimens were printed at four different extrusion 

temperatures, [50]. The average Young’s Modulus, yield strength, and tensile strength increased 

with the temperature, plateauing as the temperature reached peak values. Two different grades 

of PLA filaments, PLA 4032D® and PLA 2003D®, were printed with and without the clay 

nanocomposite C30B® at three different temperatures [51]. The extrusion temperature had a 

clear correlation with the elastic modulus of all tested materials, with PLA 2003D® and 

PLA4023D+C30B® having a negative correlation to temperature, and PLA 2003D+C30B® and 

PLA4023D® having a positive correlation to temperature. Polyether Ether Ketone (PEEK) dog bone 
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tensile specimens were printed at seven different temperatures and the mechanical properties 

were considered [52]. It was found that the tensile strength and the elastic modulus increased as 

the extrusion temperature increased. However, both of which leveled off at higher temperatures 

similar to previous PLA results. 

In this chapter, material characterization experiments were conducted to understand the 

difference between infill and wall regions printed at different extrusion temperatures. By 

understanding how the printing parameters affect the 3D printed NinjaFlex® constitutive model, 

the prosthetic finger joints can be more accurately modeled. Due to alternating angles of material 

in the infill region, we hypothesize that the infill material will be softer than the wall material. We 

also hypothesize that increasing the extrusion temperature will increase the mechanical 

properties of the specimens, such as elastic modulus and stresses at corresponding strains. 

 

3.1 Experimentation 

 

3.1.1 Materials and preparation 

Specimens were prepared using Cura LulzBot Edition [53]. NinjaFlex® tensile specimens were 

initially developed based on ASTM D638-14 standards [54] as shown in Fig. 3.1(a).  However, using 

dog bone specimens resulted in a number of discontinuities due to the transition between the 

two cross sectional areas as shown in Figure 3.1(a). Therefore, the flared ends were removed, and 
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long, rectangular specimens were used, Figure 3.1(b), (c), and (d) show the infill and wall-only 

specimens. The test matrix is presented in Table 3.1.  

 

 

 

Table 3.1: Test matrix 

Material Deposition 
Method 

Extrusion Temperature 
(°C) 

Infill 
 

225 
235 
250 

Wall Only 
225 
235 
250 

 

  
(a) (b) 

  
(c) (d) 

Figure 3.1: 3D printed tensile specimens; a) a dog bone specimen; b) zoomed-in view showing 
discontinuities; c) infill only specimen; d) wall-only specimens. 
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Ten tensile specimens of each group were printed, resulting in a total of 60 experimental 

specimens. All specimens were then printed on a Lulzbot® Taz Mini 2 [55] with an Aerostruder® 

tool head (3D printer, Fargo Additive Manufacturing Equipment 3D, LLC, Fargo, North Dakota, 

United States), Figure 3.2. Batches of five infill and five wall region specimens were printed on the 

build plate at a time.  

 

 
Figure 3.2: Lulzbot® Taz Mini 2 
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3.1.2 Experimental setup 

The 3D printed specimens were tested on a custom-built low-force uniaxial tensile testing 

machine, Figure 3.2(a). The testing machine used a stepper motor in conjunction with a ball-screw 

and linear rail system to apply a specified displacement per unit time. A 25 lbf (111 N) load cell 

(Interface® SML-25, Scottsdale, AZ, USA) measured the tensile reaction force at a rate of 30 

samples per second using a National Instrument Data Acquisition System (DAQ) with LabView 

(Austin, TX, USA). The extensions of the specimens were recorded with a Back-Bone Modified 

GoPro Hero 10® camera (San Mateo, CA, USA) and with a Nikon AF-S Nikkor® 18–140 mm Lens 

(Tokyo, Japan) at a rate of 30 frames per second. The camera was located on the other end of the 

optical table, 1.5 meters to the right of the tested specimens, not shown in Figure 3.3(a). The 

videos were recorded at 5.3 k resolution or 15.8 MP for each frame. After testing multiple 

background colors, a pink backdrop covered the area behind the specimens to best reduce optical 

noise, Figure 3.3(b). 
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(a) (b) 

Figure 3.3: Tensile testing experiment; a) low-force uniaxial tensile testing machine, (A) actuating DC 
motor, (B) load cell, (C) specimen in grips, (D) linear rail system, (E) ball screw; b) specimen while being 

loaded. 

 

The following summarizes the testing procedure. After the tensile specimens were placed in 

the grips, circular paint markers approximately 3.5 mm in diameter were added to both ends of 

the face of the specimen, approximately 5 millimeters in from the grips, Figure 3.3(b). Next, grips 

with the installed specimen were placed in the tensile machine. The experiment was conducted 

at a displacement rate of 0.2 mm/s. 

The dimensions of the tensile specimen can be found in Table 3.2. These dimensions were 

based on several factors: 

1) ASTM638-14 states that the minimum width of a tensile specimen is 6 mm. 
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2) The capacity of the loading range of the load cell used in the tensile testing machine is 0-

111N.  

3) It is desirable to capture the behavior of the printed specimen under large deformation. 

Earlier research on NinjaFlex® had a wide range of maximum strain, ranging from 0.1-12 

engineering strain [8,9,56].  

Based on the ultimate strength suggested by the manufacturer [57] and the thickness 

limitations of ASTM638-14, the thickness was assigned a value of 3 mm. The goal of an 

engineering strain of 2, which is equivalent to a 1.1 true strain, was based on the range of the 

camera lens, the placement of the camera, and load cell limitations. 

 

Table 3.2: Tensile specimen dimensions 

Width, 𝒘, (mm) Thickness, 𝒕, (mm) Total Length, 𝒍𝒕, (mm) Free Length, 𝒍𝒇, (mm) 

6 3 115 50 

 

3.1.3 Data processing 

Frames were extracted from the experimental videos and cropped based on the first and last 

images of the experiment, Figure 3.3. The images were converted to grayscale and then binarized 

with respect to the two markers using a custom Matlab® code (Natick, MA, USA). The two markers 

were identified in each image, and their coordinates of the innermost points were recorded. The 

distance between the inner edges of the markers of the post-trimmed data set was identified as 
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the initial gage length of the specimen, 𝐿0, as shown in Figure 3.3(a). The current length of the 

specimen, 𝐿𝑛, was measured between the inner edges of the markers while the specimen was 

loaded, as shown in Figure 3.3(b).  

 

  

(a) (b) 

Figure 3.4: Typical phases of the tensile testing experiment; a) infill specimen initial image; b) infill 

specimen final image. 

 

Lo 

Ln 
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Load cell data was trimmed to synchronize with the actual testing. A custom Matlab® code 

(Natick, MA, USA) was used to calculate the stress and strain using the respective dimensions of 

each test specimen.  

3.2 Constitutive model 

Earlier researchers have presented possible constitutive models for TPUs. For example, it was found 

that a 2nd or 3rd Order Ogden constitutive models were accurate for strains from 550-1200% [9,56]. Neither 

the effect of the material deposition regions nor the influence of extrusion temperature was considered. 

This work considers the Mooney-Rivlin constitutive model, since it was considered suitable for polymers 

undergoing strains up to 200% [58]. The governing equations of the Mooney-Rivlin model are summarized 

in Appendix A. 

3.3 Results 

3.1 Experimental results 

The measured dimensions of the printed specimens of each group can be found in Table 3.3. 

The engineering stress and strain were calculated using each specimen’s dimensions. These data 

were then converted into their equivalent true stress and strain. The average and standard 

deviation of true stress were then calculated for each group. Error! Reference source not found. s

hows the resulting true stress-strain curves.  
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Table 3.1: Measured dimensions of printed specimens (ten tensile specimens for each group) 

Print 
Region 

Extr. Temp. 
(°C) 

Width, w, (Std. Dev.) 
(mm) 

Thickness, t, (Std. Dev.) 
(mm) 

Mass, m, (Std. 
Dev.) (g) 

Nominal  6.0 3.0 2.5* 

Infill 
225 5.8 (0.10) 3.0 (0.06) 1.7 (0.04) 
235 5.8 (0.04) 3.0 (0.02) 2.0 (0.01) 
250 5.9 (0.02) 3.0 (0.13) 2.1 (0.02) 

Wall 
225 5.9 (0.05) 2.9 (0.04) 1.8 (0.07) 
235 5.9 (0.02) 3.1 (0.02) 2.2 (0.02) 
250 6.1 (0.17) 3.0 (0.13) 2.2 (0.02) 

* Mass calculated from nominal volume and manufacturer reported density of 1.19 g/cc [57] and 
assumes no voids.  

 

Since the specimens did not experience the same maximum strain, the stress response of 

all specimen groups was compared at 0.9 strain, Table 3.4. The elastic modulus for all groups was 

also calculated using the corresponding engineering stress-strain curves based on the linear 

portions. This differed for each specimen group, ranging from 0.04 to 0.06 strain.  

 

Table 3.2: Mechanical properties of specimen groups 

Print Region Extr. Temp. (°C) Elastic Modulus (MPa) Stress at 0.9 Strain (MPa) 

Infill 
225 8.14 7.69 
235 15.84 10.61 
250 17.63 10.99 

Wall 
225 15.36 9.59 
235 18.73 11.25 
250 19.48 11.62 

 

 

While elastic modulus may not be the most appropriate measure for hyperelastic 

materials, it is presented here due to its usage in other studies that previously investigated the 

stress-strain response of NinjaFlex® and similar TPUs. Additionally, the manufacturer stated that 
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NinjaFlex® has an elastic modulus of 12 MPa, [57]. The print temperature and other key printing 

parameters like wall thickness were not specified, so it is not clear as to the cause of the higher 

elastic modulus in comparison to our experimental results. The elastic modulus of specimens 

similar to our infill and wall region printed between 230-240 °C was reported by [8]. Their infill 

comparable specimens were reported to have an elastic modulus of 7.768 MPa, and their wall 

comparable specimens were reported to have an elastic modulus of 8.505 MPa. These values are 

significantly lower than our experimental results for specimens printed at 235 °C. The authors of 

[8] reported using multiple printers and printing the NinjaFlex® specimens, which could all 

contribute to the different elastic modulus values.   
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(a) 

  
(b) (c) 

Figure 3.5: Average and standard deviation experimental results of wall and infill region specimens at 
different extrusion temperatures; a) 225°C; b) 235°C; c) 250°C. The thick lines are the average values 

while the shaded regions represent the standard deviations 

 

Due to the nonlinear behavior of TPUs and the narrow linear portion of the stress-strain 

curves, it would be appropriate to use the stretch modulus to describe the nonlinear elastic 

response of an isotropic hyperelastic material under uniaxial loading [59,60]. Stretch modulus can 

be defined as: 
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𝑆 =
𝜎

𝑙𝑛(𝜆)
(3.1) 

where 𝜆 is the principal stretch ratio (1+ 𝜖) and 𝜎 is the corresponding Cauchy principal stress. 

Based on the average stresses and strains of Figure 3.5, the stretch modulus of each group was 

calculated, Figure 3.5. 

 

 

Figure 3.6: Stretch modulus of all specimen groups 

 

3.2 Constitutive model results 

Using the material calibration software, MCalibration® (Dover, Massachusetts, USA), the 

experimental data were fitted into the constitutive model. For all models, a global optimal search 

was used to fit to the experimental data. The best values for the coefficients, 𝐶10, 𝐶01, and 𝐶11of 

the 3rd Order Mooney Rivlin constitutive model, Appendix A, were identified for each of the six 
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experimental groups. The coefficients were determined with the goal of minimizing the 

normalized mean absolute difference (NMAD) fitness value: 

𝑁𝑀𝐴𝐷 =

∑

(

 
 

∑ |𝑒𝑖,𝑗 − 𝑝𝑖,𝑗|
𝑚
𝑗=1

𝑚

max(
∑ |𝑒𝑖,𝑗|
𝑚
𝑗=1

𝑚 ,
∑ |𝑝𝑖,𝑗|
𝑚
𝑗=1

𝑚 )
)

 
 𝑛

𝑖=1

𝑛
(3.2)

 

where 𝑒 is the vector of experimental stress data for one trial, 𝑝 is the corresponding vector of 

the predicted model, m is the number of points on the stress-strain curve, and n is the number 

of specimens. The fitness values for multiple experiments are averaged to produce the overall 

NMAD value. A representative result for wall regions printed at 225°C is shown in Figure 3.7. The 

resulting coefficients and NMAD values for each specimen group are found in Table 3.3. 

 

 
Figure 3.7. Sample MCalibration® material curve fitting of wall region specimens printed at 225°C 
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Table 3.3: Fitted model coefficients and fitness results 

Print Region Extr. Temp. (°C) 𝑪𝟏𝟎 (Pa) 𝑪𝟎𝟏 (Pa) 𝑪𝟏𝟏 (Pa) NMAD (%) 

Infill 

225 -2.04e5 1.64e6 6.30e4 5.97 

235 -1.40e6 4.05e6 1.95e5 1.98 

250 -1.68e6 4.56e6 2.21e5 3.18 

Wall 

225 -1.55e6 4.21e6 1.90e5 4.96 

235 -1.93e6 5.12e6 2.34e5 1.76 

250 -2.33e6 5.70e6 2.93e5 3.30 

 

3.3. Finite element validation 

To assess the validity of the constitutive models, FEA models were developed for each group 

using ANSYS® (Canonsburg, PA, USA). Planar geometry was chosen using the nominal dimensions 

of the tensile specimens, Table, with the thickness, 𝑡, being defined in the ANSYS® Mechanical. A 

mesh stability study was conducted on the models to ensure a stable solution. A mesh with an 

average element side length of 0.25 mm was adequate when compared to 0.1 mm and 0.5 mm 

element sizes. This mesh resulted in 4,800 elements, Figure 3.8.  

 

 

Figure 3.8: 0.25 mm mesh of tensile validation models 
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A fixed boundary condition was applied to the left edge of the model. A ramped tensile load 

was applied to the right edge of the model. The maximum loads corresponded to the average 

maximum load experienced by each experimental group, Table 3.4.  

 

Table 3.4: Maximum tensile load for model validation 

Print Region Extrusion Temperature (°C) Average Maximum Load (N) 

Wall 
225 72.7 
235 86.2 
250 88.2 

Infill 
225 58.7 
235 78.2 
250 80.8 

 

 

Typical results of the FEA model overlapping with the experimental results are shown in Fig. 

9, which are the lowest model error in Figure 3.9(a) and the highest model error in Figure 3.9(b). 

The black dashed line represents the stress-strain behavior of the model. All specimen groups fall 

between these two results in terms of model error. To compare the model to the experimental 

results, an error function was defined, Eqn. 3.3, which compares the stress of the experiment and 

model for a given strain value. 

𝐸 =

∑
|𝜎𝑚𝑖 − 𝜎𝑒𝑥𝑝.𝑖|

𝜎𝑒𝑥𝑝.𝑖
𝑛
𝑖=1

𝑛
(3.3)

 

where 𝑛  is the number of stress values, the subscript 𝑚  represents the model, and 𝑒𝑥𝑝. 

represents the experiment. The errors for each group are found in  
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Table 3.5. 

 
(a) 

 
(b) 

Figure 3.9: Sample of model validation results, model in black dotted line, experimental data in 
colored shaded lines 
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Table 3.5: Model error values for each specimen group 

Print Region Extrusion Temperature (°C) E (%) 

Wall 
225 3.02 
235 3.45 
250 5.18 

Infill 
225 4.53 
235 4.99 
250 3.46 

 

 

3.4 Discussion 

It is apparent from the experimental stress-strain results, Figure 3.5, that the filament 

deposition and extrusion temperatures have significant influence on NinjaFlex’s® mechanical 

behavior. As the extrusion temperature increases, the difference between the stress-strain curves 

of infill and wall groups decreases, suggesting that an object printed at 250°C will behave more 

homogeneously. Interestingly, specimens printed at 235 ° C resulted in the lowest standard 

deviation of the extrusion temperatures. This is likely due to the higher consistency of the 

specimen dimensions, Table 3.3.  

The elastic modulus, despite representing only a small portion of the strain range, also 

shows the same increase in magnitude as the stress strain curves, Table 3.4. The stress at 0.9 

strain increased with the extrusion temperature for all groups.  
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Lastly, the stretch modulus describes a wider range of behavior that also increased as 

temperature increased, Figure 3.6. For all these properties, the difference between values of infill 

and wall specimen groups also decreased as temperature increased. Overall, the wall region 

specimens had consistently higher elastic modulus, stretch modulus, and stress at 0.9 strain. This 

is likely due to the orientation of TPU filament as wall specimens have filament that runs the 

length of the specimens, while infill specimens have material lines that sit at ±45°.  

Material lines that are along the direction of loading have stronger tensile properties, similar 

to fibers in composite materials; elastic modulus, for example, corresponding to different fiber 

orientations is higher in the normal principal directions, [61]. The groups also show an increase 

in quantity of material printed with an increase in temperature, Table 3.3, with wall region 

specimens consistently showing greater mass than infill material. The increase in masses 

contributes to each group resisting more stress. Similarly, the increase in mass suggests better 

material adhesion due to fewer voids within the specimens, also noted in [62]. Our hypothesis of 

infill specimens being “softer” than the wall specimens was proved correct, as well as increasing 

the extrusion temperature increasing mechanical properties, like modulus of elasticity and stretch 

modulus. 

It should be noted that infill specimens printed at 225°C were consistently lower than all other 

groups in terms of stress-strain behavior, elastic modulus, stress at 0.9 strain, and stretch 

modulus. Additionally, this group had two phases of the stress strain curves, while all others had 

three. The linear elastic portion of the stress strain curves continued for more strain than any 
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other group. This behavior is likely due to poor material adhesion between layers and print lines 

and voids as is shown in Figure 3.1(b). 

The constitutive model coefficients were found with a reasonable level of accuracy, with all 

specimen groups having an NMAD value of less than 6%, Table 3.3. Model coefficient values 

increased in magnitude as the extrusion temperature increased, following a similar trend to the 

elastic modulus. This suggests that the 3rd Order Mooney-Rivlin constitutive model is consistent 

and sufficient in modeling this TPU at the given temperatures. 

Lastly, the model validation was able to replicate the experimental results with sufficient 

accuracy. The stress-strain behavior of each specimen group was replicated with approximately 

5% error or less. This shows that the models can sufficiently predict the behavior of wall and infill 

deposition at the used extrusion temperatures. 

This work has some limitations. Firstly, the only material tested was NinjaFlex®. While this is 

a widely available material, every TPU will have different material properties. As discussed in 

Chapter 2, Section 2.2, the characteristics of a printed material are affected by all printing 

parameters, as well as the printer used. A comprehensive study should include these effects. 

Lastly, the upper engineering strain limit for Mooney-Rivlin constitutive model is approximately 2 

[58]. It is of interest to assess the validity of this model beyond this range.  
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Chapter 4: Characterizing the behavior of 3D printed hyperelastic 

thermoplastic polyurethane hand prosthetic joints 

In this chapter, the bending behavior of the hyperelastic thermoplastic polyurethane 

filament, NinjaFlex® is studied. A variety of specimen configurations were subjected to quasi-

static loads similar to what would be induced by tendon tension to understand how the 

performance of NinjaFlex® 3D printed joints. 

4.1 Specimen preparation 

The manufacturer of NinjaFlex® has provided several key mechanical properties that were 

found following ASTM D638 standards, [63] Table 2.1. However, other researchers have provided 

different values for these characteristics. This variation may be due to the 3D printer used as well 

as the printing parameters. Additionally, some researchers have provided different stress–strain 

curves for NinjaFlex®, [7–10,56]. 

In this research, experiments were conducted using 3D printed NinjaFlex® dog-bone 

specimens with varying rectangular cross sections, Figure 4.1(a). The length (l), width (w), and 

height (h) were varied to create eighteen unique specimens, Table 4.1. The diameters of the two 

cylindrical ends, d, depended upon the height of the specimen. Each of the eighteen specimens 

were printed three times for a total of fifty-four samples. 
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(a) (b) 

 
(c) 

Figure 4.1: specimen preparation: (a) variables of the specimens; (b) specimen representation in the 
Cura LulzBot® edition software (infill: yellow, walls: green and red); (c) printing a specimen using the 

LulzBot Taz Mini 2® 

 

 

 

 



39 
 

Table 4.1: Specimen dimensions 

Specimen ID l (mm) h (mm) w (mm) d (mm) 
Number of 
Wall Lines 

1 

10.0 1.8 

8 3.85 2 

2 10 3.85 2 

3 12 3.85 2 

4 

15.0 1.8 

8 3.85 2 

5 10 3.85 2 

6 12 3.85 2 

7 

10.0 2.7 

8 5.70 3 

8 10 5.70 3 

9 12 5.70 3 

10 

15.0 2.7 

8 5.70 3 

11 10 5.70 3 

12 12 5.70 3 

13 

10.0 3.6 

8 7.70 3 

14 10 7.70 3 

15 12 7.70 3 

16 

15.0 3.6 

8 7.70 3 

17 10 7.70 3 

18 12 7.70 3 

 

 

The CAD models of the specimens were converted to .stl files using the Cura Lulzbot® Edition 

(model slicing software, Fargo Additive Manufacturing Equipment 3D, LLC, Fargo, North Dakota, 

United States), [53], Figure 4.1(b). This software has a library of print parameters for numerous 

filament materials including NinjaFlex®. To represent typical 3D printing, the print quality was set 

to standard; print parameters are listed in Table 4.2. Using the default slicing settings, the number 

of wall lines for each specimen varied depending on the specimen height, h, as shown in Table 

4.1. All specimens were printed on the same machine with the same black NinjaFlex® filament 

using a Lulzbot Taz Mini 2® with an Aerostruder® tool head (3D printer, Fargo Additive 

Manufacturing Equipment 3D, LLC, Fargo, North Dakota, United States), with an extruder 

diameter of 0.5 mm, [55]. A single layer of painters’ tape was used on the heated print plate for 
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print adhesion, Figure 4.1(c). If specific mechanical properties are desired, the analysis of Chapter 

3 can be used to determine the appropriate non-standard printing parameters. 

 

Table 4.2: 3D Printing parameters 

Print Parameter Value 

Filament Diameter 1.75 mm 
Infill Density 100% 

Quality Standard (0.32 mm layer height) 
Nozzle Temperature 225 ºC 

Bed Temperature 60 ºC 
Print Speed 15 mm/s 

Wall thickness 1 mm 

 

4.2 Bracket preparation 

To apply the proper boundary conditions to the two ends of the specimens, ABSplus P430 

(3D printer filament, Stratasys, Ltd., Eden Prairie, Minnesota, United States) custom brackets were 

designed, Figure 4.2, and printed using a Stratasys® Fortus 250mc (3D printer, Stratasys, Ltd., Eden 

Prairie, Minnesota, United States), [64,65]. The left bracket, which was attached to a fixed base, 

allowed one end of the specimens to be completely fixed while the right bracket, which had a 

hole where weights were attached to a fishing line, bent the specimens as cantilevers. Three sets 

of brackets were created to tightly fit the three specimen diameters, d.  
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Figure 4.2: A loaded specimen between brackets 

 

4.3 Experimental procedure 

Loads were specimen-dependent and chosen to induce large bending in the specimens (Table 

4.3). Stiffer specimens were, therefore, subjected to heavier loads. Loads were applied in a quasi-

static manner by incrementally increasing weight attached to the right bracket, as shown in Table 

4.3. The whole experiment was recorded using an iPhone 11 Pro® (cellphone, Apple Inc., 

Cupertino, California, United States) at 4k resolution at a rate of 60 frames per second. 
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Table 4.3: Loading parameters of the bending experiments 

Specimen ID 
Load  

Increment (g) 

Maximum 
Applied Load 

(g) 

Bracket 
Weight (g) 

Center of 
Mass of the 

Right Bracket1 
(mm) 

Location of 
External 
Weights1 

(mm) 

1, 2, 3 5 50 3.88 9.3 17.86 
4, 5, 6 5 25 3.88 9.3 17.86 
7, 8, 9  10 70 3.70 9.5 17.21 

10, 11, 12 10 60 3.70 9.5 17.21 
13, 14, 15 20 120 3.41 10.4 16.87 
16, 17, 18 20 100 3.41 10.4 16.87 

1 Distances were measured from the right end of the free length of the beam. 

 

4.4 Image processing 

For each specimen, frames corresponding to a steady-state configuration after the load was 

applied were extracted from the videos of the experiment; corresponding loads were recorded. 

A custom code utilizing the MATLAB® Image Processing Toolbox (software, The MathWorks, 

Natick, Massachusetts, United States) was written for processing the images to extract the 

location of the tip point deflection of the free length, l, [66]. First, all images were cropped to 

reduce unnecessary noise. Next, each image was binarized to isolate the specimen, Figure 4.3(a). 

The two cylindrical ends of a specimen were identified using morphological detection and 

removed to leave the middle section, Figure 4.3(b). The four edges of this section were 

determined using a border detection function, bwboundaries. To identify the neutral axis 

specimen’s middle section, an equal number of equally spaced points were created on the top 

and bottom edges. For each corresponding point on these two curves, the midpoint was 

identified to be on the neutral axis, Figure 4.3(c). Second-order polynomials were fitted to the top 

and bottom edges and the neutral axis to reduce any noise associated with the averaging, Figure 
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4.3(d). The last point on the neutral axis of the rectangular section was identified by the 

intersection of the two cylindrical sections with the neutral axis curve, Figure 4.3(d). Finally, all 

relevant information was converted from pixels to millimeters based on camera parameters. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.3: Specimen image processing: (a) images were cropped and binarized; (b) the cylindrical ends 

were identified and removed, and the edges of the middle portion were determined; (c) two sets of 

equally spaced points were created on the top (blue) and bottom (red) borders and averaged to 

determine the neutral axis (yellow); (d) the top and bottom edges and the neutral axis were fitted with 

2nd order polynomials, and the intersection of the neutral axis and the right cylindrical section was used 

for the tip point deflection (pink). 
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4.5 Results 

The experimental results for the three samples of each specimen were averaged, and their 

standard deviations were calculated in the y and x directions. To compare the relative motion 

when loaded, the first, unloaded state was used as a datum for the deflection of the beam joint. 

Figure 4.4 shows the x and y deflections of one of the stiffest and most flexible specimens, 

Specimen 15 and 1, respectively. The dimensions of the specimens are listed in Table 4.1. The 

loads were adjusted in the same manner as the motion, where the first load was set as the datum 

and the subsequent were adjusted accordingly. The adjusted load is denoted as “normalized” 

load. 
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(a) (b) 

  
(c) (d) 

Figure 4.4: Experimental deflection in the x and y direction; (a) a relatively stiff Specimen 15 x 
deflection; (b) a relatively stiff Specimen 15 y deflection; (c) a relatively flexible Specimen 1 x deflection; 

(d) a relatively flexible Specimen 1 y deflection 

 

In the case of Specimen 15, which was relatively stiff, the experimental tip deflection 

deviated slightly from moving along a smooth curve, most noticeably in the x-direction. On the 

other hand, the tip point of Specimen 1 moved along a smoother curvature. All other tested 

specimens followed these trends. For example, the tip points of Specimens 7–9 and 13–15, which 

were relatively stiff, did not follow a smooth curvature. This may be the combined result of small 

magnitudes of motion, the camera quality, and the inevitable blur. Additionally, it was observed 
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that the standard deviation increased as loading increased for all specimens, which may be the 

result of built-up issues with the experimental setup or variation in the 3D printer quality.  

  



47 
 

Chapter 5: Modeling the behavior of 3D printed hyperelastic 

thermoplastic polyurethane hand prosthetic joints 

In this chapter, a novel method was presented to help understand the behavior of the 3D 

printed hyperelastic thermoplastic joints of the Flexy-Hand 2. This method is based on a modified 

form of Euler-Bernoulli beam theory, denoted here at the MEB method, to approximate the 

deflection and retraction of the joint tip under loading. The results were compared with the 

results of the experiment presented in Chapter 4 as well as finite element analysis (FEA) 

simulations. 

5.1 Analytical modeling of flexible 3D printed prosthetic joints using a 

modified Euler–Bernoulli equations 

Classical equations of material mechanics can be used to predict the component 

deformations under known loads. For example, traditional beam theory was used to model a 

multibody system composed of NinjaFlex® and rigid links of acrylonitrile butadiene styrene (ABS), 

[67]. Similarly, Euler–Bernoulli beam theory was used to model hyperelastic pneumatic actuators 

made of silicone, [33]. However, classical beam equations may not be able to accurately describe 

the deformation of parts such as those made of NinjaFlex® due to the hyperelastic material 

behavior and the large deflection these parts may experience. 

We proposed modifying the Euler–Bernoulli beam theory to account for the retraction 

and deflection of the beam in the axial direction due to bending. As such, the component of the 
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normal load were a function of the load point’s rotation and the load variation, Figure 5.1(a). This 

accounted for the forces and moments acting upon the experimental specimen as well as the load 

variation as the angle of deflection increased. Euler–Bernoulli beam equations were used as a 

basis, though through the comparison of the virtual work done on the system and the strain 

energy in the system, the deflections of the beams were derived. Therefore, the virtual work and 

virtual strain energy of the system were assumed to be equivalent. 

 

 

 

 

 

(a) (b) 
Figure 5.1: Specimen diagrams. (a) diagram of experimental system: 𝑃𝑤 is the load applied, 𝑃𝐵 is the load 

applied by the weight of the bracket. the lengths 𝑎𝐵 and 𝑎𝑊 represent the moment arms for each 

respective load. the angle 𝜃 is equivalent to tan−1(𝑣𝑥(𝑙)) at the tip of the beam. (b) retraction of a 

differential element on inextensible beam 
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Flexi hands joints were rectangular with two cylindrical ends. It was assumed that the 

cylindrical ends of the beam joints were fitted perfectly within all fixtures, causing no slippage 

during the experiment, Figure 5.1(a). The free-end bracket had a significantly higher stiffness than 

the specimen and was assumed to be rigid. Each beam joint deformed under a point load and 

was allowed to reach a state of static equilibrium, therefore, the variations in the virtual work 

done by the external loads and strain energies of the beam joint were equated to zero: 

𝛿𝑊 − 𝛿𝑈𝐴 − 𝛿𝑈𝐵 = 0 (5.1) 

where W is the virtual work, UA is the axial strain energy, and UB is the bending strain energy. 

First, the work done on the system is defined as: 

𝑊 = (𝑃𝑊 + 𝑃𝐵)𝑠𝑖𝑛(𝜃(𝑙))𝑢(𝑙) +

(𝑃𝑊 + 𝑃𝐵) cos(𝜃(𝑙)) 𝑣(𝑙) +

(𝑃𝑊𝑎𝑊 + 𝑃𝐵𝑎𝐵) cos(𝜃(𝑙)) 𝜃(𝑙)

(5.2) 

where 𝑃𝑊 is the load from the applied weight, 𝑃𝐵 is the load from the bracket weight, θ is the 

angle between the plane cross-section and the vertical axis, u is displacement in the x-direction 

of the beam, v is displacement in the y-direction of the beam, 𝑎𝑊 is the moment arm from the 

applied weight on the free bracket to the free end of the beam, and 𝑎𝐵 is the moment arm from 

to the center of mass of the bracket to the free end of the beam. 

Simplifying, 

𝑊 = 𝑃 (𝑠𝑖𝑛(𝜃(𝑙))𝑢(𝑙) + cos(𝜃(𝑙)) 𝑣(𝑙)) + 𝑀 cos(𝜃(𝑙)) 𝜃(𝑙) (5.3) 
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where the total applied load is 𝑃 = 𝑃𝑊 + 𝑃𝐵  and the total applied moment is 𝑀 = 𝑃𝑊𝑎𝑊 +

𝑃𝐵𝑎𝐵. 

It should be noted that the slope of the tip point is related to the deflection derivative 

using the following equation: 

𝜃(𝑙) = tan−1(𝑣𝑥(𝑙)) (5.4) 

Next, the strain energy equations for both the axial and bending strain are defined, 

respectively, as: 

𝑈𝐴 =
1

2
𝐸𝐴∫ 𝑢𝑥

2𝑑𝑥
𝑙

0

(5.5) 

𝑈𝐵 =
1

2
𝐸𝐼 ∫ 𝑣𝑥𝑥

2 𝑑𝑥
𝑙

0

(5.6) 

where E is the modulus of elasticity, A is the rectangular cross-sectional area, and I is the area 

moment of inertia of the rectangular cross-section. A and I are defined as: 

𝐴 = 𝑤ℎ (5.7) 

𝐼 =
1

12
𝑤ℎ3 (5.8) 

Eqn. (5.9) and (5.10) lead to these two differential equations in terms of 𝑣 and 𝑢: 
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𝑣𝑥𝑥𝑥𝑥 = 0 (5.9) 

𝑢𝑥𝑥 = 0 (5.10) 

These differential equations are subject to the following displacement boundary conditions: 

𝑣(0) = 𝑣𝑥(0) = 𝑢(0) = 0 (5.11) 

By solving Eqn. (5.9) and (5.10), the deflections 𝑢 and 𝑣 are defined as: 

𝑢(𝑥) = 𝐷𝑥 (5.12) 

𝑣(𝑥) =  
1

6
𝐵𝑥3 +

1

2
𝐶𝑥2 (5.13) 

These differential equations have the following force boundary conditions: 

𝑃𝑐𝑜𝑠(𝜃(𝑙)) = −𝐸𝐼𝑣𝑥𝑥𝑥(𝑙) (5.14) 

−𝑃𝑠𝑖𝑛(𝜃(𝑙)) (
1

1 + 𝑣𝑥2(𝑙)
) 𝑣(𝑙) − 𝑀𝑠𝑖𝑛(𝜃(𝑙)) (

1

1 + 𝑣𝑥2(𝑙)
) 𝜃(𝑙)

+𝑀𝑐𝑜𝑠(𝜃(𝑙)) (
1

1 + 𝑣𝑥2(𝑙)
) + 𝑃𝑐𝑜𝑠(𝜃(𝑙)) (

1

1 + 𝑣𝑥2(𝑙)
) 𝑢(𝑙) = 𝐸𝐼𝑣𝑥𝑥(𝑙) (5.15)

 

𝑃𝑠𝑖𝑛(𝜃(𝑙)) = 𝐸𝐴𝑢𝑥(𝑙) (5.16) 

or, 
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𝑃𝑐𝑜𝑠(𝜃(𝑙)) = −𝐸𝐼𝑣𝑥𝑥𝑥(𝑙) (5.17) 

(
1

1 + 𝑣𝑥2(𝑙)
) ((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙))) = 𝐸𝐼𝑣𝑥𝑥(𝑙) (5.18) 

𝑃𝑠𝑖𝑛(𝜃(𝑙)) = 𝐸𝐴𝑢𝑥(𝑙) (5.19) 

Using the force boundary conditions, the coefficients 𝐵, 𝐶, and 𝐷 are found, 

𝐵 = −
𝑃

𝐸𝐼
cos(𝜃(𝑙)) (5.20) 

𝐶 = 
((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙))) + 𝑃𝐿 cos(𝜃(𝑙))

𝐸𝐼(1 + 𝑣𝑥2(𝑙))
(5.21) 

𝐷 =
P

EA
sin(𝜃(𝑙)) (5.22) 

It can be seen that 𝐵, 𝐶, and 𝐷 are functions of the external forces, specimen dimensions, 

and 𝑢(𝑥) , 𝑣(𝑥) , and 𝑣𝑥(𝑥).  These three equations can be solved simultaneously using the 

MATLAB® function fsolve, which requires an initial guess. It was decided to use the classical beam 

theory to provide the initial guess for the first step, i.e., a beam is deforming under the weight of 

the bracket. In this case the initial guesses for 𝐵 , 𝐶 , and 𝐷  were −
𝑃𝐵

𝐸𝐼
,
𝑃𝐵𝑙+𝑃𝐵𝑎𝐵

𝐸𝐼
, and 

𝑃𝐵𝑙

𝐸𝐴
 

respectively. Subsequently, the results of an iteration were used as the initial guesses for the next 

one. To ensure convergence of the solution, each load step was divided into ten sub-steps. 
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These deflection equations only described bending and axial deflection. They do not, 

however, account for the retraction along the x direction that is typically associated with large 

deformation, [68]. Based on Figure 5.1(b), the differential retraction, 𝑑𝑢𝐸 , of the beam can be 

expressed as: 

𝑑𝑢𝐸 = 𝑑𝑥(1 − cos(𝜃)) = 𝑑𝑥 (2𝑠𝑖𝑛2 (
𝜃

2
)) (5.23) 

By integrating this equation, the retraction of the tip point, 𝑢𝐸 , can be obtained: 

𝑢𝐸 = −∫ (2𝑠𝑖𝑛2 (
tan−1(𝑣𝑥)

2
))  𝑑𝑥

𝑙

0

(5.24) 

Applying the derivative of Eqn. (5.9), the tip point retraction equation becomes: 

𝑢𝐸 = −∫ (2𝑠𝑖𝑛2 (
tan−1 (

1
2𝐵𝑥

2 + 𝐶𝑥)

2
))  𝑑𝑥

𝑙

0

(5.25) 

The total deformation of the tip point can be expressed as a combination of this retraction in 

addition to the extension caused by the axial portion of the applied loads, (𝑃𝑊 + 𝑃𝐵)𝑠𝑖𝑛(𝜃(𝑙)): 

𝑢(𝑙) = −∫ (2𝑠𝑖𝑛2 (
tan−1 (

1
2𝐵𝑥

2 + 𝐶𝑥)

2
))  𝑑𝑥

𝑙

0

+ 𝐷𝑙 (5.26) 

𝑣(𝑙) =
1

6
𝐵𝑙3 +

1

2
𝐶𝑙2 (5.27) 
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A complete derivation of the MEB method is found in Appendix B. 

It should be noted that the equations derived here for the MEB method do not account for the 

nonlinear behavior of NinjaFlex® and is therefore an approximation. Since the value of the elastic 

modulus can vary depending on the circumstances of the specimens, it was decided to use the 

experimental stress-strain curve from a previous study, Figure 5.2, [9]. Their tensile specimens 

have a similar ratio of infill to wall region as our bending test specimens.  

 

 

Figure 5.2: Tensile stress-strain curve for NinjaFlex®, [9] 

 

Based on the stress strain curve of Figure 5.2, the elastic modulus, E, was assigned a value 

of 9.45 MPa by calculating the slope of the linear range of the stress–strain curve: 0 to 0.2 m/m, 

[9]. This value is lower than that reported by the manufacturer as well as our 225°C infill and wall 
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region elastic modulus values, but falls within the range reported by other researchers, between 

5.24–12.2 MPa Table 2.1, [7–9,38,57].   

5.2 Finite element analysis modeling 

Several researchers have investigated the factors that affect the modeling of 3D printed 

components using FEA, [69,70]. These studies did not consider hyperelasticity of the 3D printed 

material,  large deflections, or the region-specific material properties. We aim to include these 

factors for better understanding of the behavior of 3D printed hyperelastic polymers.  

ANSYS® (simulation software, ANSYS, Inc., Canonsburg, Pennsylvania, United States) was 

used for the FEA simulations, [71]. The models of the specimens were imported as a 2D IGES file 

and processed as plane stress problems. The free end bracket was simplified from the one used 

in the experiments, Figure 5.2(a), to reduce the computational load of the simulations. To ensure 

that this model was comparable to the experiment, two issues were addressed. Firstly, the 

specimen geometry model was split into the infill and wall regions as per the actual specimens 

from Chapter 4; each region was assigned respective material properties found in Chapter 3. 

Secondly, the effect of gravity on the beam joints was not considered, so gravity was turned off 

in the simulation. Therefore, to ensure that the contribution of the free end bracket weight was 

properly considered, it was applied as an external force at the center of gravity’s location. 

Consequentially, the material properties of the free end bracket were free to be any material that 

was sufficiently stiffer than the NinjaFlex® material models. For simplicity, the bracket was 

assigned structural steel material properties.  
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The setup and conditions of the deflection simulations are found in Figure 5.3. A mesh 

stability study was conducted, and it was found that an average element size of 0.10 mm was 

stable, Figure 5.3(a) and (b). The number of elements in simulations ranged from 5603 elements 

in Specimens 1–3 to 12,756 in Specimens 16–18. The weight of the free end bracket and tension 

loads were applied, Figure 5.3(c), the values of which are found in Table 4.3.  
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(a) 

 

(b) 

 
(c) 

Figure 5.3: FEA setup of bending experiments, the green represents the free end bracket, the blue area 
represents the wall region of the specimen, and the gray area represents the infill region of the 

specimen; (a) typical mesh density); (b) image of zoomed mesh; (c) applied forces 
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5.3 Comparison of analytical, finite element, and experimental results 

The results of the MEB method were compared to the experiment x and y deflections in 

Figure 5.5. The MEB method reasonably predicted the deflection of the relatively stiff Specimen 

15, Figure 5.5(a) and (b). The deflection was overestimated for the lower loads and then 

underestimated as the load increased. For Specimen 1, the MEB lagged behind the experimental 

results, although it followed the average experimental tip point curvature, Figure 5.5(c) and (d). 

The MEB method worked generally well for stiff specimens, such as Specimen 15. For all tested 

specimens, the curvature of the MEB deflection consistently followed the curvature of the 

experiments. 
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(a) (b) 

  
(c) (d) 

Figure 5.4: Comparison of experimental results to the MEB method; (a) a relatively stiff Specimen 15; 
(b) a relatively flexible Specimen 1 

 

The FEA method slightly overestimated the deflection of Specimen 15, Figure 5.6(a) and (b). 

Similar to MEB, the curvature of the FEA tip point defection matched the experiment well. 

However, the FEA resulted in an overestimation of the tip point retraction in the case of Specimen 

1, as shown in Figure 5.6(c). A possible reason for this behavior may be due to the way ANSYS 

analyzes bodies experiencing large deflection. When a body experiences large strain, the 

deformation triggers reorientation of the applied loads. It may be possible that this load 

distribution was less accurate, resulting in the excessive retraction that can be observed in the 

figure. Also, the material model is based on uniaxial tensile data. The TPU may not behave 



60 
 

symmetrically for compression as it does in tension; the bottom edge of the bending model would 

therefore behave differently.  

 

  
(a) (b) 

  
(c) (d) 

Figure 5.5: Comparison of experimental results to the FEA method; (a) a relatively stiff Specimen 15; 
(b) a relatively flexible Specimen 1 

 

 

To compare the experimental and modeling data, a measure of the difference of each loading 

case of a specimen was performed. These measures were averaged as follows: 
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Ζ𝑚,𝑖 =

∑
√(𝑥𝑒𝑖,𝑗 − 𝑥𝑚,𝑖,𝑗)

2
+ (𝑦𝑒𝑖,𝑗 − 𝑦𝑚,𝑖,𝑗)

2

𝑙𝑖 + 𝑎𝑤𝑖

𝐽𝑖
𝑗=1

𝐽𝑖
(5.28)

 

where m is the modeling method (MEB or FEA), I is the specimen number, j is the load number, 

𝐽𝑖  is total number of loads, 𝑥𝑒, 𝑥𝑚, 𝑦𝑒 and 𝑦𝑚 are the experiment and model deflection in the x 

and y directions, respectively, 𝑙𝑖 is the length of the specimen, and 𝑎𝑤𝑖 is the moment arm of the 

applied load. 

All results from experiments, MEB, and FEA were combined using the following 

nondimensional stiffness parameter, Q, [72–74]: 

𝑄𝑖 =
(𝑃𝐵𝑖 +max (𝑃𝑊𝑖

))(𝑙𝑖 + 𝑎𝑊𝑖
)
2

𝐸𝐼𝑖
(5.29) 

It should be noted that lower Q values typically correspond to higher bending stiffness. 

Overall, both MEB and FEA underestimated the deflection of most specimens when 

compared to the respective experimental results. The results of the average difference, Ζ𝑚, were 

plotted with respect to the non-dimensional parameter Q, Figure 5.7. The data were split by 

length for clarity. For specimens with 𝑙 = 10 mm  length, Figure 5.7(a), both MEB and FEA 

predictions were of the same order for values of Q below 4. The same observation was valid for 

all tested specimens in the case of 𝑙 = 15 mm , Figure 5.7(b). However, when 𝑙  was equal to 

10 mm  and Q was above 5, the FEA was more accurate. However, the retraction along the x 

direction was significantly higher than that with MEB, where the displacement closely followed 

the experimental curve. It was also observed that the FEA showed more stable Z values as Q 

increased. 
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(a) 

 
(b) 

Figure 5.6: Deviation of MEB and FEA with respect to average experimental results; (a) Specimens 
with 𝑙 = 10 mm; (b) Specimens with 𝑙 = 15 mm 
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One specimen showed significantly higher error than the others: Specimen 13. There is a 

strong possibility that the experimental Specimen 13 was printed incorrectly, as specimens with 

similar dimensions, such as Specimens 14 and 15, exhibit significantly lower deflection 

magnitudes. It would be of interest to reprint Specimen 13 and retest it in future work to confirm 

this. 

Overall, our hypothesis was proven correct. Despite MEB having consistently higher non-

dimensional error, the magnitude of error was still in the same order of FEA and was even lower 

for some specimen. The MEB method provides a viable option for predicting the behavior of TPU 

flexible joints. 
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Chapter 6: Modeling and experimental validation of the flexion of 

tendon-actuated prosthetic finger with flexible 3D printed hyperelastic 

thermoplastic polyurethane joints 

6.1 3-digit prosthetic finger modeling 

The objective of this research was to determine the relationship between the tension in 

the tendon and joint angles of a prosthetic finger. Since the motion of the finger digits is 

reasonably slow, it is reasonable to study the finger as a sequence of static equilibrium conditions 

(quasi-static conditions). The principle of virtual work was applied to a three-digit prosthetic 

finger actuated by tensile force to a single tendon that runs through all digits, [75]. Fig. 6.1 shows 

the prosthetic finger, a diagram of the key components of the finger, and the equivalent, 

simplified model of the finger used for analysis. It should be noted that the flexible beams in the 

physical prosthesis have been replaced in the model with revolute joints and torsional springs. 

Therefore, the digits of the prosthetic finger were artificially extended, Figure 6.3(c), to maintain 

a comparable configuration to the original design, Figure 6.3(b). The effects of gravity acting on 

the finger digits were considered. 
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(a) (b) (c) 

Figure 6.1: Prosthetic Finger Diagram; a) original 3D printed finger; b) diagram of original finger; c) 
diagram of finger with torsional springs  

 

6.1.1 Kinematic analysis of the 3-digit prosthetic finger 

Fundamental kinematic parameters were defined in Appendix D. It is recommended that 

those unfamiliar with computational kinematics check this Appendix before proceeding. Local 

frames were assigned to each digit, Figure 6.2. The origin of each local frame coincides with the 

center of mass for each digit. A tension force, 𝑇, is applied in the negative y direction of the global 

frame. This tendon is assumed to be inextensible. The definitions of the local position vectors for 

tendon and joint locations were provided in Table 6.1. 

 



66 
 

 
Figure 6.2: Diagram of local frames and coordinate vectors 
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Table 6.1: Local coordinates of finger model 

Definition Description 

𝑢̅𝐴
1 = [𝑢𝐴𝑥

1    𝑢𝐴𝑦
1 ]

𝑇
 Location of joint A with respect to local frame 𝑥1, 𝑦1 

𝑢̅𝐴
2 = [𝑢𝐴𝑥

2    𝑢𝐴𝑦
2 ]

𝑇
 Location of joint A with respect to local frame 𝑥2, 𝑦2 

𝑢̅𝐵
2 = [𝑢𝐵𝑥

2    𝑢𝐵𝑦
2 ]

𝑇
 Location of joint B with respect to local frame 𝑥2, 𝑦2 

𝑢̅𝐵
3 = [𝑢𝐵𝑥

3    𝑢𝐵𝑦
3 ]

𝑇
 Location of joint B with respect to local frame 𝑥3, 𝑦3 

𝑢̅𝐶
3 = [𝑢𝐶𝑥

3    𝑢𝐶𝑦
3 ]

𝑇
 Location of joint C with respect to local frame 𝑥3, 𝑦3 

𝑢̅𝐶
4 = [𝑢𝐶𝑥

4    𝑢𝐶𝑦
4 ]

𝑇
 Location of joint C with respect to local frame 𝑥4, 𝑦4 

𝑢̅𝐴𝑝
1 = [𝑢𝐴𝑝𝑥

1    𝑢𝐴𝑝𝑦
1 ]

𝑇
 Location of the tendon opening at joint A with respect to local frame 𝑥1, 𝑦1 

𝑢̅𝐴𝑝
2 = [𝑢𝐴𝑝𝑥

2    𝑢𝐴𝑝𝑦
2 ]

𝑇
 Location of the tendon opening at joint A with respect to local frame 𝑥2, 𝑦2 

𝑢̅𝐵𝑝
2 = [𝑢𝐵𝑝𝑥

2    𝑢𝐵𝑝𝑦
2 ]

𝑇
 Location of the tendon opening at joint B with respect to local frame 𝑥2, 𝑦2 

𝑢̅𝐵𝑝
3 = [𝑢𝐵𝑝𝑥

3    𝑢𝐵𝑝𝑦
3 ]

𝑇
 Location of the tendon opening at joint B with respect to local frame 𝑥3, 𝑦3 

𝑢̅𝐶𝑝
3 = [𝑢𝐶𝑝𝑥

3    𝑢𝐶𝑝𝑦
3 ]

𝑇
 Location of the tendon opening at joint C with respect to local frame 𝑥3, 𝑦3 

𝑢̅𝐶𝑝
4 = [𝑢𝐶𝑝𝑥

4    𝑢𝐶𝑝𝑦
4 ]

𝑇
 Location of the tendon opening at joint C with respect to local frame 𝑥4, 𝑦4 

 

Now we define the kinematic joint constraint equations, C, for the finger system of Figure 6.2. 𝐶 

for this system is a 9x1 matrix. 𝑅𝑖 𝑎𝑛𝑑 𝐴𝑖 are defined in Appendix D. 

𝐶 =

{
 
 

 
 

𝑅1

𝜃1

𝑅2 + 𝐴2𝑢̅𝐴
2 − 𝑅1 − 𝐴1𝑢̅𝐴

1

𝑅3 + 𝐴3𝑢̅𝐵
3 − 𝑅2 − 𝐴2𝑢̅𝐵

2

𝑅4 + 𝐴4𝑢̅𝐶
4 − 𝑅3 − 𝐴3𝑢̅𝐶

3}
 
 

 
 

= 0 (6.1) 

The coordinate matrix of the system, 𝑞, is equivalent to, 

𝑞 =

{
 
 
 

 
 
 
𝑅1

𝜃1

𝑅2

𝜃2

𝑅3

𝜃3

𝑅4

𝜃4}
 
 
 

 
 
 

(6.2) 
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At this stage, it should be mentioned that the study of both velocities and static forces are 

related to the Jacobian matrix, 𝐶𝑞, which is the partial derivatives of C with respect to q: 

𝐶𝑞 =
𝜕𝐶

𝜕𝑞
=

{
 
 

 
 
𝐼 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−𝐼 −𝐴𝜃

1 𝑢̅𝐴
1 𝐼 𝐴𝜃

2 𝑢̅𝐴
2 0 0 0 0

0 0 −𝐼 −𝐴𝜃
2 𝑢̅𝐵

2 𝐼 𝐴𝜃
3 𝑢̅𝐵

3 0 0

0 0 0 0 −𝐼 −𝐴𝜃
3 𝑢̅𝐶

3 𝐼 𝐴𝜃
4 𝑢̅𝐶

4}
 
 

 
 

= 0 (6.3) 

where 𝐼 represents a 2x2 identity matrix. Note that the number of rows in 𝐶𝑞 is equal to the 

number of constraint equations while the number of columns is equivalent to the number of 

coordinates in the system.  

As 𝑞 is a general matrix describing the motion of the system, it is important to express the static 

balance problem in terms of the independent coordinates, which can be done by splitting 𝑞 into 

dependent and independent variables: 

𝑞 = {
𝑞𝑑
𝑞𝑖
} (6.4) 

where, 

𝑞𝑑 =

{
 
 

 
 
𝑅1

𝜃1

𝑅2

𝑅3

𝑅4}
 
 

 
 

(6.5) 

𝑞𝑖 = {
𝜃2

𝜃3

𝜃4
} (6.6) 
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The virtual work is based on introducing arbitrary displacements, 𝛿𝑞, into the system. The 

virtual work associated with the displacement must be equal to zero for static balance. It is easy 

to see that 𝐶𝑞𝛿𝑞 = 0. This equation can be partitioned as,  

𝐶𝑞𝑑𝛿𝑞𝑑 + 𝐶𝑞𝑖𝛿𝑞𝑖 = 0 (6.7) 

where, 

𝐶𝑞𝑑 =

[
 
 
 
 
𝐼 0 0 0 0
0 1 0 0 0
−𝐼 −𝐴𝜃

1 𝑢̅𝐴
1 𝐼 0 0

0 0 −𝐼 𝐼 0
0 0 0 −𝐼 𝐼]

 
 
 
 

(6.8) 

𝐶𝑞𝑖 =

[
 
 
 
 
 

0 0 0
0 0 0

𝐴𝜃
2 𝑢̅𝐴

2 0 0

−𝐴𝜃
2 𝑢̅𝐵

2 𝐴𝜃
3 𝑢̅𝐵

3 0

0 −𝐴𝜃
3 𝑢̅𝐶

3 𝐴𝜃
4 𝑢̅𝐶

4]
 
 
 
 
 

(6.9) 

Lastly, we solve for the dependent variables in terms of the independent variables: 

𝛿𝑞𝑑 = −𝐶𝑞𝑑
−1𝐶𝑞𝑖𝛿𝑞𝑖 = 𝐵𝛿𝑞𝑖 (6.10) 

6.1.2 Quasi-static analysis of the 3-digit prosthetic finger using the principle of 

virtual work 

To describe the virtual work done in the system, several assumptions must be defined. 

Firstly, gravity is active in the negative 𝑦1  direction. There are virtual work terms that are 

associated with the gravity effects on the three digits. It is assumed that gravity effects on the 

joints are negligible. Next, the tendon is inextensible. This means that the work done by the force 

acting on the tendon is a function of the change in tendon length between each two digits, 𝑑21, 

𝑑32, and 𝑑43 in Figure 6.2. As described in Section 6.1, the flexible beam joints were substituted 
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with equivalent nonlinear torsional springs and revolute joints, Appendix E. The virtual work of 

the prosthetic finger is, 

𝛿𝑊 = 𝑇(𝛿𝑑21 + 𝛿𝑑32 + 𝛿𝑑43)

−(𝑎𝐴(𝜃
0 − 𝜃2)2 + 𝑏𝐴(𝜃

0 − 𝜃2))(−𝛿𝜃2)

−(𝑎𝐵(𝜃
2 − 𝜃3)2 + 𝑏𝐵(𝜃

2 − 𝜃3))(𝛿𝜃2 − 𝛿𝜃3)

−(𝑎𝐶(𝜃
3 − 𝜃4)2 + 𝑏𝐶(𝜃

3 − 𝜃4))(𝛿𝜃3 −  𝛿𝜃4)

−𝑚2𝑔𝛿𝑅𝑦
2 −𝑚3𝑔𝛿𝑅𝑦

3 −𝑚4𝑔𝛿𝑅𝑦
4 (6.11)

 

where 𝜃0 is the initial angle of the proximal digit.  

To begin, we first addressed the work done by the tension in the tendon. The distance 

𝛿𝑑𝑖+1,𝑖 is defined as the change in the Euclidean length of the tendon between two bodies 𝑖 + 1 

and 𝑖 at a given joint, 𝐽, which can be either 𝐴, 𝐵, or 𝐶, 

𝑑𝑖+1,𝑖 = (𝑟𝑗
𝑖+1,𝑖𝑇𝑟𝑗

𝑖+1,𝑖)

1
2

(6.12) 

The vector composing the tendon distance is formed by noting where the tendon exits 

one body, 𝑖, and enters the next, 𝑖 + 1, or 

𝑟𝑗
𝑖+1,𝑖 = 𝑅𝑖+1 + 𝐴𝑖+1𝑢̅𝑗𝑝

𝑖+1 − 𝑅𝑖 − 𝐴𝑖𝑢̅𝑗𝑝
𝑖 (6.13) 

The variation of 𝛿𝑑𝑖+1,𝑖 is,  

𝛿𝑑𝑖+1,𝑖 =
𝜕𝑑𝑖+1,𝑖

𝜕𝑞𝑖+1,𝑖
𝛿𝑞𝑖+1,𝑖 =

1

2
(𝑟𝑗

𝑖+1,𝑖𝑇𝑟𝑗
𝑖+1,𝑖)

−
1
2
(2𝑟𝑗

𝑖+1,𝑖𝑇)
𝜕𝑟𝑗

𝑖+1,𝑖

𝜕𝑞𝑖+1,𝑖
𝛿𝑞𝑖+1,𝑖  

Or, 

𝛿𝑑𝑖+1,𝑖 =

(

 
 𝑟𝑗

𝑖+1,𝑖𝑇

(𝑟𝑗
𝑖+1,𝑖𝑇𝑟𝑗

𝑖+1,𝑖)

1
2

)

 
 𝜕𝑟𝑗

𝑖+1,𝑖

𝜕𝑞𝑖+1,𝑖 
𝛿𝑞𝑖+1,𝑖 (6.14) 
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where 𝛿𝑞𝑖+1,𝑖  is a subset of 𝛿𝑞  corresponding to bodies 𝑖 + 1   and 𝑖 . It is known that the 

denominator of Eqn. (6.14) is equivalent to the length of the tendon segment corresponding to 

each joint, Eqn. (6.14), or 

𝛿𝑑𝑖+1,𝑖 = (
𝑟𝑗
𝑖+1,𝑖𝑇

𝑑𝑖+1,𝑖
)
𝜕𝑟𝑗

𝑖+1,𝑖

𝜕𝑞𝑖+1,𝑖 
𝛿𝑞𝑖+1,𝑖 (6.15) 

Substituting Eqn. (6.11) in the above equation, 

𝛿𝑑𝑖+1,𝑖 =
𝑟𝑗
𝑖+1,𝑖𝑇

𝑑𝑖+1,𝑖
(
𝜕(𝑅𝑖+1 + 𝐴𝑖+1𝑢̅𝑗

𝑖+1 − 𝑅𝑖 − 𝐴𝑖𝑢̅𝑗
𝑖)

𝜕𝑞𝑖+1,𝑖
)𝛿𝑞𝑖+1,𝑖 

Or, 

𝛿𝑑𝑖+1,𝑖 =
𝑟𝑗
𝑖+1,𝑖𝑇

𝑑𝑖+1,𝑖
[𝐼 𝐴𝜃

𝑖+1𝑢̅𝑗𝑝
𝑖+1 −𝐼 −𝐴𝜃

𝑖 𝑢̅𝑗𝑝
𝑖 ] {

𝛿𝑅𝑖+1

𝛿𝜃𝑖+1

𝛿𝑅𝑖

𝛿𝜃𝑖

} (6.16) 

Incorporating the B matrix, the equation can be expressed in terms of 𝛿𝑞𝑖, 

𝛿𝑑𝑖+1,𝑖 =
𝑟𝑗
𝑖+1,𝑖𝑇

𝑑𝑖+1,𝑖
[𝐼 𝐴𝜃

𝑖+1𝑢̅𝑗𝑝
𝑖+1 −𝐼 −𝐴𝜃

𝑖 𝑢̅𝑗𝑝
𝑖 ]

{
 
 

 
 𝐵(𝑅

𝑖+1, : )𝛿𝑞𝑖

𝛿𝜃𝑖+1

𝐵(𝑅𝑖, : )𝛿𝑞𝑖

𝛿𝜃𝑖 }
 
 

 
 

(6.17) 

where 𝐵(𝑅𝑖,:) represents the row of the B matrix that corresponds to the dependent coordinates 

𝑅𝑖. Rearranging, 

𝛿𝑑𝑖+1,𝑖 =
𝑟𝑗
𝑖+1,𝑖𝑇

𝑑𝑖+1,𝑖
[𝐴𝜃
𝑖+1𝑢̅𝑗𝑝

𝑖+1 −𝐴𝜃
𝑖 𝑢̅𝑗𝑝

𝑖 𝐼 −𝐼]

{
 
 

 
 𝛿𝜃𝑖+1

𝛿𝜃𝑖

𝐵(𝑅𝑖+1, : )𝛿𝑞𝑖

𝐵(𝑅𝑖, : )𝛿𝑞𝑖 }
 
 

 
 

 

Expanding, 



72 
 

𝛿𝑑𝑖+1,𝑖 =
𝑟𝑗
𝑖+1,𝑖𝑇

𝑑𝑖+1,𝑖
([𝐴𝜃

𝑖+1𝑢̅𝑗𝑝
𝑖+1 −𝐴𝜃

𝑖 𝑢̅𝑗𝑝
𝑖 ] {𝛿𝜃

𝑖+1

𝛿𝜃𝑖
} + (𝐵(𝑅𝑖+1, : ) − 𝐵(𝑅𝑖, : )) 𝛿𝑞𝑖) (6.18)

As can be seen, 𝛿𝑑𝑖+1,𝑖 is function of the variations of the three independent coordinates.  

 The work done by the digit weights is in terms of 𝛿𝑅𝑦
𝑖 , we simply write it in terms of 𝛿𝑞𝑖, 

−𝑚2𝑔𝛿𝑅𝑦
2 −𝑚3𝑔𝛿𝑅𝑦

3 −𝑚4𝑔𝛿𝑅𝑦
4 = 

−𝑚2𝑔𝐵(𝑅𝑦
2, : )𝛿𝑞𝑖 −𝑚

3𝑔𝐵(𝑅𝑦
3, : )𝛿𝑞𝑖 −𝑚

4𝑔𝐵(𝑅𝑦
4, : )𝛿𝑞𝑖 (6.19)

 

Expressing the above equation in terms of the independent variables, 

−𝑚2𝑔𝐵(𝑅𝑦
2, : )𝛿𝑞𝑖 −𝑚

3𝑔𝐵(𝑅𝑦
3, : )𝛿𝑞𝑖 −𝑚

4𝑔𝐵(𝑅𝑦
4, : )𝛿𝑞𝑖 =

(−𝑚2𝑔𝐵(𝑅𝑦
2, 1) −𝑚3𝑔𝐵(𝑅𝑦

3, 1) − 𝑚4𝑔𝐵(𝑅𝑦
4, 1)) 𝛿𝜃2

+(−𝑚2𝑔𝐵(𝑅𝑦
2, 2) − 𝑚3𝑔𝐵(𝑅𝑦

3, 2) − 𝑚4𝑔𝐵(𝑅𝑦
4, 2)) 𝛿𝜃3

+(−𝑚2𝑔𝐵(𝑅𝑦
2, 3) − 𝑚3𝑔𝐵(𝑅𝑦

3, 3) − 𝑚4𝑔𝐵(𝑅𝑦
4, 3)) 𝛿𝜃4 (6.20)

 

  Since the virtual displacements in the virtual work equation cannot be zero, the 

coefficients of the virtual displacements must equal zero, leading to the following three 

equations:  

For 𝛿𝜃2, 

𝑇(𝛿𝑑𝜃2
21 + 𝛿𝑑𝜃2

32 + 𝛿𝑑𝜃2
43)

+(𝑎𝐴(𝜃
0 − 𝜃2)2 + 𝑏𝐴(𝜃

0 − 𝜃2))

−(𝑎𝐵(𝜃
2 − 𝜃3)2 + 𝑏𝐵(𝜃

2 − 𝜃3))

−𝑚2𝑔𝐵(𝑅𝑦
2, 1) − 𝑚3𝑔𝐵(𝑅𝑦

3, 1) − 𝑚4𝑔𝐵(𝑅𝑦
4, 1) = 0 (6.21)

 

Where the subscript, 𝜃2, denotes the coefficient of 𝛿𝜃2 from Eqn. (6.15). For 𝛿𝜃3, 

𝑇(𝛿𝑑𝜃3
21 + 𝛿𝑑𝜃3

32 + 𝛿𝑑𝜃3
43)

+(𝑎𝐵(𝜃
2 − 𝜃3)2 + 𝑏𝐵(𝜃

2 − 𝜃3))

−(𝑎𝐶(𝜃
3 − 𝜃4)2 + 𝑏𝐶(𝜃

3 − 𝜃4))

−𝑚2𝑔𝐵(𝑅𝑦
2, 2) − 𝑚3𝑔𝐵(𝑅𝑦

3, 2) − 𝑚4𝑔𝐵(𝑅𝑦
4, 2) = 0 (6.22)
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For 𝛿𝜃4, 

𝑇(𝛿𝑑𝜃4
21 + 𝛿𝑑𝜃4

32 + 𝛿𝑑𝜃4
43)

+(𝑎𝐶(𝜃
3 − 𝜃4)2 + 𝑏𝐶(𝜃

3 − 𝜃4))

−𝑚2𝑔𝐵(𝑅𝑦
2, 3) − 𝑚3𝑔𝐵(𝑅𝑦

3, 3) − 𝑚4𝑔𝐵(𝑅𝑦
4, 3) = 0 (6.23)

 

We now have three equations and four unknowns, 𝑇 , 𝜃2 , 𝜃3 , and 𝜃4 . To solve for a unique 

solution, we must define at least one of the unknown variables. Since our goal is to understand 

how a tension load on the tendon deflects the fingers, we will define the tension, 𝑇, which will 

lead to unique joint angles.   

6.2 Experimentation 

6.2.1 Materials and preparation 

The original finger joint and digit design for the prosthetic hand utilized a cylindrical 

shaped connection, see Chapter 4; these were modified to rectangular to reduce the possibility 

of the joint slippage and twisting in the channels of the digits. The proximal, middle, and distal 

joints have the same geometric design, Figure 6.3. The dimensions of the joints can be found in 

Table 6.2.  
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Figure 6.3: Diagram of modified finger joints 

 

Table 6.2: Dimensions of proximal and middle/distal joints 

Configuration 𝒍 (𝒎𝒎) 𝒘 (𝒎𝒎) 𝒕 (𝒎𝒎) 𝒍𝒆 (𝒎𝒎) 𝒘𝒆 (𝒎𝒎) 
Proximal 10.0 4.0 15.0 6.5 9.0 

Middle/Distal 10.0 2.0 12.0 4.5 6.5 

 

The joints were designed using SolidWorks® and uploaded to the slicing software Cura® 

Lulzbot Edition to create the printer g-code, [53,76].  All joints were printed on a Lulzbot Taz Mini 

2, [55], with the same print parameters, Table 6.3. Three sets of joints were printed for testing. 

 

Table 6.3: Lulzbot Taz Mini 2 printing parameters for finger joints 

Print Settings Value 

Print Temperature 235°C 
Infill Density 100% 
Infill Pattern Lines 

Wall Line Count 2 
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To assist in image processing and model validation, raised circular markers, 3 mm in 

diameter, were added to the digits, Figure 6.4(a). These markers allowed the identification of the 

digits. Paint was applied to these markers. 

 

  
(a) (b) 

Figure 6.4: Painted ends of the finger joints and markers; a) raised markers on digits; b) painted markers 
and joint ends 

  

A custom bracket was designed to hold the finger mechanism fixed during experiments, 

Figure 6.5. The base bracket was printed on a Stratasys Fortus 250mc with ABSplus P430 filament 

at 100% infill, [64,65]. The bracket contains a channel to fix the finger proximal joint and to 

maintain the finger in a vertical configuration when unloaded. A channel running the length of 

the base bracket allowed for fixing the base to an optical table using two ¼x20 bolts to be 

inserted. A small guide hole ensured that the actuating tendon does not deviate during the flexion 

of the finger. A painted marker was added to the base bracket to represent the base in the image 

processing phase.  
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(a) (b) 

Figure 6.5: Base bracket design; a) CAD model; b) printed bracket 

 

6.2.2 Experimental setup 

Firstly, the finger digits and base bracket were assembled with the corresponding finger 

joints. A 0.38 mm braided stainless-steel tendon was fixed to the distal joint and ran through the 

tendon channels in each digit and out of the guide in the base bracket. The finger and base bracket 

were then bolted to a fixed table or mounting point, Figure 6.6. 
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(a) (b) 

Figure 6.6: Assembled finger bending experiment setup; (a) finger with diagram: A) finger digits; B) finger 
joints; C) base bracket; D) hook for holding applied weights; (b) typical bent finger 

 

Next, a series of incrementing weights were attached to the free end of the tendon, letting the 

finger come to a static configuration before the next load was applied, Table 6.4. 

 

Table 6.4: Full finger bending experiment loading conditions 

Load Property Applied Load Mass Value (g) 

Hook Mass 8.2 
Initial condition 0 
Load Increment 20 

Maximum Incremental Load 240 
Maximum Total Load 248.2 
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All experiments and trials were recorded with a GoPro Hero 10 camera with a Nikon NIKKOR 18-

140 mm lens in 5.3k resolution, or 15.8 MP, at 30 frames per second. The camera was located 

approximately 0.5 meters away, Figure 6.7. The experiment was conducted three times per set of 

joints, resulting in nine total trials.  

 

 

Figure 6.7: Experimental setup of 3-digit prosthetic finger experiment 

 

 

 



79 
 

6.2.3 Data processing 

Images were extracted from the experimental videos corresponding to the steady state 

position of the finger after each load was applied. After being cropped to reduce excess data, 

Figure 6.8(a), the images were then converted from RGB color to gray scale, Figure 6.8(b). A binary 

conversion based on the intensity values of the painted markers was conducted to isolate them 

from the rest of the image. Any regions of the image that remained that were not associated with 

the markers were removed, thus fully isolating them for processing, Figure 6.8(c). The center 

coordinates of all seven markers were identified, Figure 6.8(d). Marker D1 was used as a (0,0) 

datum, and all other markers were adjusted accordingly.  

 

    
(a) (b) (c) (d) 

Figure 6.8: Image processing of finger flexion experiments; a) cropped image from pulled from video; 
b) image converted to gray scale; c) image converted to binary and markers isolated; d) markers 

identified in image  
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6.3 Results and comparison 

6.3.1 Measured model parameters  

To aid in comparing the model to the experimental finger, the same markers were added 

to the model finger, Figure 6.9. The local coordinates, Table 6.5, of the markers were transformed 

to global coordinates once the static solution was found for each tensile load applied.  

 

 

Figure 6.9: Diagram of marker locations in full finger model 
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The locations of the markers were calculated when the static equilibrium equations were 
solved, using the following example equation, 

{
𝑥𝐷𝑗
𝑦𝐷𝑗

} = 𝑅𝑖 + 𝐴𝑖𝑢̅𝐷𝑗
𝑖 (6.24) 

where 𝑗 is the marker number and the local coordinate vectors of the markers are defined in Table 
6.5. 

 

Table 6.5: Definition of the local coordinate vectors for each digit markers 

Local Marker  Local x coordinate (mm) 

𝑢̅𝐷1
1 = [𝑢𝐷1𝑥

1    𝑢𝐷1𝑦
1 ]

𝑇
 Location of marker D1 on Body 1, with respect to frame 𝑥1, 𝑦1 

𝑢̅𝐷2
2 = [𝑢𝐷2𝑥

2    𝑢𝐷2𝑦
2 ]

𝑇
 Location of marker D2 on Body 2, with respect to frame 𝑥2, 𝑦2 

𝑢̅𝐷3
2 = [𝑢𝐷3𝑥

2    𝑢𝐷3𝑦
2 ]

𝑇
 Location of marker D3 on Body 2, with respect to frame 𝑥2, 𝑦2 

𝑢̅𝐷3
3 = [𝑢𝐷4𝑥

3    𝑢𝐷4𝑦
3 ]

𝑇
 Location of marker D4 on Body 3, with respect to frame 𝑥3, 𝑦3 

 𝑢̅𝐷5
3 = [𝑢𝐷5𝑥

3    𝑢𝐷5𝑦
3 ]

𝑇
 Location of marker D5 on Body 3, with respect to frame 𝑥3, 𝑦3 

𝑢̅𝐷6
4 = [𝑢𝐷6𝑥

4    𝑢𝐷6𝑦
4 ]

𝑇
 Location of marker D6 on Body 4, with respect to frame 𝑥4, 𝑦4 

𝑢̅𝐷7
4 = [𝑢𝐷7𝑥

4    𝑢𝐷7𝑦
4 ]

𝑇
 Location of marker D7 on Body 4, with respect to frame 𝑥4, 𝑦4 

 

The constants used in the analytical model are defined in Table 6.6. The masses of each 

3D printed digit were measured and recorded, Table 6.7. Springs were represented as nonlinear 

torsional springs that follow the following formula: 

𝑘𝑇𝑘(𝜃) = 2𝑎𝑘𝜃 + 𝑏𝑘                                        𝑘 = 1, 2, 3                              (6.25) 

where, 𝑎𝑘 and 𝑏𝑘 are the torsional spring coefficients, which can be found in Table 6.8. An 

explanation of the torsional stiffness coefficient calculations is found in Appendix E. The middle 

and distal joints, joints B and C, were the same in the original Flexy-Hand 2 design, so it was kept 

the same for consistency. The spring constants for the proximal joint were significantly higher 
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than those of the middle and distal joints. This behavior is expected since the proximal joint is 

twice as thick and slightly wider than the other two.  

 

 

 

Table 6.6: Kinematic constants used in the analytical model 

Variable Value (mm) Variable Value (mm) 

𝑢̅𝐴
1 [0, 0]T 𝑢𝐷1

1  [0, -14.5]T 

𝑢̅𝐴
2 [-24.0, -0.9]T 𝑢𝐷2

2  [-9.5, -0.9]T 

𝑢̅𝐵
2  [22.9, -0.9]T 𝑢𝐷3

2  [15.7, -0.9]T 

𝑢̅𝐵
3  [-14.7, -1.1]T 𝑢𝐷4

3  [-2.2, -1.1]T 

𝑢̅𝐶
3 [15.8, -0.1]T 𝑢𝐷5

3  [8.6, -0.1]T 

𝑢̅𝐶
4 [-14.8, -0.2]T 𝑢𝐷6

4  [-2.3, -0.2]T 

𝑢̅𝐴𝑝
1  [10.0, -7.0]T  𝑢𝐷7

4  [7.7, -0.2]T 

𝑢̅𝐴𝑝
2  [-14.6, -12.2]T   

𝑢̅𝐵𝑝
2  [13.5, -11.1]T   

𝑢̅𝐵𝑝
3  [-7.3, -9.2]T   

𝑢̅𝐶𝑝
3  [8.6, -8.0]T   

𝑢̅𝐶𝑝
4  [-9.0, -6.7]T   

 

Table 6.7: Mass of 3D printed finger digits 

Digit Mass (g) 

Proximal 11.1 
Middle 5.6 
Distal 4.2 

 

Table 6.8: Torsional spring coefficients used in the analytical model 

Joint 𝒂𝒌 (
𝑵𝒎

𝒓𝒂𝒅𝟐
) 𝒃𝒌 (

𝑵𝒎

𝒓𝒂𝒅
) 

A -0.007 0.135 
B -0.001 0.022 
C -0.001 0.022 
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The neutral position of Bodies 2, 3, and 4 were defined based on the mean, unloaded 

position of the experimental fingers, and were used to initialize the model. The resultant finger 

joint angles are as follows, 

𝜃0
2 = 1.6

𝜃0
3 = 1.5

𝜃0
4 = 1.4

(6.26) 

6.3.2 Experimental results 

The dimensions of the three sets of joints tested were measured and averaged, Table 6.9. 

The low standard deviation between specimens suggests that the joints should behave 

consistently across all trials. 

 

Table 6.9: Measured dimensions and mass of experimental finger joints 

Joint 𝑙 (St. Dev.) (mm) 𝑤 (St. Dev.) (mm) 𝑡 (St. Dev.) (mm) 𝑚 (St. Dev.) (g) 

Nominal 10 4 15 2.80 
Proximal 9.98 (0.05) 4.02 (0.01) 15.06 (0.06) 2.54 (0.01) 

Nominal 10 2 12 1.12 
Middle/Distal 10.05 (0.08) 2.02 (0.03) 11.90 (0.13) 0.99 (0.01) 

 

The marker coordinates for all nine trials of the experiment were averaged and the 

standard deviations were found, Figure 6.9. The standard deviation error bars show that digit 

markers further from the fixed base point had higher deviations than those closer, as position 

error propagates further from the fixed point. Similarly, as the load on the tendon increased, the 
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deviation for respective markers increased as well. This was to be expected, as error from 

previous loads will compound. 

 

  
(a) (b) 

Figure 6.10: Markers for image processing flexion; a) labeled markers on finger digits; b) mean flexion 
results for all nine trials 

  

 The stiffness differences between finger joints were displayed as well, Figure 6.9(b). The 

markers on the proximal digit, D2 and D3, show little flexion under tension in comparison to the 

other markers. 

6.3.3 Comparison of the model and experiment 

The model markers on each digit were compared to the experimental coordinates for each tensile 

load to confirm the validity of the proposed model, Figure 6.10. As the tendon tension increased, 
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the difference between the markers, especially at the distal marks, became more significantly 

pronounced. This behavior is expected since the error compounds in the distal direction. 

Nevertheless, the results show that the model followed the same flexion behavior as the 

experimental results for all applied loads. The experimental and model flexions were compared, 

Figure 6.11. 

 

   
(a) (b) (c) 

Figure 6.11: Comparison of finger model and prosthetic finger; a) unloaded initial condition; b) flexion 
under 1.06 N tension; c) final flexion under 2.43 N tension. The red line represents the finger digits 
from the model, the green dots represent the model markers, the black lines represent the model 

tendons, and the blue error bars represent the experimental markers. 
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Figure 6.12: Comparison of the experimental results and the modeling marker coordinates 

To quantitatively compare the validity of the model, an error function was defined, Eq. 6.27. 

𝐸𝑚 = √
(𝑥𝑒 − 𝑥𝑚)2 + (𝑦𝑒 − 𝑦𝑚)2

𝑥𝑒2 + 𝑦𝑒2
(6.27) 

where 𝑥  and 𝑦  represented the coordinates of the markers, the subscript 𝑒  represented the 

experimental results, and 𝑚  represented the model results. The error for each marker was 

calculated, Figure 6.11. 
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(a) (b) 

 
(c) 

Figure 6.13: Flexion error of markers on each digit; a) body 2, proximal digit markers; b) body 3, 
middle digit markers; c) body 4, distal digit markers 

 

Overall, the model was able to describe the flexion of the finger well, with errors ranging 

from 0.5-5.5%. The error for each digit starts very small. As the loads were increased; the error 

was compounded. A likely source of this was the substitution of the flexible beam behavior for 

torsional springs; the flexible beam experiences both extensions, as well as rotation when loaded, 

while the torsional spring does not allow for relative motion in the x and y direction. Despite this, 

our hypothesis of torsional spring substitution was proven correct, as the model error is low. 

Similarly, we were able to sufficiently describe the flexion behavior of the prosthetic finger with 

respect to tension applied to the tendon, as we hypothesized.  
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Chapter 7: Conclusion and future work 

The need for prosthetic hands is high and will persist for the foreseeable future. Even 

though advancements in technology have led to incredible prosthetic developments, advanced 

hands require sophisticated control models and come with costs that are often unattainable. 

Simple, 3D printed, underactuated prostheses offer a low-cost alternative that can serve as an 

alternative to the high cost of modern hand prostheses. In particular, the Flexy-Hand 2 is a 

common option that fits these criteria. The aim of this research was to provide a comprehensive 

understanding of an important component of these hands: 3D printed TPU joints. This allowed 

for an accurate model of the flexion of a 3-digit finger in response to tendon tension. 

The effect of 3D printing parameters on the mechanical characteristics of TPU components 

was first investigated. The extrusion temperature and filament deposition method (wall and infill) 

for NinjaFlex® were studied. The resulting stress-strain curves were used to determine the 

coefficients of the 3rd Order Mooney-Rivlin constitutive model for each experimental group. The 

models were then validated using FEA to confirm their accuracy and applicability. The results 

show that, as the extrusion temperature increases, the effect of the deposition method becomes 

more limited. Additionally, wall deposition leads to parts with higher elastic modulus, flexural 

modulus, and stress for a given strain.  

The constitutive models were then used to model the behavior of the flexible joints of the 

Flexy-Hand 2. A relatively simple model, based on fundamental beam theory: the modified Euler–

Bernoulli (MEB), for predicting the flexion of 3D printed hyperplastic components was developed. 

This model accounted for the large deformations and planar motion of the specimens. A finite 
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element analysis was also conducted to predict the bending behavior. A series of experiments 

were conducted on 18 different cantilever specimens with significantly different flexibilities. The 

results of this MEB model and FEA were compared to the experimental data, indicating that both 

approaches produced accurate results for most specimens. However, the MEB underestimated 

the overall deflection, while the FEA resulted in a significantly larger retraction of the specimens 

under load. MEB can sufficiently provide an accurate prediction of deformation for a large range 

of hyperelastic 3D printed polymer specimens and has several advantages over FEA, including 

simplicity and speed. MEB exhibited consistently more accurate retraction prediction, with the 

deflection of the tip point aligning with the experimental results; however, the deflection in the 

y-direction was underestimated.  

A model was derived of the prosthetic finger which successfully described flexion with 

respect to tendon tension. Nine experimental trials were conducted, applying incrementing loads 

to the 3D printed finger. Overall, the tendon-actuation and nonlinear behavior of the flexible, 3D 

printed beam joints were accurately described, with marker coordinates having less than 5.5% 

error. As expected with this system prosthetic finger, the error naturally increased for digits 

further from the fixed support and while under increasingly larger loads. The model results show 

that the beam joints can be sufficiently substituted for a hinge joint with torsional springs; 

however, key assumptions in this substitution removed the small translations experienced by the 

beam joint itself, which would compound for digits further along the finger, such as the middle 

and distal digits. 

This work presents many avenues for future work. The material characterization 

presented in Chapter 3 can be expanded upon by studying the many other printing parameters 
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that are used in 3D printing, such as the infill geometry, print speed, or layer thickness. The 

structure of the specimens should also be studied, investigating how gyroid or cellular specimens 

behave under various loads. Modeling the behavior of NinjaFlex® could be improved as well. In 

Chapter 5, excessive retraction in axial direction of the cantilever beam was noticed in the finite 

element models. This may be a result of insufficient material models for the TPU while it is under 

compressive loads. If the compressed underside of the bent specimens is experiencing a stiffer 

response than previously modeled, it may explain the gap in the x-direction.  

 The initial modeling efforts presented in Chapter 6 proved successful at predicting finger 

flexion under tendon tension; the next steps include modeling the interaction of objects with the 

prosthetic finger to study the grip strength of the prosthetic. Then, optimization of the Flexy-Hand 

2 design can be conducted. There are many improvements that can be made to the prosthesis, 

however the most common complaints from users concern the grip/grasping ability, [77]. 

Therefore, the goal of optimization should be to improve the grip strength of the 3D printed Flexy-

Hand 2. The parameters to be optimized are the physical dimensions of the prosthetic hand, 

namely the joint sizes and joint locations. Similarly, the limitations of the user are also considered, 

such as wrist joint flexion strength and range of motion. To confirm the results of the optimized 

hand prosthesis, the grip force will need to be compared to the original hand design through a 

series of experiments by applying tensile loads to the tendons and compare the grasping strength 

between the two. Successful optimization would allow for user specific designs to be created to 

best suit individual needs and abilities.  
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Appendix A: Mooney-Rivlin constitutive model derivation 

 The following text derives the stress strain relationship of the Mooney-Rivlin material 

model. To begin, the directions in the Cartesian coordinates are defined: 

𝜉 = 𝑥 + 𝑢
𝜂 = 𝑦 + 𝑣
𝜁 = 𝑥 +𝑤

 
 
(𝐴. 1) 
 

Where 𝜉, 𝜂,  and 𝜁  represent the deformed position of an elementary unit from the original 

coordinates 𝑥, 𝑦, and 𝑧 with deflections 𝑢, 𝑣, and 𝑤, respectively.  

Fundamentally, it is known that the strain energy of a system, 𝑊, is, 

𝑊 = ∫ 𝜎𝑑𝜀 
𝜕𝑊 = 𝜎𝑑𝜀 
𝑑𝑊

𝑑𝜀
= 𝜎 

 
(𝐴. 2) 
 

Therefore, the stress acting on a unit element is equivalent to the change in strain energy with 

respect to the change in strain. To start, the forces acting on the faces of the elementary unit are 

defined as, 

𝑡𝑥𝑥Δ𝜂Δζ + txyΔζΔξ + txzΔξΔη

𝑡𝑦𝑥Δ𝜂Δζ + tyyΔζΔξ + tyzΔξΔη

𝑡𝑧𝑥Δ𝜂Δζ + tzyΔζΔξ + tzzΔξΔη

 

 
(𝐴. 3) 
 

Next, the total virtual work done in the relative displacements 𝛿(Δ𝑢), 𝛿(Δ𝑣), and 𝛿(Δ𝑤): 

𝛿𝑊𝑣𝑖𝑟𝑡 = (𝑡𝑥𝑥Δ𝜂Δζ + txyΔζΔξ + txzΔξΔη)𝛿(Δ𝑢)  

                +(𝑡𝑦𝑥Δ𝜂Δζ + tyyΔζΔξ + tyzΔξΔη)𝛿(Δ𝑣) 

                +(𝑡𝑧𝑥Δ𝜂Δζ + tzyΔζΔξ + tzzΔξΔη)δ(Δw) 

 
(𝐴. 4) 
 

Now the partial differential of the stored strain energy, 𝑊, is  
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𝛿𝑊 =
𝜕𝑊

𝜕𝑢𝜉

𝜕(Δ𝑢)

Δξ
+
𝜕𝑊

𝜕𝑢𝜂

𝜕(Δ𝑢)

Δη
+
𝜕𝑊

𝜕𝑢𝜁

𝜕(Δ𝑢)

Δζ
+ 

                      
𝜕𝑊

𝜕𝑣𝜉

𝜕(Δ𝑣)

Δξ
+
𝜕𝑊

𝜕𝑣𝜂

𝜕(Δ𝑣)

Δη
+
𝜕𝑊

𝜕𝑣𝜁

𝜕(Δ𝑣)

Δζ
+ 

                      
𝜕𝑊

𝜕𝑤𝜉

𝜕(Δ𝑤)

Δξ
+
𝜕𝑊

𝜕𝑤𝜂

𝜕(Δ𝑤)

Δη
+
𝜕𝑊

𝜕𝑤𝜁

𝜕(Δ𝑤)

Δζ
 

 
(𝐴. 5) 

Where 
𝜕𝑊

𝜕𝑢𝜉
 is equivalent to 

lim
𝛿𝑢→0
Δ𝜉→0

𝛿𝑊

Δ(𝛿𝑢)

Δ𝜉

, and so on.  

It should be noted that the stored energy per unit volume is equivalent to the virtual work done 

per unit volume, 

𝛿𝑊Δ𝑥Δ𝑦Δ𝑧 = 𝛿𝑊𝑣𝑖𝑟𝑡 (𝐴. 6) 

Therefore, 

𝑡𝑥𝑥 =
1

𝜏

𝜕𝑊

𝜕𝑢𝜉
𝑡𝑥𝑦 =

1

𝜏

𝜕𝑊

𝜕𝑢𝜂
𝑡𝑥𝑧 =

1

𝜏

𝜕𝑊

𝜕𝑢𝜁

𝑡𝑦𝑥 =
1

𝜏

𝜕𝑊

𝜕𝑣𝜉
𝑡𝑦𝑦 =

1

𝜏

𝜕𝑊

𝜕𝑣𝜂
𝑡𝑦𝑧 =

1

𝜏

𝜕𝑊

𝜕𝑣𝜁

𝑡𝑧𝑥 =
1

𝜏

𝜕𝑊

𝜕𝑤𝜉
𝑡𝑧𝑦 =

1

𝜏

𝜕𝑊

𝜕𝑤𝜂
𝑡𝑧𝑧 =

1

𝜏

𝜕𝑊

𝜕𝑤𝜁

(𝐴. 7) 

Since this work is concerned with the uniaxial relationship of NinjaFlex®, the first stress, 𝑡𝑥𝑥, will 

be analyzed, 

𝑡𝑥𝑥 =
1

𝜏
lim
𝛿𝑢→0
Δ𝜉→0

𝛿𝑊

Δ(𝛿𝑢)
Δ𝜉

(𝐴. 8)
 

If 𝜉 = 𝑥 + 𝑢, then 

Δ𝜉 = (1 + 𝑢𝑥)Δ𝑥 + 𝑢𝑦Δ𝑦 + 𝑢𝑧Δ𝑧 (𝐴. 9) 

Therefore, 

𝑡𝑥𝑥 =
1

𝜏
lim
𝛿𝑢→0

Δ𝑥,Δ𝑦,Δ𝑥→0

𝛿𝑊

Δ(𝛿𝑢)
[(1 + 𝑢𝑥)Δ𝑥 + 𝑢𝑦Δ𝑦 + 𝑢𝑧Δ𝑧] (𝐴. 10) 
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Or, 

𝑡𝑥𝑥 =
1

𝜏
[(1 + 𝑢𝑥)

𝜕𝑊

𝜕𝑢𝑥
+ 𝑢𝑦

𝜕𝑊

𝜕𝑢𝑦
+ 𝑢𝑧

𝜕𝑊

𝜕𝑢𝑧
] (𝐴. 11) 

When the material of the elementary unit is considered isotropic, the stored energy 𝑊  is a 

symmetric function of the stretches 𝜆1, 𝜆2, and 𝜆3, which in turn is a function of 𝜆1
2, 𝜆2

2, and 𝜆3
2. 

Therefore, the stored energy, 𝑊, can be defined as a function of the strain invariants, 

𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3) (𝐴. 12) 

Applying this to the strain equation, 

𝑡𝑥𝑥 =
1

𝜏

[
 
 
 
 
 
 (1 + 𝑢𝑥) (

𝜕𝑊

𝜕𝐼1

𝜕𝐼1
𝜕𝑢𝑥

+
𝜕𝑊

𝜕𝐼2

𝜕𝐼2
𝜕𝑢𝑥

+
𝜕𝑊

𝜕𝐼3

𝜕𝐼3
𝜕𝑢𝑥

) +

𝑢𝑦 (
𝜕𝑊

𝜕𝐼1

𝜕𝐼1
𝜕𝑢𝑦

+
𝜕𝑊

𝜕𝐼2

𝜕𝐼2
𝜕𝑢𝑦

+
𝜕𝑊

𝜕𝐼3

𝜕𝐼3
𝜕𝑢𝑦

) +

𝑢𝑧 (
𝜕𝑊

𝜕𝐼1

𝜕𝐼1
𝜕𝑢𝑧

+
𝜕𝑊

𝜕𝐼2

𝜕𝐼2
𝜕𝑢𝑧

+
𝜕𝑊

𝜕𝐼3

𝜕𝐼3
𝜕𝑢𝑧

)
]
 
 
 
 
 
 

(𝐴. 13) 

Or,  

𝑡𝑥𝑥 =
1

𝜏
[(1 + 𝑢𝑥)

𝜕𝐼1
𝜕𝑢𝑥

+ 𝑢𝑦
𝜕𝐼1
𝜕𝑢𝑦

+ 𝑢𝑧
𝜕𝐼1
𝜕𝑢𝑧

]
𝜕𝑊

𝜕𝐼1
+ 

                    
1

𝜏
[(1 + 𝑢𝑥)

𝜕𝐼2
𝜕𝑢𝑥

+ 𝑢𝑦
𝜕𝐼2
𝜕𝑢𝑦

+ 𝑢𝑧
𝜕𝐼2
𝜕𝑢𝑧

]
𝜕𝑊

𝜕𝐼2
+ (𝐴. 14) 

                    
1

𝜏
[(1 + 𝑢𝑥)

𝜕𝐼3
𝜕𝑢𝑥

+ 𝑢𝑦
𝜕𝐼3
𝜕𝑢𝑦

+ 𝑢𝑧
𝜕𝐼3
𝜕𝑢𝑧

]
𝜕𝑊

𝜕𝐼3
 

This can be reduced further with the following strain functions: 

𝜀𝑥𝑥 = 𝑢𝑥 +
1

2
(𝑢𝑥

2 + 𝑣𝑥
2 +𝑤𝑥

2)

𝜀𝑦𝑦 = 𝑣𝑦 +
1

2
(𝑢𝑦

2 + 𝑣𝑦
2 +𝑤𝑦

2)

𝜀𝑧𝑧 = 𝑤𝑧 +
1

2
(𝑢𝑧

2 + 𝑣𝑧
2 +𝑤𝑧

2)

(𝐴. 15) 

Similarly with the strain invariants, 
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𝐼1 = 3 + 2(𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧) (𝐴. 16) 

𝐼2 = (1 + 2𝜀𝑦𝑦)(1 + 2𝜀𝑧𝑧) + (1 + 2𝜀𝑧𝑧)(1 + 2𝜀𝑥𝑥) 

+(1 + 2𝜀𝑥𝑥)(1 + 2𝜀𝑦𝑦) − 𝜀𝑦𝑧
2 − 𝜀𝑧𝑥

2 − 𝜀𝑥𝑦
2 (𝐴. 17) 

𝐼3 = (1 + 2𝜀𝑥𝑥)(1 + 2𝜀𝑦𝑦)(1 + 2𝜀𝑧𝑧) + 2𝜀𝑦𝑧𝜀𝑧𝑥𝜀𝑥𝑦 

−(1 + 2𝜀𝑥𝑥)𝜀𝑦𝑧
2 − (1 + 2𝜀𝑦𝑦)𝜀𝑧𝑥

2 − (1 + 2𝜀𝑧𝑧)𝜀𝑥𝑦
2 (𝐴. 18) 

Leading to  

𝑡𝑥𝑥 =
2

𝜏
[(1 + 2𝜀𝑥𝑥)

𝜕𝑊

𝜕𝐼1
− (1 − 2𝜀𝜉𝜉)𝐼3

𝜕𝑊

𝜕𝐼2
+ (𝐼3

𝜕𝑊

𝜕𝐼3
+ 𝐼2

𝜕𝑊

𝜕𝐼2
)] (𝐴. 19) 

It is known that, 

𝜆1 = 1 + 𝜀𝑥 

𝜆2 = 1 + 𝜀𝑦 (𝐴. 20) 

𝜆3 = 1 + 𝜀𝑧 

When 𝜆1, 𝜆2, and 𝜆3 are parallel to the x, y, and z axes respectively. This leads to the relations: 

𝑢 = (𝜆1 − 1)𝑥 

𝑣 = (𝜆2 − 1)𝑦 (𝐴. 21) 

𝑤 = (𝜆3 − 1)𝑧 

Applying this to the stress equation yields 

𝑡𝑥𝑥 =
2

𝜏
[𝜆1
2
𝜕𝑊

𝜕𝐼1
−
𝐼3

𝜆1
2

𝜕𝑊

𝜕𝐼2
+ 𝐼3

𝜕𝑊

𝜕𝐼3
+ 𝐼2

𝜕𝑊

𝜕𝐼2
] (𝐴. 22) 

This stress equation represents the stress in the principle x direction for a compressible 

material. It can be reduced further based on uniaxial extension and incompressible assumption 

used with the TPU filament. When the material is only distorted under a uniaxial load, the 

stretches are reduced to  
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𝜆1 = 𝜆 

𝜆2 =
1

√𝜆
(𝐴. 23) 

𝜆3 =
1

√𝜆
 

From  

𝜆1𝜆2𝜆3 = 1 (𝐴. 24) 

Next, under the incompressible assumption,  

𝜏 = 1 

𝐼3 = 1 (𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦) 

The stress in the uniaxial direction, in this case 𝑡𝑥𝑥, becomes 

𝑡𝑥𝑥 = 2(𝜆
2 −

1

𝜆
) (
𝜕𝑊

𝜕𝐼1
+
1

𝜆

𝜕𝑊

𝜕𝐼2
) (𝐴. 25) 

 To calculate the stress for the given system, the strain energy equation must be defined. Mooney 

proposes the following strain energy equation, [58,78]: 

𝑊 = ∑ 𝐶𝑝,𝑞(𝐼1̅ − 3)
𝑝(𝐼2̅ − 3)

𝑞

𝑁

𝑝,𝑞=0

 (A.26) 

Where N can equal infinity, however, it is sufficiently accurate at N = 1 for most materials. 𝐶𝑝,𝑞 

are the coefficients of the material model, and 𝐼1̅ and 𝐼2̅ are the invariants of the left Cauchy-

Green tensor, or 

𝐼1̅ = 𝐽
−
2
3𝐼1 (𝐴. 27) 

𝐼2̅ = 𝐽
−
4
3𝐼2 (𝐴. 28) 

If the material is considered incompressible, then 𝐽 = 1. Expanded, the strain energy equation, 

expanded to the third order, becomes: 
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W = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3) (𝐴. 29) 

Now the derivatives of the strain energy are found to apply to the stress equation, 

𝜕𝑊

𝜕𝐼1
=

𝜕

𝜕𝐼1
(𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3)) 

(𝐴. 30) 

𝜕𝑊

𝜕𝐼1
= 𝐶10 + 𝐶11(𝐼2 − 3) 

(𝐴. 31) 

𝜕𝑊

𝜕𝐼1
= 𝐶10 + 𝐶11 (2λ +

1

λ2
− 3) 

(𝐴. 32) 

Next, the second invariant derivative,  

𝜕𝑊

𝜕𝐼2
=

𝜕

𝜕𝐼2
(𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3)) 

(𝐴. 33) 

𝜕𝜔

𝜕𝐼2
= 𝐶01 + 𝐶11(𝐼1 − 3) 

(𝐴. 34) 

𝜕𝜔

𝜕𝐼2
= 𝐶01 + 𝐶11 (𝜆

2 +
2

λ
− 3) 

(𝐴. 35) 

Plugging the derivatives into the stress equation, 

𝑡𝑥𝑥 = 2(𝜆
2 −

1

𝜆
)((𝐶10 + 𝐶11 (2λ +

1

λ2
− 3)) +

1

𝜆
(𝐶01 + 𝐶11 (𝜆

2 +
2

λ
− 3))) 

(𝐴. 36) 

This equation describes true stress as a function of stretch, 𝜆, which is equivalent to 1 + 𝜀, 

where 𝜀 is strain. To convert to engineering stress, simply, 

𝜎𝐸𝑁𝐺 =
𝑡𝑥𝑥
1 + 𝜀

 
(𝐴. 37) 
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Appendix B: Derivation of modified Euler-Bernoulli (MEB) method for 

flexible joints 

The following text derives the relationship between applied loads on a flexible joint and the 

resulting deflection in the x and y direction, Figure B.1. The system contains a fixed cantilever 

beam with a rigid bracket attached to the free end for applying the loads.  

 

 

Figure B.1: Diagram of loads on flexible joints 

 

The system in question can be simplified to a combined load and moment about the end of the 

beam, due to the rigidity of the free end bracket, Fig. B.2. The point loads can be combined, along 

with the respective moments.  
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Figure B.2: Simplified system diagram 

 

The system variables seen in Figure B.1 and B.2 are summarized in Table B.1 with the related 

units. 

 

Table B.1: Variables of MEB method 
Variable: Represents: Units: 

𝑙 Free Length m 
𝑎𝐵 Moment Arm of Bracket Weight m 
𝑎𝑊 Moment Arm of Applied Weight m 
𝑃𝐵 Load Applied by Bracket Weight N 
𝑃𝑊 Load Applied by Applied Weight N 
𝜃 Angle/Slope of the Free End Rad 
𝑀 Combined Moment of all Applied Loads Nm 
𝑃 Combined Load of all Applied Loads N 

 

To calculate the static equilibrium of the beam joint under the point load, the variations in virtual 

work are done by the external loads and the strain energies of the beam joint, 

𝛿𝑊 − 𝛿𝑈𝐴 − 𝛿𝑈𝐵 = 0 (𝐵. 1) 
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where W is the virtual work, UA is the axial strain energy, and UB is the bending strain energy. 

First, the work done on the system is defined as: 

𝑊 = (𝑃𝑊 + 𝑃𝐵)𝑠𝑖𝑛(𝜃(𝑙))𝑢(𝑙) +

(𝑃𝑊 + 𝑃𝐵) cos(𝜃(𝑙)) 𝑣(𝑙) +

(𝑃𝑊𝑎𝑊 + 𝑃𝐵𝑎𝐵) cos(𝜃(𝑙)) 𝜃(𝑙)

(𝐵. 2) 

where 𝑃𝑊 is the load from the applied weight, 𝑃𝐵 is the load from the bracket weight, θ is the 

angle between the plane cross-section and the vertical axis, u is displacement in the x-direction 

of the beam, v is displacement in the y-direction of the beam, 𝑎𝑊 is the moment arm from the 

applied weight on the free bracket to the free end of the beam, and 𝑎𝐵 is the moment arm from 

to the center of mass of the bracket to the free end of the beam. 

Simplifying, 

𝑊 = 𝑃 (𝑠𝑖𝑛(𝜃(𝑙))𝑢(𝑙) + cos(𝜃(𝑙)) 𝑣(𝑙)) + 𝑀 cos(𝜃(𝑙)) 𝜃(𝑙) (𝐵. 3) 

where the total applied load is 𝑃 = 𝑃𝑊 + 𝑃𝐵  and the total applied moment is 𝑀 = 𝑃𝑊𝑎𝑊 +

𝑃𝐵𝑎𝐵.  

It should be noted that the slope of the tip point is related to the deflection derivative 

using the following equation: 

𝜃(𝑙) = tan−1(𝑣𝑥(𝑙)) (𝐵. 4) 
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Next, the strain energy equations for both the axial and bending strain are defined, 

respectively, as: 

𝑈𝐴 =
1

2
𝐸𝐴∫ 𝑢𝑥

2𝑑𝑥
𝑙

0

(𝐵. 5) 

𝑈𝐵 =
1

2
𝐸𝐼 ∫ 𝑣𝑥𝑥

2 𝑑𝑥
𝑙

0

(𝐵. 6) 

where E is the modulus of elasticity, A is the rectangular cross-sectional area, and I is the area 

moment of inertia of the rectangular cross-section. A and I are defined as: 

𝐴 = 𝑤ℎ (𝐵. 7) 

𝐼 =
1

12
𝑤ℎ3 (𝐵. 8) 

Arbitrary virtual displacements were now applied to the work done by the external loading,  

𝑊 = 𝑃 (𝑠𝑖𝑛(𝜃(𝑙))𝑢(𝑙) + cos(𝜃(𝑙)) 𝑣(𝑙)) + 𝑀 cos(𝜃(𝑙)) 𝜃(𝑙) 

𝛿𝑊 = 𝑃

(

 
 
cos(𝜃(𝑙)) (

1

1 + 𝑣𝑥
2(𝑙)

)𝑢(𝑙)𝛿𝑣𝑥(𝑙) + sin(𝜃(𝑙)) 𝛿𝑢(𝑙)

− sin(𝜃(𝑙)) (
1

1 + 𝑣𝑥
2(𝑙)

) 𝑣(𝑙)𝛿𝑣𝑥(𝑙) + cos(𝜃(𝑙)) 𝛿𝑣(𝑙)
)

 
 

+M

(

 
 
−sin(𝜃(𝑙)) (

1

1 + 𝑣𝑥
2(𝑙)

)𝜃(𝑙)𝛿𝑣𝑥(𝑙)

+ cos(𝜃(𝑙)) (
1

1 + 𝑣𝑥
2(𝑙)

) 𝛿𝑣𝑥(𝑙)
)

 
 

(𝐵. 9)

 

Eqn. (B.9) can be written with respect to the virtual variables,  
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𝛿𝑊 = 𝑃𝑐𝑜𝑠(𝜃(𝑙))𝛿𝑣(𝑙)

+

(

  
 

𝑃(cos(𝜃(𝑙)) (
1

1 + 𝑣𝑥
2(𝑙)

)𝑢(𝑙) − sin(𝜃(𝑙)) (
1

1 + 𝑣𝑥
2(𝑙)

) 𝑣(𝑙))

+𝑀(−sin(𝜃(𝑙)) (
1

1 + 𝑣𝑥
2(𝑙)

)𝜃(𝑙) + cos(𝜃(𝑙)) (
1

1 + 𝑣𝑥
2(𝑙)

)𝛿𝑣𝑥(𝑙))
)

  
 
𝛿𝑣𝑥(𝑙)

+𝑃𝑠𝑖𝑛(𝜃(𝑙))𝛿𝑢(𝑙) (𝐵. 10)

 

Next, we can reduce the virtual work of the axial extension, Eqn. (B.5), via integration by parts, 

or, 

𝑈𝐴 =
1

2
𝐸𝐴∫ 𝑢𝑥

2𝑑𝑥
𝑙

0

𝑈𝐴 = 𝐸𝐴∫ 𝑢𝑥𝛿𝑢𝑥𝑑𝑥
𝑙

0

𝛿𝑈𝐴 =  𝐸𝐴(𝑢𝑥𝛿𝑢|0
𝐿 −∫ 𝑢𝑥𝑥𝛿𝑢𝑑𝑥

𝐿

0

) (𝐵. 11)

 

Expanding, 

𝛿𝑈𝐴 = 𝐸𝐴(𝑢𝑥(𝐿)𝛿𝑢(𝐿) − 𝑢𝑥(0)𝛿𝑢(0) − ∫ 𝑢𝑥𝑥𝛿𝑢𝑑𝑥
𝐿

0

) (𝐵. 12) 

Next, the strain energy from bending the joint is expanded by applying virtual strain energy to 

Eqn. (B.6),  

𝑈𝐵 =
1

2
𝐸𝐼 ∫ 𝑣𝑥𝑥

2 𝑑𝑥
𝑙

0

𝛿𝑈𝐵 = 𝐸𝐼 ∫ 𝑣𝑥𝑥𝛿𝑣𝑥𝑥𝑑𝑥
𝐿

0

(𝐵. 13)

 

Now we can expand Eqn. (B.10) with integration by parts,  

𝛿𝑈𝐵 = 𝐸𝐼 (𝑣𝑥𝑥𝛿𝑣𝑥|0
𝐿 − 𝑣𝑥𝑥𝑥𝛿𝑣|0

𝐿 +∫ 𝑣𝑥𝑥𝑥𝑥𝛿𝑣𝑑𝑥
𝐿

0

) (𝐵. 14) 
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Expanding, 

𝛿𝑈𝐵 =

𝐸𝐼 (𝑣𝑥𝑥(𝐿)𝛿𝑣𝑥(𝐿) − 𝑣𝑥𝑥(0)𝛿𝑣𝑥(0) − 𝑣𝑥𝑥𝑥(𝐿)𝛿𝑣(𝐿) + 𝑣𝑥𝑥𝑥(0)𝛿𝑣(0) + ∫ 𝑣𝑥𝑥𝑥𝑥𝛿𝑣𝑑𝑥
𝐿

0

) (𝐵. 15)
 

 

Based on the displacement boundary conditions,  

𝑣𝑥(0) =  𝑣(0) = 𝑢(0) = 0 

Therefore, 

𝛿𝑣𝑥(0) =  𝛿𝑣(0) = 𝛿𝑢(0) = 0 

Applying the displacement boundary conditions to Eqn. (B.12) and (B.15), 

𝛿𝑈𝐴 = 𝐸𝐴 (𝑢𝑥(𝐿)𝛿𝑢(𝐿) − 𝑢𝑥(0)𝛿𝑢(0) − ∫ 𝑢𝑥𝑥𝛿𝑢𝑑𝑥
𝐿

0

)

𝛿𝑈𝐴 = 𝐸𝐴 (𝑢𝑥(𝐿)𝛿𝑢(𝐿) − ∫ 𝑢𝑥𝑥𝛿𝑢𝑑𝑥
𝐿

0

) (𝐵. 16)

 

𝛿𝑈𝐵 = 𝐸𝐼 (𝑣𝑥𝑥(𝐿)𝛿𝑣𝑥(𝐿) − 𝑣𝑥𝑥(0)𝛿𝑣𝑥(0) − 𝑣𝑥𝑥𝑥(𝐿)𝛿𝑣(𝐿) + 𝑣𝑥𝑥𝑥(0)𝛿𝑣(0) + ∫ 𝑣𝑥𝑥𝑥𝑥𝛿𝑣𝑑𝑥
𝐿

0

) 

𝛿𝑈𝐵 = 𝐸𝐼 (𝑣𝑥𝑥(𝐿)𝛿𝑣𝑥(𝐿) − 𝑣𝑥𝑥𝑥(𝐿)𝛿𝑣(𝐿) + ∫ 𝑣𝑥𝑥𝑥𝑥𝛿𝑣𝑑𝑥
𝐿

0

) (𝐵. 17) 

Now, the integrals of Eqn. (B.16) and (B.17) can be expanded. Solving the two differential 

equations, 

𝑢𝑥𝑥 = 0
𝑢𝑥 = 𝐷

𝑢 = 𝐷𝑥 + 𝑆

(𝐵. 18) 
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Where 𝑢(0) = 0, therefore, 

𝑢(𝑥) = 𝐷𝑥 

Next, 

𝑣𝑥𝑥𝑥𝑥 = 0
𝑣𝑥𝑥𝑥 = 𝐵

𝑣𝑥𝑥 = 𝐵𝑥 + 𝐶

𝑣𝑥 =
1

2
𝐵𝑥2 + 𝐶𝑥 + 𝐺

𝑣 =
1

6
𝐵𝑥3 +

1

2
𝐶𝑥2 + 𝐺𝑥 + 𝐻

(𝐵. 19) 

Applying the displacement boundary conditions, 𝑣(0) = 0, 𝑣𝑥(0) = 0, 

𝑣𝑥(0) = 0 =
1

2
𝐵(0)2 + 𝐶(0) + 𝐺 

0 = 𝐺 (𝐵. 20) 

𝑣(0) = 0 =
1

6
𝐵(0)3 +

1

2
𝐶(0)2 + 𝐻 

0 = 𝐻 (𝐵. 21) 

Therefore, 

𝑣(𝑥) =
1

6
𝐵𝑥3 +

1

2
𝐶𝑥2 (𝐵. 22) 

From Eqn. (B.1), 

𝛿𝑊 = 𝛿𝑈𝐴 + 𝛿𝑈𝐵 (𝐵. 23) 

The force boundary conditions can be applied to the strain energy equations, 
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𝑃𝑐𝑜𝑠(𝜃(𝑙)) = −𝐸𝐼𝑣𝑥𝑥𝑥(𝑙) (𝐵. 24) 

−𝑃𝑠𝑖𝑛(𝜃(𝑙)) (
1

1 + 𝑣𝑥2(𝑙)
) 𝑣(𝑙) − 𝑀𝑠𝑖𝑛(𝜃(𝑙)) (

1

1 + 𝑣𝑥2(𝑙)
) 𝜃(𝑙)

+𝑀𝑐𝑜𝑠(𝜃(𝑙)) (
1

1 + 𝑣𝑥2(𝑙)
) + 𝑃𝑐𝑜𝑠(𝜃(𝑙)) (

1

1 + 𝑣𝑥2(𝑙)
) 𝑢(𝑙) = 𝐸𝐼𝑣𝑥𝑥(𝑙) (𝐵. 25)

 

𝑃𝑠𝑖𝑛(𝜃(𝑙)) = 𝐸𝐴𝑢𝑥(𝑙) (𝐵. 26) 

Or, 

𝑃𝑐𝑜𝑠(𝜃(𝑙)) = −𝐸𝐼𝑣𝑥𝑥𝑥(𝑙) (𝐵. 27) 

(
1

1 + 𝑣𝑥2(𝑙)
) ((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙))) = 𝐸𝐼𝑣𝑥𝑥(𝑙) (𝐵. 28) 

𝑃𝑠𝑖𝑛(𝜃(𝑙)) = 𝐸𝐴𝑢𝑥(𝑙) (𝐵. 29) 

In order to solve the deflection equations completely, the coefficients A, B, and H need to be 

found. Starting with Eqn. (B.29), 

𝑃𝑠𝑖𝑛(𝑣𝑥(𝐿)) = 𝐸𝐴𝑢𝑥(𝐿) 

Or, 

𝑃

𝐸𝐴
sin(𝑣𝑥(𝐿)) = 𝑢𝑥(𝐿) (𝐵. 30) 

Substituting the solution from Eqn. (B.18) 
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𝑢𝑥(𝐿) = 𝐷 =
𝑃

𝐸𝐴
sin(𝑣𝑥(𝐿)) (𝐵. 31) 

Next, we can solve for A and B. Starting with Equation. (B.27),  

𝑃𝑐𝑜𝑠(𝜃(𝑙)) = −𝐸𝐼𝑣𝑥𝑥𝑥(𝑙) 

Therefore, 

𝑣𝑥𝑥𝑥(𝐿) = 𝐵 = −
𝑃

𝐸𝐼
cos(𝜃(𝑙)) (𝐵. 32) 

Add a sentence describing what you are going to do 

(
1

1 + 𝑣𝑥2(𝑙)
) ((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙))) = 𝐸𝐼𝑣𝑥𝑥(𝐿) 

Or, 

1

𝐸𝐼
((

1

1 + 𝑣𝑥2(𝑙)
) ((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙)))) = 𝐵𝐿 + 𝐶 (𝐵. 33) 

Where we can substitute B from Eqn. (B.32), 

𝐶 =  
1

𝐸𝐼
((

1

1 + 𝑣𝑥2(𝑙)
) ((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙))))

+
𝑃𝐿

𝐸𝐼
cos(𝜃(𝐿)) 

Or 

𝐶 = 
((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙))) + 𝑃𝐿 cos(𝜃(𝑙))

𝐸𝐼(1 + 𝑣𝑥2(𝑙))
 

We now have three equations for the three unknown coefficients B, C, and D.  
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𝐵 = −
𝑃

𝐸𝐼
cos(𝜃(𝑙)) (𝐵. 34) 

𝐶 = 
((𝑃𝑢(𝑙) + 𝑀) cos(𝜃(𝑙)) − (𝑃𝑣(𝑙) + 𝑀𝜃(𝑙))sin(𝜃(𝑙))) + 𝑃𝐿 cos(𝜃(𝑙))

𝐸𝐼(1 + 𝑣𝑥2(𝑙))
(𝐵. 35) 

𝐷 =
P

EA
sin(𝜃(𝑙)) (𝐵. 36) 

These three nonlinear algebraic equations should be solved simultaneously. Now, using any 

preferred method, the coefficients can be found and plugged into the following for the deflection 

equations. Now to solve for the unknown coefficients B, C, and D. 

 

 

Figure B.3: Differential unit for retraction calculation 

 

These deflection equations only described bending and axial deflection. They do not, 

however, account for the retraction along the x direction that is typically associated with large 
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deformation, [68]. Based on Figure B.2, the differential retraction, 𝑑𝑢𝐸  , of the beam can be 

expressed as: 

𝑑𝑢𝐸 = 𝑑𝑥(1 − cos(𝜃)) = 𝑑𝑥 (2𝑠𝑖𝑛2 (
𝜃

2
)) (𝐵. 37) 

The angle, 𝜃, of the beam can be substituted with Eqn. (B.3). By integrating this equation, the 

retraction of the tip point, 𝑢𝐸 , can be obtained: 

𝑢𝐸 = −∫ (2𝑠𝑖𝑛2 (
tan−1(𝑣𝑥)

2
))  𝑑𝑥

𝑙

0

(𝐵. 38) 

The equation for 𝑣𝑥  from Eqn. (B.19) can be applied, and the tip point retraction equation 

becomes: 

𝑢𝐸 = −∫ (2𝑠𝑖𝑛2 (
tan−1 (

1
2𝐵𝑥

2 + 𝐶𝑥)

2
))  𝑑𝑥

𝑙

0

(𝐵. 39) 

The total deformation of the tip point can be expressed as a combination of this retraction in 

addition to the extension caused by the axial portion of the applied loads, (𝑃𝑊 + 𝑃𝐵)𝑠𝑖𝑛(𝜃(𝑙)): 

𝑢(𝑙) = −∫ (2𝑠𝑖𝑛2 (
tan−1 (

1
2𝐵𝑥

2 + 𝐶𝑥)

2
))  𝑑𝑥

𝑙

0

+ 𝐷𝑙 (𝐵. 40) 

𝑣(𝑙) =
1

6
𝐵𝑙3 +

1

2
𝐶𝑙2 (𝐵. 41)  
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Appendix C: Results of flexible beam experiment 

 

The experimental results of all 18 specimen configurations of flexible beam joints tested 

in Chapter 3 are presented here, Figure C.1. The x and y deflection for each beam is separated for 

clarity and includes the average and standard deviation. Table C.1 describes the specimen 

dimensions for each configuration ID. It should be noted that the flexible specimens angularly 

deflected more than the stiff ones, as seen in the x-axes ranges. 

 

  
(a.i) (a.ii) 

  
(b.i) (b.ii) 
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(c.i) (c.ii) 

  
(d.i) (d.ii) 

  
(e.i) (e.ii) 
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(f.i) (f.ii) 

  
(g.i) (g.ii) 

  
(h.i) (h.ii) 
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(i.i) (i.ii) 

  
(j.i) (j.ii) 

  
(k.i) (k.ii) 
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(l.i) (l.ii) 

  
(m.i) (m.ii) 

  
(n.i) (n.ii) 
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(o.i) (o.ii) 

  
(p.i) (p.ii) 

  
(q.i) (q.ii) 
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(r.i) (r.ii) 

Figure C.1: Experimental results of flexible beam joints, in the x (i) and y (ii) directions; (a) specimen 1; 
(b) specimen 2; (c) specimen 3; (d) specimen 4; (e) specimen 5; (f) specimen 6; (g) specimen 7; (h) 
specimen 8; (i) specimen 9; (j) specimen 10; (k) specimen 11; (l) specimen 12; (m) specimen 13; (n) 

specimen 14; (o) specimen 15; (p) specimen 16; (q) specimen 17; (r) specimen 18 

 

Table C.1: ID and dimensions of flexible beam joints 

Specimen ID l (mm) h (mm) w (mm) 

1 

10.0 1.8 

8 

2 10 

3 12 

4 

15.0 1.8 

8 

5 10 

6 12 

7 

10.0 2.7 

8 

8 10 

9 12 

10 

15.0 2.7 

8 

11 10 

12 12 

13 

10.0 3.6 

8 

14 10 

15 12 

16 

15.0 3.6 

8 

17 10 

18 12 
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Appendix D: Kinematic component derivations and definitions 

When deriving the kinematics of the prosthetic finger, several key matrices and vectors 

must be defined to describe the configuration of the system. A body in a 2D system will be 

composed of three global coordinates, 𝑋, 𝑌, and 𝜃, which are used to translate and transform the 

local position vector, 𝑢̅𝑝
𝑖 , of an arbitrary point, 𝑃𝑖, to the global position vector, 𝑟𝑝

𝑖, Figure D.1.  

 

 
Figure D.1: Global position matrices of an arbitrary point 𝑃𝑖  

 

To begin, the point 𝑃𝑖  has a local position of,  

𝑢̅𝑝
𝑖 = [𝑥̅𝑝

𝑖   𝑦̅𝑝
𝑖 ]
𝑇

(𝐷. 1) 

where 𝑥̅𝑝
𝑖  and 𝑦̅𝑝

𝑖  are in the local frame 𝑥𝑖 , 𝑦𝑖.  

To represent the local position vector 𝑢̅𝑝
𝑖  in the global frame as 𝑢𝑝

𝑖 , the transformation 

matrix, 𝐴𝑖, is used to account for the rotation of the local frame by 𝜃𝑖, 

𝐴𝑖 = [
cos(𝜃𝑖) − sin(𝜃𝑖)

sin(𝜃𝑖) cos(𝜃𝑖)
] (𝐷. 2) 

Or, 

𝑢𝑝
𝑖 = 𝐴𝑖𝑢̅𝑝

𝑖 (𝐷. 3) 
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The global position of the local frame is written as, 

𝑅𝑖 = [𝑋 𝑌]𝑇 (𝐷. 4) 

Where 𝑋 and 𝑌 are the global coordinates of origin 𝑖. Now the global position of 𝑃𝑖  is written as 

the addition of the global position vector with the transformed local position vector, 

𝑟𝑝
𝑖 = 𝑅𝑖 + 𝐴𝑖𝑢̅𝑝

𝑖  

When deriving the kinematics for a system, a constrain matrix, 𝐶(𝑞) , is needed to limit the 

degrees of freedom, where 𝐶  is the constrain matrix and 𝑞  are the coordinates of the system 

bodies. One of the most common constraint equations describes the limitations of two bodies 

attached together by a hinged joint, 

𝐶(𝑞𝑖 , 𝑞𝑖+1) =  𝑅𝑖+1 + 𝐴𝑖+1𝑢̅𝑝
𝑖+1 − 𝑅𝑖 − 𝐴𝑖𝑢̅𝑝

𝑖 (𝐷. 5) 

Where 𝑝 represents the joint connecting bodies 𝑖 + 1 and 𝑖.  
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Appendix E: Converting flexible cantilever beams to torsional springs 

using flexible beam FEA modeling 

The bending behavior of the 3D printed, hyperelastic thermoplastic polyurethane, 

NinjaFlex®, was experimentally evaluated in Chapter 4 and verified through closed form and FEA 

modeling in Chapter 5 with sufficient accuracy. To simplify the analysis of Chapter 6, it was 

decided to replace each beam joint by an equivalent combination of hinge joint and a nonlinear 

torsional spring, Figure E.1. Due to the consistency of the FEA modeling from Chapter 5, the 

angular displacement for each joint was calculated using the simulated load and COM locations. 

 

 

Figure E.1: Representation of the hinge/joint nonlinear spring equivalent of a beam joint 

 

 To determine the equivalent spring stiffness parameters, the relationship between the 

angular deflection and the moment acting on the joint must be defined. The angular deflection 
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of the beam joint can be calculated based on comparing two known points on the free end 

bracket, the center of mass (𝐶) and the load location (𝐿)with respect to a frame fixed at the other 

end of the beam joint, Figure E.2. The inverse tangent of the vector connecting these two points 

yielded the angle of the beam joint, Eqn. (E.1).  

 

 

Figure E.2: Calculation of angular deflection 

 

𝜃𝑛 = tan−1 (
𝑦𝐿,𝑛 − 𝑦𝐶,𝑛
𝑥𝐿,𝑛 − 𝑥𝐶,𝑛

) (𝐸. 1) 

where the subscript 𝑛 is the respective applied load number.  

Next, the corresponding moment that induces the angular deflection was determined 

based on both the mass of the free end bracket and each induced load, Figure E.3. 

𝑀𝑒𝑞,𝑛 = 𝑎𝐵𝑃𝐵 cos(𝜃𝑛) + 𝑎𝑊𝑃𝑊,𝑛 cos(𝜃𝑛) (𝐸. 2) 
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Figure E.3: Calculation of equivalent moment for torsional stiffness 

  

The moment and angular displacement were plotted for a typical specimen 1, Figure E.4. 

A second order polynomial regression was fitted to the plotted data, Eqn. (E.3); while the data for 

some specimen configurations initially appears linear, the curvature of the torsional stiffness was 

more apparent in other specimen configurations. Therefore, a second order polynomial was used 

for all specimens for consistency.  
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Figure E.4: Example of angular displacement with respect to moment 

 

𝑀𝑒𝑞(𝜃) = 𝑎𝜃2 + 𝑏𝜃 + 𝑐 (𝐸. 3) 

The first derivative of the fitted curve provides the torsional stiffness, 𝑘𝑇, of the flexible beam 

joint, Eqn. (E.4), which describes the torsional stiffness as the angle changes. 

𝑘𝑇(𝜃) = 2𝑎𝜃 + 𝑏 (𝐸. 4) 

The coefficients of the moment-angle curve, 𝑎 , 𝑏 , and 𝑐  are needed for use in modeling the 

flexible beams.  

 The fitted curve provides the coefficients needed for Eqn. (E.3), with an 𝑅2  value of 

0.9979. The fitted plots for all remaining joint configurations are found in figure E.6, and their 

respective coefficients and 𝑅2 values are found in Table E.1. As the intercept of the plots are set 

to (0,0), the coefficient 𝑐 becomes zero as well. It was noted that the torsional stiffness behavior 



121 
 

of stiffer specimens tended towards more a more linear behavior and more flexible specimens 

had a more prominent nonlinear behavior.  

 

Table E.1: Nonlinear torsional stiffness coefficients and 𝑅2 values 

Specimen ID l (mm) h (mm) w (mm) 𝒂 𝒃 𝑹𝟐 
1 

10.0 1.8 

8 0.002 0.004 0.998 

2 10 0.003 0.004 0.997 

3 12 0.003 0.006 0.997 

4 
15.0 1.8 

8 0.003 0.002 0.997 

5 10 0.003 0.002 0.996 

6 12 0.002 0.003 0.997 

7 
10.0 2.7 

8 -0.002 0.015 1.000 

8 10 -0.002 0.019 1.000 

9 12 -0.002 0.023 1.000 

10 
15.0 2.7 

8 -0.001 0.010 1.000 

11 10 -0.001 0.012 1.000 

12 12 -0.001 0.014 1.000 

13 
10.0 3.6 

8 -0.005 0.035 1.000 

14 10 -0.005 0.043 1.000 

15 12 -0.007 0.051 1.000 

16 
15.0 3.6 

8 -0.003 0.022 1.000 

17 10 -0.004 0.027 1.000 

18 12 -0.003 0.032 1.000 

  

 The dimensions of the flexible joints used in 3-digit finger modeling in Chapter 6 are 

slightly different than the dimensions of the joints tested so far. To find the nonlinear torsional 

stiffness values that correspond to these different dimensioned joints, they were simulated in the 

same manner. The results of the proximal and middle/distal joints are found in Figure E.5, and the 

respective coefficients and 𝑅2 are found in Table E.2. Torsional coefficients for the thumb joints 

of the original Flexy-Hand 2 were approximated from similarly sized beams in Table E.1 and 

provided in Table E.2.  
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(a) 

 
(b) 

Figure E.5: Moment-angle plot for finding nonlinear stiffness coefficients of proximal and 
middle/distal joints in the 3-digit finger modeling; (a) proximal joint; (b) middle/distal joint 

 
 
Table E.2: Nonlinear torsional stiffness coefficients and 𝑅2 values for 3-digit finger 

Joint 𝒂 𝒃 𝑹𝟐 
Proximal -0.007 0.135 1.000 

Middle/Distal -0.001 0.022 1.000 
Thumb 0.003 0.006 0.997 
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