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ABSTRACT

Global Structure and Asymptotic Profiles of the Endemic Equilibria of a Diffusive Epidemic
Model with Mass-Action
By
Keoni Castellano

Dr. Rachidi Salako, Examination Committee Chair
Assistant Professor of Mathematical Sciences
University of Nevada, Las Vegas

Infectious diseases are a great challenge to the health and successful function of society. There-
fore, it becomes crucial to develop methods and tools that would allow us to be able to control
an infectious disease once it starts spreading within an environment. In this regard, mathemati-
cal research on epidemic models has provided important tools in the qualitative and quantitative
analysis of the spread and control of infectious diseases. Each mathematical epidemic model incor-
porates important factors that could affect the spread of a disease, such as population movement
and temporal or environmental heterogeneity.

This dissertation focuses on a susceptible-infected-susceptible (SIS) model in the form of a sys-
tem of diffusive partial differential equations that takes into account a moving population within
a spatially heterogeneous environment. Our goal is to assess the effectiveness of disease control
strategies aimed at restricting population movement. To this end, we first consider basic funda-
mental questions such as existence, uniqueness, and global stability of solutions to the model. Next,
we discuss how population movement may affect the disease dynamics by looking at the asymptotic
profiles of endemic equilibrium (EE) solutions of the model. Consequently, we determine conditions
leading to a multiplicity of EE solutions, which demonstrate that the disease can become difficult
to control when movement is included in the model. In doing so, we discover various bifurcation

curves describing multiple EE solutions for the diffusive SIS epidemic model.

iii



ACKNOWLEDGMENTS

I would like to begin by thanking Dr. Neda, Dr. Tehrani, and Dr. Schulte for being a part
of my committee. I have learned a lot from each of them in a variety of different ways and I
am very grateful for the knowledge that they have passed down to me. In particular, I thank
Dr. Neda for her guidance as I served as the president of UNLV SIAM. I thank Dr. Tehrani for
the impressive amount of mathematics that I have learned from him across many classes. Finally,
I thank Dr. Schulte for helping me connect biology to mathematics.

Of course, I have to give a big thanks to Dr. Rachidi B. Salako for agreeing to be my advisor.
An incredibly prolific researcher and a remarkably kind man, Dr. Salako has been a great help from
Day 1 of being my advisor. Because of Dr. Salako, I have met so many interesting people and grew
my network even further. I am very grateful for these opportunities and I hope to use what I have
been given to make a difference in the world. Thank you Dr. Salako!

Outside of the committee, there were many professors who helped contribute to my growth as
a mathematician. It was Dr. Costa who helped with the first paper that I have ever worked on.
It was Dr. Boo Shan Tseng who gave me the opportunity to step outside of my comfort zone and
allowed me to explore life through the eyes of a biologist. It was Dr. Wu who allowed me to run
the Real Analysis Boot Camp, which was the main initiative I wanted to do as president of UNLV
SIAM. I would not be where I am now without experiencing these things and I am grateful that
I was allowed to do just that. Lastly, I would like to thank Dr. Amei, Dr. Baragar, Dr. Ding,
Dr. Hadjicostas, and Dr. Yang for allowing me to take their classes when they were offered.

As this is the end of my formal education, I would like to specifically acknowledge the teachers
that I have had before college that have significantly contributed to my development as a student
and a lifelong learner. Thank you Mr. Katten, Mr. Barney, Ms. Mull (now Mrs. Mattie), Mr. Vriend,
and Ms. Milligan. You guys have helped put me on a path that I never would have envisioned when

I was in high school. It is only now looking back that I see the type of influence that you had on

iv



me. I am proud of who I have become and the direction that I am heading in and I definitely have
you guys to thank for that.

Of course, I would have been driven completely insane during this whole process if I did not
have the friends that I have. Shen, Edward, Jorge, and Ali have been the ones I can count on to
make life more fun and more entertaining. Xiaochen, Caitlin, Li Zhu, and Adam were also reliably
entertaining and have special places in my heart. Other people who I have to thank for making my
PhD journey amazing include: Phillip, Angelica, Carina, Corbin, Eric, Rihui, Scott, Alex, Linjie,
Yonki, Mark, Mark, Eduardo, Hannah, Wendy, Kingsley, Cynthia, the Wu children, and the great
many awesome people that I met along the way here.

Last but not least, I want to thank my family. Thank you for putting up with me while I worked
on my PhD. The wonderful and amazing Mia Bruce has been my support system and loving partner
for most of my PhD and I would not be where I am now without her. I love you so much and I
am so grateful that you are in my life. I know that you will be an amazing scientist and I am so
excited to see you undertake your own PhD journey soon.

My life would also not be the same without my siblings Kam, Kanani, Ethan, and Chase. You
are all entertaining and I will cherish the adventures we have gone on together. Of course, I have
to thank my parents. My mom has done a lot for me my entire life and I know that my dad has
always supported me. My family means a lot to me and I am happy that I have them to make my

life even more amazing.



DEDICATION

I dedicate this dissertation to the countless lives who, whether through discrimination or vio-

lence, were unable to achieve their educational goals.

vi



TABLE OF CONTENTS

A B S T R A C T o iii
ACKNOWLEDGMEN TS L e e e e iv
DE DI C AT ON e vi
CHAPTER 1 INTRODUCTION ... e e 1
1.1 Developing the Model ... ... . 2
1.2 Dynamics of the ODE Model ...... ... e 4
1.3 The PDE Model . .. ... 5
1.4 Representing Infection ..........o i 6
1.5 Closing Remarks . ... ... i 6
CHAPTER 2 NOTATION, DEFINITIONS, AND SOME PRELIMINARY RESULTS ........ 8
2.1 Notation and Definitions. . ........oo i e e 8
2.2 The Disease-Free Equilibrium (DFE) and the Basic Reproduction Number (Rgp). .... 10
2.3 The Endemic Equilibrium (EE) Problem....... ... i, 13
2.4 Profiles of Solutions to a One Parameter Family of Diffusive-Logistic Equations. . .... 15
2.5 Some Abstract Results on Parabolic Equations.............. ... ... ... ... ... ..., 25

CHAPTER 3 SINGLE-STRAIN MODEL: WELL-POSEDNESS OF THE INITIAL VALUE PROB-
LEM, EXISTENCE AND ASYMPTOTIC PROFILES OF THE ENDEMIC EQUILIB-

RIUM SOLUTTONS ..ot e e e e e e e 27

3.1 Well-Posedness of the Initial Value Problem............. ... .. .. i it 27

3.2  Existence of Endemic Equilibrium Solutions........... ... ... . i 28

3.3 Asymptotic Profiles of Endemic Equilibrium Solutions .............................. 29

3.4 Total LoCKAOWN SCENATIO . ..ttt ettt ettt et e et e et e e e 33

3.0 DSCUSSION .« vttt ettt 34
CHAPTER 4 MULTIPLICITY OF ENDEMIC EQUILIBRIA ...... ... .. ... 36
4.1  Multiplicity /Uniqueness of Endemic Equilibrium Solutions of System (1.5) .......... 36

4.2 Bifurcation Curves of Endemic Equilibrium Solutions .................. ... .. ... ... 38

4.3 Asymptotic Profiles of Endemic Equilibrium Solutions for Small dg.................. 39

A4 DISCUSSION .+« ettt ettt ettt e et e et e e e 41

4.5 Construction of EXamples ..........ooiiiiiiii e 42
CHAPTER 5 PROOFS OF MAIN RESULTS ... e 48
5.1 Proofs of Results from Chapter 3 ......... . i e 48

5.1.1  Proof of Theorem 3.1.1 .. .. o e 48

vii



5.1.2 Proof of Theorem 3.2.1 ... 52

5.1.3 Proof of Theorem 3.3.1 .. ... e 56

5.1.4 Proof of Theorem 3.3.2 .. ... e e 60

5.1.5 Proof of Theorem 3.3.3 .. ... 68

5.1.6  Proof of Theorem 3.4.1 .. ... e 68

5.2 Proofs of Results from Chapter 4......... . i 73

5.2.1 Proof of Theorem 4.1.1 .. ... . 73

5.2.2  Proof of Proposition 4.1.2 ....... ... 75

5.2.3 Proof of Theorem 4.1.3 .. ... . . 75

5.2.4 Proof of Remark 4.01.1 ... 76

5.2.5 Proof of Theorem 4.2.1 .. .. 77

5.2.6 Proof of Theorem 4.2.2 .. ... e 78

5.2.7 Proof of Theorem 4.3.1 .. ..o e 80
CHAPTER 6 ONGOING WORKS, FUTURE WORKS, AND CONCLUSION ................ 84
6.1 ConClUSION . ...ttt e 84

6.2 Ongoing and Future Work . ... . 84
BIBLIOG R A PH Y .. 86
CURRICULUM VI T AE .. e e 90

viii



CHAPTER 1

INTRODUCTION

Mathematics is a place where you can do things which you can’t do in the real world.

-Marcus du Sautoy

Infectious diseases have played a prominent role in the course of human history. From the
earliest days of human history, infectious diseases have heavily impacted the structure of society
and pushed the boundaries of medicine forward. As shown during the COVID-19 pandemic, these
types of diseases can cause massive disruption to our everyday routines. Therefore, it is crucial to
be able to come up with a method to help better understand the way an infectious disease will
behave once it starts spreading within a population. One way to do this is to use mathematical
knowledge and insight to develop a model that aims to represent the spread of a disease.

Early attempts to mathematically model the spread of infectious diseases began with the work
of Daniel Bernoulli in [4] in which Bernoulli used mathematics to show the benefits of smallpox
inoculation. Later on, the medical doctor Ronald Ross, along with the mathematician Hilda Hud-
son, developed and studied an ordinary differential equation (ODE) model to better understand
why epidemics grow to the scale that they do [26, 27, 28]. Inspired by the work of Ross and Hud-
son, William Ogilvy Kermack and Anderson Gray McKendrick further developed the ideas of Ross
and Hudson to create what we now know as the susceptible-infected-recovered model (SIR model)
[17]. It was their results that motivated researchers throughout the years to create new types of
infectious disease models.

To seek models that better reflect reality, researchers began building increasingly complex mod-
els that consider various factors that might impact the spread of disease such as population move-
ment, advection, spatial heterogeneity, birth and death rates, or even vaccination rates and herd

immunity. This dissertation focuses on a diffusive partial differential equation epidemic model that



takes into account a moving population within a spatially heterogeneous environment. Our goal
is to establish whether disease control strategies that restrict population movement are effective
at limiting the spread of disease. Along the way, we discover that the choice of how to represent
the method of infection can dramatically change the expected dynamics of the disease and can

demonstrate the difficulties in controlling such a disease.

1.1 Developing the Model

Let S be the population of susceptible people. These are the people who have not yet been
infected with the disease and, as such, do not carry the disease. For an infectious disease with k
strains, let I;, ¢ = 1,...,k, be the population of people infected with strain i of the disease. In
our model, the time rate of change of the susceptible population S will be the rate due to random
movement plus the rate at which infected people recover from the disease minus the rate due to
infection. Similarly, the time rate of change for each infected subpopulation I; is the rate due to
random movement plus the infection rate minus the rate due to recovery. For simplicity, we neglect
any birth rates and death rates. These factors will be incorporated in future work. Without
considering random movement, this information provides the structure to form the susceptible-
infected-susceptible (SIS) model. In fact, this produces an ODE model which can take the form
given by

(
S'(t) = rate of recovery — rate of infection

I}(t) = rate of infection — rate of recovery (SIS-ODE)

Initial Conditions

\

As we will see, the dynamics of the ODE model are very simple and can be summarized very
nicely in most cases. However, the ODE model has a few limitations. One major limitation is that
the ODE model assumes that infection and recovery are spatially independent so that both rates are
the same throughout the environment. In actuality, geographic, social, and political differences can
produce spatial heterogeneity for both infection and recovery. Therefore, a more realistic infectious
disease model should include a spatially heterogeneous environment where infection and recovery

rates change depending on location.



Another limitation of the ODE model is that it assumes that the population remains static;
there is no sense that the population is moving around. In our increasingly globalized society,
people are always on the move traveling from country to country and city to city. As observed
during the COVID-19 pandemic, this type of movement can significantly impact the spread of an
infectious disease. Hence, an effective model should also take into account the way that populations
move within the environment.

Incorporating random population movement turns the ODE model (SIS-ODE) into a partial

differential equation (PDE) model. This yields the diffusive SIS model

0,S = rate due to random movement + rate of recovery — rate of infection
OiI; = rate due to random movement + rate of infection — rate of recovery (SIS-PDE)

Initial and Boundary Conditions

Here, it is important to note that we also have the choice to include the optional recovered (or
removed) group, R. This group consists of people who are infected with the disease, recover from
the disease, and obtain immunity from the disease. When the R group is taken into consideration,
and assuming that recovered individuals gain total immunity so that they cannot be reinfected,
then the model (SIS-ODE) turns into the well-known SIR model of Kermack and McKendrick.
However, if the recovered individuals gain only some partial immunity, then the model (SIS-ODE)
turns into the equally well-known susceptible-infected-recovered-susceptible (SIRS) model. We
might also consider an intermediate group of people E composed of those people who have been
exposed to disease and carry the disease but are not yet infectious. When both the R and E groups
are considered in the model, then (SIS-ODE) becomes the SEIR model. We do not consider the
SEIR model in this dissertation. However, ongoing work is being done to study a diffusive SEIR

model and some interesting results have been established.



1.2 Dynamics of the ODE Model

One possible way of representing the model (SIS-ODE) is by the following system of ordinary

differential equations

ds
— =—BSI+4I, t>0

a =BSI—~I, t>0 (1.1)
dt

S(0)+I1(0) =N

where 5 is the disease transmission rate, v is the recovery rate, and N is the initial population size.
The quantities 3, v, and N are all assumed to be positive. By adding the first two equations of
(1.1), one can easily see that S(¢) + I(t) = N for all ¢ > 0. With this in mind, we can solve (1.1)

to obtain the solution (for SN — v # 0)

- - _ 0 (BN=y)t
0 = T camvy (N B¢ ) (1.2)
— ; J (BN—)t '
I(t) = [ CoBN— <(5 — N)Ce

where C' is some constant. Using the formulas in (1.2), we can observe that I(t) — 0 as t — +o0 if
N

and only if BN —~ < 0 or pN < 1. Moreover, I(t) — N—% as t — +oo if and only if BN —~ > 0
v

N
or AN > 1. If BN — v =0, then the solution to (1.1) is
g

Bt + D (1.3)

where D is some constant. It is easy to see from (1.3) that I(t) — 0 as ¢ — +oo. Thus, the

BN

solutions to (1.1) satisfy I(t) — 0 as t — +oo provided that — < 1. In other words, we should
N

expect the infectious disease to die off when 3,~, and N satisfy B— < 1.
Y

N
The quantity /8— is referred to as the basic reproduction number for the model (1.1). In epidemic
Y
models such as (1.1), the basic reproduction number, often represented by Ry, is a quantity that
represents the expected number of secondary infections once you drop a single infected person

in a population composed entirely of susceptible people. Therefore, as shown above, the basic



reproduction number Ry = B— serves as a parameter that determines whether an infectious
Y

disease will die out or will persist. This phenomenon is not unique to (1.1) as it is well-known that

if Rp < 1 then the disease is expected to die off while if Ry > 1 then the disease will persist. With

this idea in mind, we want to see if the same idea applies in a more intricate model such as the one

given in (SIS-PDE).

1.3 The PDE Model

Incorporating the ideas from (SIS-PDE) and representing each equation as a diffusive partial
differential equation, we obtain a model that takes into account the spatial heterogeneity of the

environment and the movement of the populations. This is given by

,

k k
08 =dsAS+> vili =Sy Bili, x€Q, t>0,
=1 =1

Od; = d; AL + 3;51; — v, 1;, r€eN, t>0,1=1,... k,

OzaﬁS:(?ﬁI@-, xeaQ,t>0,i:1,...,kz.

Here, Q is a bounded domain in R"™ with smooth boundary for some positive integer n. The
quantities dg and dj represent the movement rates of the susceptible and infected populations,
respectively. The functions 8; : Q — R, i = 1,..., k, are Holder continuous functions representing
the infection rate of strain 4 of the infectious disease while the functions v; : @ = R, i = 1, ..., k,
are Holder continuous functions representing the recovery rate of strain i of the infectious disease.
In future chapters, the number N will represent the total population size.

This dissertation will focus on the case when k& = 1. Namely, we study the model given by

,

S = dgAS +~y(x)] — B(x)SI, €, t>0,

oI = diAI + B(x)ST —~(x)[, z€Q, t>0, - (1.5)

0=03S =031, x €I, t>0.

The multiple-strain model (1.4) will be explored in future work.



1.4 Representing Infection
In the diffusive epidemic model (1.5), the term representing the action of infection is given by
B(x)SI. In general, for similar models to (1.5), the term representing the method of infection takes
the form of f(S,I) where f is some locally Lipschitz function on R% satisfying f(S,0) = 0 for
S >0.
BSIT

One common example used in the literature is f(S5,1) = ST This is referred to as the
standard incidence transmission mechanism or frequency-dependent transmission mechanism since
a disease modeled with this infection term is assumed to depend only on the contact rate between
susceptible individuals and infected individuals. Allen et al. in their seminal work [3] studied
a model similar to (1.5), but with the standard incidence infection term. They defined a basic
reproduction number and showed that their model obeys similar dynamics to (1.1). Inspired by
the work of Allen et al., other researchers strove to expand upon the results of [3] (see [8, 9, 14,
22, 23, 24, 25]). Results on the multiple-strain diffusive SIS model with the standard incidence
transmission mechanism can be found in [1, 18, 19].

The transmission mechanism used in (1.5), given by f(S,I) = 851, is referred to as the mass-
action incidence transmission mechanism or density-dependent transmission mechanism. The mass-
action transmission mechanism is best used to model a disease that spreads quicker when the
population density is higher. The diffusive SIS model with mass-action transmission is not as well-
studied as the model with standard incidence. Although there has been progress in this direction

(see [10, 31, 30]), there are various gaps in the literature concerning this type of model. The results

presented in this dissertation were made in an attempt to close some of these gaps.

1.5 Closing Remarks

The rest of this dissertation is organized as follows. The second chapter collects some important
preliminary results that are necessary for the discussion of our main results. The third chapter is
dedicated to evaluating the effectiveness of disease control strategies involving the restriction of
population movement. In doing so, we examine the well-posedness of the model, as well as the
existence and uniqueness (or non-uniqueness) of endemic equilibrium solutions of the model (1.5).

We also examine the asymptotic profiles of the endemic equilibrium solutions as the diffusion rates



for the susceptible or infected population decay to 0. The fourth chapter demonstrates the striking
effect that the inclusion of population movement can have on the dynamics of the disease. In
that chapter, we show that there is a precise range of the parameters of the model that leads to a
multiplicity of endemic equilibrium solutions. This demonstrates that it can be difficult to predict
the dynamics of an infectious disease under certain conditions. In the final chapter, we discuss

possible future directions to explore.



CHAPTER 2

NOTATION, DEFINITIONS, AND SOME PRELIMINARY RESULTS

This chapter will be devoted to introducing some of the notation and definitions used throughout
the subsequent chapters. It will also contain a few preliminary results necessary for our discussion.
Some of these results will be stated without proof, but adequate references will be provided. New

results will be supplemented with detailed proofs.

2.1 Notation and Definitions
Throughout this chapter and the subsequent chapters, we suppose that €2 is an open bounded
domain in R"™ with a smooth boundary 9Q. Let C(Q) denote the Banach space of uniformly

continuous functions on ) endowed with sup norm

[ulloo := max [u(z)|, we C(Q).
z€Q

Since we are concerned with population density functions, then we mainly focus on the closed

subset of nonnegative continuous functions on €2,
CT(Q):={uecC®)|u>0}

Given an element u € C(2), we introduce the following notation:

. _ 1
Upin = MINu(x), Upax ;= maxu(z), and T:=— [ wu.
e z€Q |Q| Q
Given a real number r € R, we use the standard notation of ry = max{0,r} and r_ = max{0, —r},

so that r =7y —r_ and |r|=rg +7r_.

Given ¢ € [1,+00) and an integer k > 1, let L9(2) denote the Banach space of LY—integrable



functions on © and W4 (€©2) denote the usual Sobolev space. In particular, for ¢ > 1, let
W24(Q) = {u € LYQ) | D*u € L), for all |a| < 2}

and

24(0) = {u € W*4(Q) | du = 0 on 9Q}.

n

For each integer k£ > 1, define
C*(Q) = {u e C(Q) | D*u e C(), forall o] < k}.

For each 0 < a < 1 and for a given function u : 2 — R, we define the seminorm [u], by

“ ewea T —y|*
xFy

We can then define the Banach space C*%(Q) by

ch(Q) = {u c CH(Q) | Z | D%ul| ., + Z [D%u]q < —1—00}

lal <k lal=k

with norm

[ull ghoy = Z | D%ul| o + Z [D%u]q.

jol<k o=k
Given (Sp, Iy) € [CT(9)]?, we shall denote by (S(t,x),I(t,x)) the unique classical solution to
(1.5) with initial data (Sp, lo) defined on a maximal interval of existence [0, Tihax). The existence

and uniqueness of (S(t,xz), I(t,x)) will be discussed in the next chapter.



2.2 The Disease-Free Equilibrium (DFE) and the Basic Reproduction Number (Ry).
A time-independent solution, (S(z),I(x)), of (1.5) is said to be an equilibrium solution of (1.5).

In other words, it solves the system

(

dsAS +~I1 —BSI =0, =€,
diAl —~vI 4+ ST =0, xe€Q,

(2.1)
078 = 0z1 = 0, x € 011,

N:/Q(S+I).

A solution of (2.1) which is of the form (.S, 0) is known as a disease-free equilibrium (DFE) solution.
N

The only DFE solution of (1.5) when dg > 0 is given by <ﬁ, 0). To see this, add the first two

equations in (2.1) to obtain

(S +1)=dsAS + d;Al
Integrating both sides over €2, we have

d
— (S—i—]):/(dsAS—i-d]AI).

Applying the integration by parts formula to the right-hand-side and recalling that 935 = 9z = 0,

then
d

a/Q(SJFI):().

Therefore, / (S+1I) = N for some positive constant N. For I = 0, we have
Q

AS=0, ze€Q

OpS =0, ze€od.

Multiply the first equation by S and integrate by parts to obtain / IVS|?> = 0. Hence, S = C for

N
some constant C. Therefore, N :/(S+I) = / C = |Q|C. Thus, (S,I) = (
Q Q

—, O) is the unique
€

10



DFE solution of (1.5).

To assist in discussing the dynamics of (1.5), we now provide a formula for the basic reproduction
number for (1.5). Recall that the basic reproduction number is interpreted to be the expected
number of secondary infections if an infected person were dropped into a population composed

entirely of susceptible people. Therefore, to obtain a formula for the basic reproduction number,

N
we linearize (1.5) at the DFE solution <@, 0) to obtain
N
atI:d]AI—fyI—l-B@I, reQ, t>0,
0z1 =0, x e o, t>0.

After applying the next-generation matrix approach of Diekmann and Heesterbeek (see [11]), it can
be shown that the basic reproduction number Ry is the unique positive number for which there is

a positive solution ¢ to the weighted eigenvalue problem

1 N
dIASD_’Y(P"‘__B(P:Q IL’EQ,
Ro €] (2.2)

Ozp =0, x € 09.

Then from (2.2) and using the variational characterization of the principal eigenvalue, we get that

Ro = R(N,dy) is given by

Nz (2.3)

Ro=1q]

where R1 = R1(dr) is given by the formula

2
Ri(dr) = sup Jo B

: 2.4
eerm2@)\{oy JoldrIVel? +v¢?] (2.4)

This is the inspiration for why the authors in [10], who also studied the PDE-SIS model given by
(1.5), defined its basic reproduction number Ry by the formula (2.3). We shall let ¢ denote the

positive eigenfunction associated with Ry satisfying ||¢1[|z2(q) = 1.

11



Next, we define the local reproduction function by

_ NS@)
R(x) = () € Q, (2.5)

and the sets

HT ={z€Q|R(x)>1} and H ={recQ|R(@) <1}

The set H™ is referred to as the high-risk arca for the discase and the set H ™ is the low-risk arca.
The low-risk area, H ™, is the region in  where (locally) the disease infection rate is lower than the
rate of recovery. The high-risk area, HT, is the region where the infection rate is higher than the
recovery rate. Intuitively, this means that individuals living on H™ are at a lower risk of contracting
the disease, while those residing on H™' are at a higher risk of contracting the disease.

Due to (2.3), since the formula of Rg is written in terms of R, to study the dependence of Ry
with respect to dj, it is enough to examine the dependence of R with respect to d;. The following

result, due to Allen et al. in [3], collects some important properties of R.
Lemma 2.2.1. [3/*Lemma 2.3

(i) Ifg is constant, then Ry = g for all dr > 0.

(ii) If é 18 not constant, then Ry is strictly decreasing in dy
Y

N Jo B

li N,dj) = d i N,dp) = : 2.
it TN ) = g and i, ol =gl 20
In particular, if
(v/B) <7/B, (2.7)

then 1 < (v/B)Ry whenever0 < dr < Ry (1/(v/B)); 1 = (v/B)R1 whenever dr = Ry (1/(v/B));
and 1 > (v/B)R1 whenever dr > Ry (1/(v/B)).

Due to Lemma 2.2.1, we can see that R is nondecreasing with respect to the infected population

diffusion rate dj. It is also clear from (2.3) that Ry depends linearly on the total population size

12



N and, in fact, increases with N. It is important to note that Rg is independent of the susceptible
population diffusion rate dg.

For each ¢ € [2, +00), consider the linear elliptic operator on L4(f2) (resp. on C(f2)), defined by
L'w =diAw+ (I8 —y)w, w € Dom, (resp. w € Domy), (2.8)

where Dom, = {u € W?4(Q) | dzu = 0 on dQ} and Domy, = {u € Ny;>1Dom, | L*u € C(Q)}. By
[12]*Theorem 1, pg. 357, since £* is symmetric on L*(Q), then L?(Q) has an orthonormal basis
formed by eigenfunctions of L*. Moreover, by (2.2) and (2.3), ¢ is an eigenvector of £* associated

with its principal eigenvalue 0. Furthermore, we can decompose L?(Q) as

L*(Q) = span{p1 } @ {w € L*(Q) | /ngol = 0}.

Thus,
C(Q) =span{p1} ® Z and LYU(Q) =span{p1} @ Z,, q>2,
where
Zoo g €C(Q) | / g1 = 0
and

Zq_{weLq(Q)\/qupl—O} V> 2.

Moreover, we have that E‘ Z,MDom, * Z¢ N Domg — Z, is invertible for each ¢ € (2, +00].

2.3 The Endemic Equilibrium (EE) Problem

An endemic equilibrium (EE) solution is an equilibrium solution where I > 0. In epidemic
models, the existence of an endemic equilibrium solution indicates the persistence of the disease.
It is common in basic epidemic models that existence of an endemic equilibrium solution is related
to the magnitude of the basic reproduction number.

To study the existence of an endemic equilibrium solution of (1.5), we find an equivalent prob-

lem. This is the essence of our next result.
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Lemma 2.3.1. Suppose that dg and d; are fixed positive numbers. The following is true:

(i) If (S(x),I(z)) is an equilibrium solution of (1.5), then the function

k(x) =dgS(x) +drl(z), =€ (2.9)

is constant. Moreover, if we let

~ - 1
S = 5 and [ =—, (2.10)
K K
then (k,S,1) satisfies
.1 .
S=—(1-dI), (2.11)
ds
N=1 / (1 — d;I) + dsl) (2.12)
ds Jo
and
( _ FUIB B _
diAl + d—(l—d]I)—”y I, €,
S
o051 =0, z € 99, (2.13)
0<I< i, z €.
\ dy

(i) If (k,5,1) solves (2.11), (2.12), and (2.13), then (S,I) = (kS,kI) is an equilibrium solution
of (3.1).

Proof. (i) It can be shown that x satisfies

Ak =0, z€f,

Ozk =0, x€ 0.

Therefore, we can see that ~ is some constant. If we divide both sides of (2.9) by x and solve for
S, then we obtain (2.11). Equation (2.12) follows from (2.10) and the fact that N = /(S +1).
Q

System (2.13) follows when S = xS = di(l — d;1) is substituted in the second equation of (2.1).
S
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(ii) It can be easily verified that, if (k,S,I) solves (2.11), (2.12), and (2.13), then (S,I) =

(kS, kI) is an equilibrium solution of (1.5). O

2.4 Profiles of Solutions to a One Parameter Family of Diffusive-Logistic Equations

Due to Lemma 2.3.1, we can see that the existence of an endemic equilibrium solution of system
(1.5) is equivalent to the existence of a positive solution of the logistic equation (2.13). Hence, the
current section is devoted to studying the dynamics of positive solutions of (2.13).

Given f € C(Q) and d > 0, let A(d, f) denote the principal eigenvalue of the linear elliptic

equation
0=dAp+ fo+Alp ze€fl,
(2.14)
0= 0zp x € 082.
It is well-known that A(d, f) is simple and is given by the variational formula
d 2
Ad,f)=  min Jo 1 fﬂ Ie (2.15)
peW12(2)\{0} Jo #?
Lemma 2.4.1. (i) If f € C(Q) is a constant function, then \(d, f) = —f for all d > 0.
(i) If f € C(Q) is not constant, then the mapping d v+ \(d, f) is strictly increasing with
Jin A ) = ~faws andJim N ) =~ / .
(iii) If f1, fo € C(Q) satisfy f1 <,# f2, then A(d, f2) < X(d, f1) for all d > 0.
For convenience, we introduce the quantity {*, defined by
1 N
[ :=— that Rg= ——. 2.16
T R TITe (2.16)

where Ry is given by (2.3). From [3], we know that 1 — Ry and A(dr, 8 — ) have the same sign.
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For every positive number [ > 0, consider the KPP-type elliptic equation

(2.17)
Ozu =0, x € 0.

It is well-known that there exists a unique nonnegative stable solution, denoted by ul, to (2.17) for
every [ > 0. The next result summarizes some important pieces of information on u!. This result is
essential for the proofs of some of the main results. For convenience, we define the function Ny, (1)
by

Ny, (1) = l*|Q’ / —did) =11 — dju)Ry, 1> 1" (2.18)

Lemma 2.4.2. Fiz d; > 0 and let Ry be given by (2.4).

(i) The elliptic equation (2.17) has a unique positive solution u' if and only if | > I*. Moreover,

1
0<ul < —, (2.19)
dr
lim [|u!]o0 = 0, (2.20)
l—=1*
NIV
lim ‘u ——H =0, (2.21)
=400
lim ’z (1 — drul) H (2.22)
l—+oo

and
Ul _ Rl fQ 590%
=1 dr [, B3

lim
l—1*

= 0. (2.23)
()

©1

(ii) The mapping (I*,4+00) 3 L — ul € CY(Q) is smooth and strictly increasing. Setting v = dyu'

for every 1 > I*, then v' satisfies

di At 4 (18(1 — 2dut) — )t + B(1 — dpul)ul =0, z € Q, (2.24)
2.24

ozvl =0, x € 09,

l Ri fQ /8991

—0 2.95
T, B — =01 , (2.25)

e (©)
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and

' 20 T | —
l_l}inoo I“v dlﬁHoo 0. (2.26)
(ii) The function Ny, defined by (2.18) is continuously differentiable and
Ny, (") =1 and lim Ny, (I) = (v/B)Ry. (2.27)
l—+4o00

Proof of Lemma 2.4.2-(1). (i) Proof of (2.19). If we linearize (2.17) at v = 0, we obtain the

eigenvalue problem

diAu+1pu —yu+Au =0, x€Q,
(2.28)

Oru =0, x € 0Q.
Recall that that for every [ > 0, A\(d;,[3 — ~) is the principal eigenvalue of (2.28). Since (2.17) is
a logistic equation, then it has (unique) positive solution ! if and only if A(dr,18 —~) < 0 ([5]).
By Lemma 2.4.1, we have that A(dj,l8 — ) is strictly decreasing in [. Note also from (2.2) that
Adr, "B — ) = 0. Therefore, A\(dy,l5 — ) < 0 if and only if [ > [*. As a result, (2.17) has a
(unique) positive solution if and only if I > I*. Moreover, for every | > [*, the unique positive
solution u! of (2.17) is linearly and globally stable. Now, it is easy to see that the constant positive

function u = T is a supersolution of (2.17). Therefore, it since u! is unique and globally stable,
I

1
we must have that 0 < u! < T
I

Proof of (2.20). Since the solution u' is uniformly bounded in I by (2.19), then by the regularity

! — «* uniformly in Q, where u*

theory for elliptic equations, as [ — [*, up to a subsequence, u
is a nonnegative solution of (2.17). However, since (2.17) has no positive solution for [ = [*, then

u* = 0. Since u* = 0 is independent of the chosen subsequence, we must have that (2.20) holds.

1
Proof of (2.21). Let z' be the function given by 2! = T —ul. Then, 2! is strictly positive by (2.19)
I

and satisfies

diAz +18ds(z — —LVul =0, =€,
IBd; (2.29)

Ozz = 0, x € 0N.
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Observe that z = 21618 ; ;((;;)dl

0<Zl:d_1“l§32ﬁ18wy((xg;)d,
or

0< “l_diz m—%%ﬁﬁﬁz:(;)?h
Thus, UZ—T — 0 asl — +oo.

is a supersolution to (2.29). So we have that

Proof of (2.22). Observe that the function wq, ; = (1 — drug, ;) satisfies

1
l

Awg, 1+ (v — Pwa )ug, 0 =0 x €,

Orwg, ;1 =0 x € 0.

(2.30)

1
Hence, since by (2.21) we have that ug, ; — T uniformly in x as | — +o00, we can make use of the
I

singular perturbation theory [5] to obtain that w — 7 uniformly in x as | — +oo.

B
Proof of (2.23). If we write u' as

ul = (=1 1>

then we need only find the limit of ¢’ as I — I*. Set

c(l) ::/QWpl and ' =l —c(D)gr, 1>1%

Since / gp% =1, then / 1/7301 = 0. Hence,
0 0

Ple 2 and Ul =(1—1%)(c(l)pr + ),

.
=1

Setting 1[;[ = then

1 >1*

Phe Zy and Wl = (1= 1) (c()gr + (L= 1), 1> 1"

18
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(2.32)

(2.33)

(2.34)



We now show the existence of a positive constant K, such that

Q| Bmin Q
‘ ’/8 ¥1min < (Z)S‘ |H5Hoo”(f71“oo

2.35
a1 15 Ka, 141 B (2:35)

Multiply (2.2) by u! and (2.17) by ¢, integrate the resulting equations, and take their difference
to get

= / (18 — 1d; Bu' — y)ulpr — / (I*B —v)u'pr
Q Q

so that

(l—l*)/Qﬁulgol :ld[/Qﬁ(ul)ngl, 1> 1" (2.36)

By (2.36) and Holder’s inequality, we obtain for all I > [* that

(l’)/“wl wn /5“W
ol [ s
quﬁ“mwl
_ldr l 2£
‘meAWW)w

i (8 .
ZWM(WLMAW%)

ldlﬁmin / 1 2
> [ (wer)
181l o1l o

ldlﬂmin (/ 1 )2
> ueor ] .
2Bl lerllo \ Jo

Q[ [|B8]| o0 01 [ oo 1 / l
> 1> 1" 2.37
ldlﬂmin =¥ Q e ~ ( )

Thus,

On the other hand, we have from (2.31) and (2.32) that

/ulgolz(l—l*)/gblgol =c)(I—1%), 1>1. (2.38)
Q Q
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Hence, by (2.37) and (2.38), we obtain

o ldlﬁmin ’

I >1". (2.39)
Observe from (2.20) that
tim 1801 = dra!) = 5| = 1178 3l - (2.40)
—1* 00
Then, from (2.22) and (2.40), we get

sup
I>1*

18(1 — dyul) — VH < too.

Hence, due to Harnack’s inequality for elliptic equations and since u! is a solution to (2.17), that

there exists a positive constant K, , which is independent of [ > [*, such that
HulH < Kguli, 1> (2.41)
o0

Then, (2.36) and (2.41) together yield that for every [ > [*

[ —[*
(- / i < / Bulor
Q Bmin (9]

o ld] N2
- /Q B2y

ldIKdI ||B|’oouin1n/ulgpl
Bmin Q
1, K,
= w(uﬁnhﬁol,min)/ ’LLl(le
Q

/Bmin(fgl,min

ldi K,
< ldiKq, ||ﬁ||oo/(ul(p1)2
ﬂmin@l,min )

2
< ldiKq, ||Bllo (/ uz¢1> _
|Q‘ﬁmin@1,min Q

Combined with (2.38),

|Q‘/3mingpl min 1 / 1 *
d < wer =c(l), 1>1". 2.42
kg, 1Bl ~ 1= 1% Jo 7! ® (2.42)

20




Thus, from (2.39) and (2.42), we get that (2.35) holds.
Next, we will show that
Jo B¢

lim ¢(l) = —=——. 2.43
e Y I*dr [, Be3 (243)

Since u' solves (2.17) and satisfies (2.33), then ¢! satisfies

drA(e(Dr +9') + (18(1 = dpu') =) (e(Dpr +91) =0, 2 €Q,

(2.44)
ozt =0, z € ON.
Additionally, since @1 satisfies (2.2), then (2.44) can be written as
drAY + (1= 1%)e(DB(L = ldi(c(l)pr + 1)1 + BI(1 — dpul) — 1) =0, €, 0.15)
ozt =0, z € 090.
R Y
Since 1! = T for { > I*, then from (2.45) we can get

Lo+ B~ i (c(pr + (1~ IVi))pr + BU(L — dyu') = 1) =0, zeQ,

Ozt =0, z € 00.

Hence,

V' = ~L3 o, (c(lm(l —ldi(c(pr + (1 = 1)P))er + BUA — dru') - z*wl), ¢22, 1>

*,—1
Set Mq = ‘ ﬁ\zqﬂDomq , then
Al < B _ * Al _ ] _ * Al
0 W2a(Q) —MQHCU)B(l ldi(c(D)r + (L= 1%)"))er + BU(L — dru’) lW}‘L‘!(Q)
/ i I o 2.46
<4y 8l (0= )are) oale 4 )41 o] ) [ (240)

+ Mye(l) |18l (1 + tdre(l) [l |l )17,
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In view of (2.20) and (2.35), we can see that, for each ¢ > 1,

M, |18l ((z — 1) (ldre(l) ]l + 1) + Ud;s H“le> S0 as 1ol

so that, for each ¢ > 2, there is a K;‘ > 0 such that

||

waa) <Ky, 0<I"<l<l"+¢& forsome &. (2.47)

If we choose ¢ > n so that W*%(Q) is compactly embedded in C'(Q), then it follows from (2.20),
(2.35), and (2.47) that (after possibly passing to a subsequence) ¢(I) — ¢* and ¢! — ¢* in C1(Q)

as | — Ix, where ¢* is a positive number and ¢* € C?() N Z, satisfies

~

—L*Y* =Bl — 1*dic*v1)p1, = €Q,
(2.48)

Oarb* = 0, x € 0.

Since L*(Doms N Z4) = Z00 C 2, we can multiply (2.48) by 1 and integrate over  to obtain

0= c*/ B(1 —I*c*drpr) 3.
Q

2
Hence, since ¢* > 0, we have that ¢* = IQLQPIS Since ¢* is independent of the chosen sub-
l*dl fQ /8()01

sequence, then we can conclude that ¢(l) — ¢* as [ — [*. Furthermore, since £* is invertible on
Zoo N Domg, then ¢* is the unique solution of (2.48) in Z,, N Dom,, and P! — " in CY(Q) as
I — I*. Thus, we have that

ul fQ 690%

=l = c(Dpy + (1 — ") — as | —I* in CY(Q).
(& (D1 + ( ) l*dzfgﬁgoff% Q)
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Proof of Lemma 2.4.2-(ii). Linearizing (2.17) at u', we obtain the eigenvalue problem

diAg + (18(1 = 2djul) = V) +Ap =0 z€Q,
(2.49)

Ozp =0 x € 0fL.

Recall from (2.14) that A(dy,18(1 — 2du!) — 7) is the principal eigenvalue of (2.49). By Lemma,

2.4.1-(iii), we have that

ANdr, 18(1 — 2dyu) — v) >X\(dr, 1d; Bmintibyn + 13(1 — dru') — )

>1d;Bmintid i, + Ady, 18(1 — dpul) — ) = ld; Buintl, > 0.

Thus, ' is linearly stable. It then follows from the Implicit Function Theorem that u! is con-
tinuously differentiable in I, with derivative denoted by v'. An implicit differentiation of (2.17)
shows that ¢! is the unique solution of (2.24). Finally, since B(1 — dyu)u! > 0, it follows from
the maximum principle for elliptic equations that v' > 0 on Q. Note that the function on the
right-hand-side of (2.17) is analytic in [ > I*. Then, the function u! is also analytic in [ > [* by the

Implicit Function Theorem.
l

u
[-1*
defined as in (2.31). By (2.23), we can see that for any positive number A, we have

Next, we show that (2.25) and (2.26) hold. For each I > I*, let o' = = (D)1 + ¢! be

1—drut — dilAY! — 1 — dil*Ac*p1 asl — 1" uniformly in Q,

2
% > 0. Hence, we can choose 0 < A7 < As so that
I*dy [, B}

where ¢* =
1—dpul —dilAst <0< 1—dd —dilAw, F<l<l*+¢
for some €y > 0. Then, from (2.44), we have that

diA(AY + (18(1 — 2drul) — ) (Ayph) + (1 — dpud)u! = B(1 — dput — dil Al >0, =€ Q,
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and
diA(Agg!) + (18(1 — 2dyul) — 4) (A0 + B — dpul)u! = B(1 — dpu! — djlAyp)ul <0, =€,

for every I* <1 <" + ¢y. Therefore, by (2.24) and the comparison principle for elliptic equations,
we have

At <ol < A, 0 < <l <" +e.

Additionally, by (2.24) and estimates for elliptic equations (after possibly passing to a subsequence),
there is a strictly positive function v* € C%(Q) with ! — v* in C*(Q) as | — I*. Moreover, v*
satisfies the system

diAv* + ("B —y)v* =0, ze€Q,

aﬁv* =0, x € 0N.

Hence, we must have that v* = ¢**¢; for some positive number ¢**. Now, multiply (2.24) by
and multiply (2.44) by o', then integrate over (). Taking the difference of the resulting equations

and using the fact that u! = (I — [*)4!, we obtain that
/ B(1 —dpu! — ldpoy(hH2 =0, 1>1*.
Q

Letting [ — [*, we get / B(1 —drl*c*™*p1)(c*p1)? = 0. Solving for ¢**, we obtain ¢** = ¢*, which is
Q

independent of the chosen subsequence. Therefore, v! — ¢*¢; in C1(Q) as I — [* and so we have

proven (2.25).

Finally, if we set p! = [%0! for each [ > [*, then it follows from (2.24) that p' satisfies

ﬂApl + é(zl — 1) LBt —dpph)y =0, zeQ,
! ! B (2.50)
oap' = 0, x € 09,

1
where z! = [(1 — dyu') for I > I*. Hence, since (from (2.21) and (2.22)) u’ — 7 and 2\ — % in
1

C(Q) as | — +oo, then we can utilize the singular perturbation theory for elliptic equations to
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deduce from (2.50) that p! — # as | — oo, uniformly on Q. This shows (2.26). O
1

Proof of Lemma 2.4.2-(iii). The regularity of Ny, follows from the fact that the map I — u is

continuously differentiable. Hence, from (2.20),

Ndl(l ) = hm (l*|Q| d1u ) =1.

Additionally, from (2.22),

_ - [21_773
A Nay ()= (mm/ (1=dru) )_ it (z*|@|/ (1=drd) )_ z*|Q|/95 = 0/B)R

Thus, we have shown (2.27). O

2.5 Some Abstract Results on Parabolic Equations
Consider the semilinear initial value problem

Owu(t) = A(u(t)) + F(t,u(t)), t>0,
(2.51)

u(0) = ug

where A is the infinitesimal generator of a Cp—semigroup {7'(t)}+>0 on a Banach space X and
F:[0,T) x X — X is continuous in ¢ and Lipschitz in u. We say that u is a mild solution of (2.51)

if it satisfies the integral equation given by

u(t) =T (t)uy + /0 T(t — s)F(s,u(s)) ds.

The following result from Pazy guarantees the (local) existence and uniqueness of mild solutions

of (2.51).

Theorem 2.5.1. [21/*Theorem 1.4, pg. 185 Let X be a Banach space and F : [0,400)x X — X be
continuous in t fort > 0 and locally Lipschitz continuous in u, uniformly in t on bounded intervals.

If A is the infinitesimal generator of a Co-semigroup {T'(t)}+>0 on X, then for every ug € X there
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1S G tmax < +00 such that the initial value problem

Ou(t) = A(u(t)) + F(t,u(t)), t=>0,

u(0) = wo,

has a unique mild solution u on [0, tyax). Moreover, if tax < 400, then

lim  |u(t)|,, = +oc.

o0
t—thax

The next result, also from Pazy, describes when mild solutions to (2.51) become classical solu-

tions.

Theorem 2.5.2. [21]*Theorem 1.5, pg. 187 Let A be the infinitesimal generator of a Co—semigroup
{T(t) >0 on X. If F:[0,T] x X — X is continuously differentiable from [0,T] x X into X, then

the mild solution of (2.51) with ug € D(A) is a classical solution of the initial value problem.
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CHAPTER 3

SINGLE-STRAIN MODEL: WELL-POSEDNESS OF THE INITTAL
VALUE PROBLEM, EXISTENCE AND ASYMPTOTIC PROFILES OF
THE ENDEMIC EQUILIBRIUM SOLUTIONS

In this chapter, we evaluate whether a control strategy involving the restriction of population
movement is effective at reducing the spread of disease. In this direction, we examine the exis-
tence and asymptotic profiles of endemic equilibrium solutions as the movement rates of either the

susceptible population or the infected population become increasingly restricted.

3.1 Well-Posedness of the Initial Value Problem

In this section, we will discuss the global existence and uniqueness of classical solutions to (1.5).

Recall that if (1.5) has a classical solution, then it should satisfy

S = dgAS +~(x)I — B(x)SI, x€Q, t>0,
ol = diAI + B(x)ST —~(x)I, z€Q, t>0,
0 =035 =051

N:/Q(S+I)

where we have included the equation for the total population size N. To guarantee that our
solutions reflect biological realism, we take our initial conditions to be nonnegative and continuous
up to the boundary of Q. That is, we additionally assume the initial data (S, Ip) € [CF(€)]?. The
following theorem summarizes the existence and uniqueness of classical solutions to (3.1) with this

given initial data.

Theorem 3.1.1. Given initial data (So,Io) € [CT(Q)]r, there exists a unique classical solution
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(S(t,z),I(t,x)) to (1.5) defined for all time. Furthermore, there exists M™ > 0, independent of the

initial data (So, L) such that

limsup [|I(t,)]|cc < M™, (3.1)
t——+o0
lim inf min S(¢, z) > min{N/|Q|, (v/8)min }, (3.2)
t=+00 zcQ
and
limsup |5, -)lloo < max{N/|, (7/B)max}- (3-3)

Remark 3.1.1. [t is important to note that the existence, uniqueness, and global boundedness of
solutions to the initial value problem (1.5) was established in [10]. However, the a priori estimates

(3.2) and (3.3) are new to the best of our knowledge.

3.2 Existence of Endemic Equilibrium Solutions

Next, we discuss the existence and nonexistence of endemic equilibrium solutions of (1.5).

Theorem 3.2.1. Fiz d; > 0 and dg > 0. Then, there is a number R, > 1, independent of N and

satisfying R« = 1 if either % is constant or dg > dy, such that the following conclusions hold:

(i) If Ro > 1, then system (1.5) has a finite number m > 1 of endemic equilibrium solutions,
with m = 1 when Rg > Rs. Moreover, if m > 2, then the endemic equilibrium solutions of
(1.5) can be totally ordered (Si, I;),- -+ , (Sm, Im) in such a way that I; < I;y1 on Q for each
i=1,---.m — 1. If, in addition, either % is constant or dg > dy, then the unique endemic
equilibrium solution of (1.5) is nondegenerate.

(i) If Rp < max{(’y/ﬁ)mian,min {1, 2—5}}, then system (1.5) has no endemic equilibrium so-

lution.

Remark 3.2.1. We note that existence and nonexistence of endemic equilibrium solutions was also
considered in [10]. However, the finiteness of the set of endemic equilibrium solutions and the fact
that this set is totally ordered in the I-components seem to be new results. The fact that the unique
endemic equilibrium solution of (1.5) is nondegenerate when dg > d; and Ry > 1 also seems to be

a new result. Note that if T s constant, then Ry = é Hence, if either Y s constant or dg > dj,
Y
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it follows from Theorem 3.2.1 that (1.5) has a (unique) endemic equilibrium solution if and only if

Ro > 1. Hence, if either % is constant or dg > dy, Theorem 3.2.1 recovers [10]*Theorem 3.11.

3.3  Asymptotic Profiles of Endemic Equilibrium Solutions
We now discuss the asymptotic limit of endemic equilibrium solutions when we fix a positive
diffusion rate dj of the infected group but allow the diffusion rate of the susceptible group dg to

decay to 0.
Theorem 3.3.1. Let dy > 0 be fized and assume that Rog > 1. The following are true:

(i) If N < / %, then there exists a C > 0 such that every endemic equilibrium solution (S, I)
Q

of (1.5) with dg > 0 satisfies

1 I
— < —<C, 0<dg<l. 3.4
C_ds_ ’ S ( )

Furthermore, up to a subsequence,

N(1 —d;I*)

S — S*(,d[) = m

as dg— 0 (3.5)

= 1
n CQ(Q) where 0 < I* < T is a positive solution of the nonlocal elliptic equation
I

- N . .
d[AI*-i-( p )(1—d11*)—’y>[*20, T € €,

Jo (1 —di I
Oxl* =0, x € 09.

(3.6)

(ii) If N > / %, then (1.5) has endemic equilibrium solutions (S, 1) for 0 < dg < 1 satisfying

Q
(&n%<%%ﬂN—A%D as dg —0 (3.7)

uniformly on €.

Remark 3.3.1. (i) Theorem 3.53.1 (i) gives the precise decay rate of the infected population at
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endemic equilibrium when N < /% as dg — 0. This implies that if N < /% then
Q Q

the magnitude of the infected group at endemic equilibrium decays to 0 linearly in dg as dg

tends to 0. It is also good to note that, in [31], it was proven that the I-component of endemic
Y

equilibrium solutions will converge to 0 if Ro > 1 and N < / 3 Theorem 3.5.1 (i) also shows
Q

that the magnitude of the I-component of endemic equilibrium solutions will be proportional
to the diffusion rate, dg, of the susceptible group as dg approaches 0. Furthermore, when
we fix the infected group’s diffusion rate, dy, the function S*(-,dy) provides another way of

characterizing of the limit profile of the S-component of endemic equilibrium solutions as

ds — 0. The asymptotic profiles of S*(-,dy) as d; — 0 will be discussed in Theorem 3.3.3.

(ii) We note that Theorem 3.3.1 (ii) answers the conjecture that was made in [31]. If it is

. . 15 Y 1 ‘V/BP
additionally assumed that either f € C*(Q) and N > 3 + 1 7
Q Q

authors in [30] and [31] obtained the same conclusion as in Theorem 3.3.1 (ii). They also

or HT = Q, the

conjectured that the same result is true in general. We observe that these results are improved

in Theorem 8.3.1 (ii) without requiring other technical assumptions on the infection rate, 3.

The next results show the asymptotic behavior of endemic equilibrium solutions when d; decays

to 0 with either ﬂ — 0 or @ — 0.
ds dr

Theorem 3.3.2. Suppose that H" is nonempty. Then:
(i) There exists 0 < dy < 1 such that (1.5) has a unique endemic equilibrium solution (S,I) for

every 0 < dy < min{dp,ds}. Moreover, (S,I) satisfies

v(z) (z)

lim S — min =0 and lim / I =N — |Q|min (3.8)
max{d[,%}—ﬂ) zeq B(7) || 5 max{d],j—é} Q 20 B(x)
Furthermore, if we define the set Q by
= {$€§|M=minﬂ}, (3.9)
5(33) yeN (y)
then
lim max [(z) =0 for any compact subset K C 2\ Q* (3.10)

max{dy, j—é }—0 zeK
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(iii)

and there is a (Radon) probability measure j on Q such that, up to a subsequence,

19 ()

min

dr
min o %50 (3.11)

I
— ds

p o weakly® as max{dy,

and

p(Q%) = 1. (3.12)
In particular, if Q* is a single point, then u is a Dirac measure.

If N < / %, then there is 0 < dy < 1 such that (1.5) has an endemic equilibrium solution
Q
(S, 1) for every ds > 0 and 0 < d; < dy. Moreover, there is a positive constant C' such that

(S, 1) satisfies
1 ds
Cdr

< i, < 0%, (313)

d
for all dg,dy satisfying max{dy, d_S} <dy and
I

S(z) = Sy () = ,,*<1 _ (1 - Vjﬁ)) — min{v*, ZES} as max{dy, flf} S0 (3.14)

uniformly on Q, where v* is the unique positive number satisfying

max l ml ﬁ)/(x) l/ max 7(1.) an
gy min /3<x>} <V <maxgm o
N = 1/*/9(1 —( /mm{u* =1 (3.15)

If N > / %, then there is 0 < do < 1 such that for every 0 < d; < dy there is ds; > 0
Q

d
salisfying dligo dLII = 0 such that (1.5) has endemic equilibrium solutions (S, ) with ds = dg
I

o= 3)

satisfying

uniformly on €.

The next result gives the asymptotic profile of the functions S*(-,dr) in (3.5), which can be

obtained as a direct consequence of Theorem 3.3.2 (ii), .
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Theorem 3.3.3. Suppose that the set H" is nonempty and that the quantity N satisfies N < / J

0B’

Then there is dy > 0 such that Ro > 1 for every 0 < dj < dgy. Furthermore, for every 0 < dj < dg,

the function S*(-,dy) defined by (3.5) satisfies

dlfigo HS*(., dr) — min{v*, E}Hoo =0

where v* is given by (3.15).

Remark 3.3.2. Assume that H" is nonempty. We make some remarks on Theorem 3.3.2.

(1)

(iii)

We begin by noting that the inequality given by S(x) > min ’yEx; holds for any endemic
zeQ P\T

equilibrium solution (S(x),I(x)) of (3.1). Therefore, we have that / I < N — |Q|min ’Vg;
Q HASY)

for any endemic equilibrium solution (S(x),I(x)) of system (3.1). Hence, Theorem 3.3.2 (i)

tells us that the local size and total size of the susceptible group at endemic equilibrium will
be minimized when the movement rate of the infected group is taken to be sufficiently smaller
when compared to the movement rate of the susceptible group. At the same time, the infected

group attains its maximal total size.

When N < / %, Theorem 3.3.2 (ii) demonstrates that the disease may be driven to extinction
0
if the diffusion rate of the susceptible group is considerably reduced compared to the diffusion
N N
rate of the infected group. Moreover, since v* > — by (3.15), it holds that H~ C mt({u* >

€2
V() ds . ,
——= ¢ |. Thus, (3.13) shows that as max< dy, 7 becomes sufficiently small, the local size
I

B(x)
of the susceptible group is mazimized in the low-risk area as well as in some portions of
the high-risk area. These results imply that significantly lowering the diffusion rate of the

susceptible group compared to that of the infected group is an effective control strategy that

leads to the eradication of the disease.

When N > / %, Theorem 8.3.2 (iii) suggests that the disease may still persist even when
0

stgnificantly reducing the movement rate of the susceptible group compared to the movement

rate of the infected group. In this situation, the local population size of the susceptible group

is still mazimized, as shown by (3.16).
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We emphasize again that the asymptotic profiles of endemic equilibrium solutions as max{dy, j—;}
tends to 0 was left open in [31]. It is important to point out that [30] partially answers this question
in the case where the spatial dimension is n = 1 and where it is assumed that HT = Q, dg > 0
is fixed, and d; decays to 0. Despite these stronger assumptions, the results found in [30] do not
provide precise knowledge on the limit of endemic equilibrium solutions (.S, I') as d; approaches 0 for
a fixed dg > 0. Thus, Theorem 3.3.2 marks a significant improvement on these known results and
ultimately answers the open question found in [31] concerning the asymptotic behavior of endemic
equilibrium solutions as max {d[, j—;} goes to 0.

3.4 Total Lockdown Scenario

Next, we examine the behavior of equilibrium solutions of (1.5) in a scenario modeling the

complete lockdown of the susceptible group and only the susceptible group. In other words, we

examine the case of dg = 0 and dj > 0.
Theorem 3.4.1. Suppose that dg =0 and d; > 0.

(i) If N < /ﬂ% then (1.5) has:

(1) disease-free equilibrium solutions, given by the collection of pairs (S,I) = (S*,0) where

S* is any nonnegative, continuous function on @ with / S*=N.
Q

(2) no endemic equilibrium solution.

Furthermore, if N < / %, then, given any classical solution (S(t,x),1(t,z)) of (1.5) with
Q

positive initial data, there is S* € C1(Q) with / S* = N such that
Q
(S(t,x),I(t,z)) = (S*(x),0) ast— +oo

uniformly on €.

(ii) If N > / %, in addition to the disease-free equilibrium solutions described in (i), (1.5) has
Q

1
a unique endemic equilibrium solution (SZ,17) = (%, @ <N —/ %))
Q
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3.5 Discussion

In this chapter, we investigated whether a reduction in the movement of the population is
an effective disease control strategy by examining the asymptotic profiles of endemic equilibrium
solutions of the diffusive epidemic model given by (1.5). We specifically examined the cases where
either the diffusion rate of the susceptible group, dg, or the diffusion rate of the infected group, d;,
decay to 0. Finally, we examined the large-time behavior of classical solutions of (1.5) when there
is a complete restriction on the movement of only the susceptible group (i.e. dg = 0) while the
infected individuals are free to move (i.e. d; > 0).

When the susceptible and infected groups are both free to move, Theorem 3.2.1 demonstrates
that the population size is a significant factor in the persistence of the disease. In fact, if we observe

€2

N
that the basic reproduction number Ry = @Rl is bigger than 1 if and only if N > = then
1

Q

the quantity lR_| is a threshold number for the total population size N. In other words, if N is
1

larger than this number, then the disease will persist and become endemic. When N is smaller

than %, then there is a possibility for the disease to be controlled. Because of Lemma 2.3.1, it
is known that when there is a high-risk area in the environment and when the diffusion rate dj
of the infected individuals is sufficiently small, then we always have that N exceeds the threshold
quantity % Thus, in this case, the disease becomes endemic. Therefore, reducing the diffusion
rate of the infected population in an environment containing a nonempty high-risk area could lead
to disease persistence.

Because we also want to understand how a reduction in only the movement rates of the suscep-
tible population might affect the dynamics of the disease, we fixed the diffusion rate of the infected
group dy in Theorem 3.3.1 and examined the asymptotic profiles of the endemic equilibrium so-
lutions as dg — 0. Our results show a minimization of the size of the infected group at endemic
equilibrium when the movement rate of the susceptible people becomes sufficiently small. In fact,
we can see that, when the overall population size is kept below a new threshold number / %, the
total size of the infected population at endemic equilibrium decays at a rate proportionagf to the

diffusion rate of the susceptible group. This shows that, when we only lower the diffusion rate of the

susceptible population and when we maintain the overall population size under some critical value,
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then the impact of the disease on the population may be significantly reduced even in the case
where the disease persists. However, if the total size of the population exceeds this new threshold
number, then a reduction of only the movement rate of the susceptible group might still lead to
the persistence of the disease. However, the size of the infected population at endemic equilibrium
will be minimized. The results in Theorem 3.3.2 (ii) and (iii) confirm that these conclusions are
still valid even when there is a reduction in the diffusion rate of the infected population. However,
the rate of reduction must be sufficiently large compared to that of the susceptible group.

When the infected diffusion rate is lowered at a sufficiently smaller rate than the susceptible
diffusion rate, Theorem 3.3.1 (i) shows that, at endemic equilibrium, the infected population will
maximize their total size. Moreover, they will concentrate on the region in the disease high-risk area
where the susceptible people minimize their local size. At the same time, the size of the susceptible
population is minimized uniformly over the entire environment. Additionally, this suggests that
restricting the population movement rate is an effective control strategy provided that the movement
rate of the susceptible population is kept sufficiently small compared to the movement rate of the
infected population.

Lastly, we studied the large-time behavior of solutions of (1.5) in the case of a total lockdown of
only the susceptible group. This is represented by setting dg = 0 and d; > 0. In this case, Theorem
3.4.1 predicts that the disease will be eradicated in the long run when N < /Q % On the other
hand, the disease will persist if we reverse the inequality. We point out that N < / % implies that
the low-risk area H ™ of the disease is nonempty. We also point out that there is als?) the possibility
that both N > / and H™ is nonempty. Hence, Theorem 3.3.3 indicates that the creation of a
low-risk area is nost] enough to eventually eradicate the disease when only the susceptible movement

rate is completely restricted. This deviates from the prediction of extinction of the disease using

the PDE-SIS model based on the standard incidence transmission mechanism.
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CHAPTER 4

MULTIPLICITY OF ENDEMIC EQUILIBRIA

The current chapter establishes the existence of multiple endemic equilibrium solutions of the
diffusive SIS epidemic model (1.5). From an application point of view, the results obtained here
strongly highlight how population movement and spatial heterogeneity can complicate disease dy-
namics. This implies that it might be difficult to successfully implement disease control strategies.

To emphasize the spatial heterogeneity of the habitat, we shall always suppose, throughout the

chapter, that the following standing assumption holds.
(A) The function 5 is not constant.
Y

Hence, since (A) holds, it follows from Lemma 2.2.1 that R; = Ri(ds), introduced in (2.4), is
strictly decreasing in dy. As such, it has an inverse function which we will denote by Rl_l. Recall

that the basic reproduction number Ry = Ro(N,d) of (1.5) defined by
—TRy. (4.1)

We can observe from (4.1) that Ry is strictly increasing with respect to N and is independent of
dg. Moreover, if dy, 8, and ~ are fixed, then we can vary Rg from 0 to +o0o. This will often be the

case in the statement of our results.

4.1 Multiplicity /Uniqueness of Endemic Equilibrium Solutions of System (1.5)
Theorem 4.1.1 (Multiplicity of Endemic Equilibrium Solutions). Fiz dy > 0. Then there ezists

REY = RE¥(dy) satisfying 0 < RYY < min{1, (v/B)R1} such that the following conclusions hold.
(i) If R < R(l)ow, then (1.5) has no endemic equilibrium solution for every dg > 0.
(i) If Ro > R¥Y, then there is di = dj(Ro,dr) > 0 such that (1.5) has an endemic equilibrium
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solution (Shighs Inigh) for every 0 < dg < dy. Moreover, any other endemic equilibrium solution

(S, 1), if one exists, must satisfy

I(l‘) < I},,ig;,,(l‘), x € €. (4.2)

(iii) If R(l)ow < 1 and Ré‘)w < Ro < 1, then system (1.5) has an endemic equilibrium solution

(Siows Liow) for every 0 < dg < dj, where dy is as in (ii), satisfying

Ilow(l‘) < Ih,i,gh(x); xT € Q, (43)
such that any other endemic equilibrium solution (S,I) of (1.5), if one exists, must satisfy

Low(x) < I(z), x €. (4.4)

Let dr and R{™ be given as in Theorem 4.1.1. It can be concluded from Theorem 4.1.1-(i) and
(ii) that the quantity R%OW serves as a sharp critical number that the basic reproduction number
must surpass in order to guarantee the existence of endemic equilibrium solutions of system (1.5)
over some range of the susceptible population diffusion rate and the total population size. The
asymptotic profiles of the endemic equilibrium solutions of Theorem 4.1.1 as dg — 0 will be given
in Theorem 4.3.1.

It is important to know sufficient conditions for when RBOW < 1. In this direction, we have:

Proposition 4.1.2. Suppose that
v/B <7/B. (4.5)

Then RY™Y < 1 for every dr > Ry (v/B).

Note that (4.5) holds when v = 32 and is not constant. Under the assumption (4.5), we can
observe from the previous theorem that there is a range of parameters satisfying Ry < 1 where (1.5)
has at least two endemic equilibrium solutions when the susceptible diffusion rate dg is small. An

immediate question is to know whether (1.5) may have multiple endemic equilibrium solutions for
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large values of dg. First, we establish the following result on the uniqueness of endemic equilibrium

solutions of (1.5).

Theorem 4.1.3 (Uniqueness of Endemic Equilibrium Solutions). For every d; > 0, there exists

diow = diow(dr) satisfying 0 < djo < dy such that the following hold:
(1) If dg > djpy and Ry > 1, then (1.5) has a unique endemic equilibrium solution.
(i1) If dsg > dipy and Ry < 1, then (1.5) has no endemic equilibrium solution.

By Theorem 4.1.3, Rg is enough to predict the existence of endemic equilibrium solutions of
(1.5) for large values of dg. Note that diow(dr) is independent of N and strictly less than d;. Then,
for djow(d;) < dg < dj, system (1.5) has a (unique) endemic equilibrium solution if and only if
Ro > 1. This improves previously known results on the uniqueness of endemic equilibrium solutions

of (1.5).

Remark 4.1.1. We note that if dj,(dr) > 0, then for every 0 < dg < djou(dr), system (1.5) has
at least two endemic equilibrium solutions for a range of Ro. This shows that dj.(dy) is a sharp

critical number that dg must exceed to guarantee the uniqueness of endemic equilibrium solutions

of (1.5).

4.2 Bifurcation Curves of Endemic Equilibrium Solutions
The next result complements Theorem 4.1.3 by identifying sufficient conditions that lead to a

backward bifurcation curve of endemic equilibrium solutions at Rg = 1.

Theorem 4.2.1 (Backward Bifurcation Curve). Fiz d;y > 0 and suppose that

Be? < (71)(Be3). (4.6)

Then there is d5 = d5(dr) > 0 such that for every 0 < dg < d, as Ro increases from 0 to +oo, the
endemic equilibrium solutions of (1.5) form an unbounded simple connected curve which bifurcates

from the set of disease-free equilibrium solutions from the left at Rg = 1.
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Proposition 4.5.3 bellow gives an example of parameters satisfying (4.6). Our next result com-
plements Theorem 4.2.1 again by identifying sufficient conditions that lead to a forward S-shaped

bifurcation curve of endemic equilibrium solutions at Rg = 1.

Theorem 4.2.2 (Forward and S-shaped Bifurcation Curve). Fiz dy > 0 and suppose that

(V/BR1<1 and Byl > (71)(Be3). (4.7)

Then there is d5 = d5(dr) > 0 such that for every 0 < dg < d3, as Ro increases from 0 to +oo, the
endemic equilibrium solutions of (1.5) form an unbounded simple connected curve which bifurcates
from the set of disease-free equilibrium solutions from the right at Ro = 1. Moreover, for every

0 < dg < d3, there exist Rgﬁ <1< Rg,% < Rg% such that:
(i) If Ro < Rgi, then (1.5) has no endemic equilibrium solution.
(il) If Rop = Rgi, then (1.5) has at least one endemic equilibrium solution.

(iii) If either ’Rgi < Ro <1orRy = Rgfz, then (1.5) has at least two endemic equilibrium

solutions.
(iv) If 1< R < Rg,%, then (1.5) has at least three endemic equilibrium solutions.

(v) If Rg > Rgi, then (1.5) has at least one endemic equilibrium solution. This solution is unique

if Ro > Ry

Furthermore, Rgsz is strictly increasing in dg for each i =1,2,3 and, as dg — 0, Rgsl — Ré"w and

’R,gsi = Rpis @ = 2,3, for some positive numbers 1 < R4 < Rj 3-

Proposition 4.5.3 below gives an example of parameters for which (4.7) holds.

4.3 Asymptotic Profiles of Endemic Equilibrium Solutions for Small dg
Next, we explore how the multiplicity of endemic equilibrium solutions of (1.5) may affect
disease control strategy. As such, we complement Theorems 4.1.1, 4.1.3, 4.2.1 and 4.2.2 with a

result on the asymptotic profiles of endemic equilibrium solutions as dg — 0. Our result indicates
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that the disease will either persist or die out depending on how dg is lowered. More precisely, we

have the following result:
Theorem 4.3.1. Fiz d; > 0 and suppose that Rf)"w < 1, where R[l)ow is given by Theorem 4.1.1.

Fix Rl"“’ <Ry <1 and let dj be as in Theorem 4.1.1 such that the system (1.5) has a maz-
1
imal endemic equilibrium solution (Shigh, Inign) and a minimal endemic equilibrium solution

(Siows Liow) for every 0 < dg < dj.

(i-1) If Ro < (v/B)R1, then there is a positive constant C > 0 such that

%

d d
US < jow < Ihi,gh, < CdSa 0<ds < ?17 (48)

N(1—d; uZigh)

Shigh — Sm bt ” ) (4-9)
! g fQ df“m'gh)
and
N1 -d
Stow — St = M as dg — 0 (4.10)
fQ dlulow

_ 1
in C(Q) where 0 < u},, < Upigh < 7, are classical solutions of the nonlocal elliptic

I
equation

diAu* + <5 Ro(1 — dru )* _,y)u* _0. zeq
R Jo(l = di) (4.11)

Fru” = 0, x € 0.

(i-2) If Ro > (v/B)R1, then
- o Ro ——

: igh — 3 Thigh =\ 75, = = 4.12
| svan 5Hm+ o~ (o wm)“oo] 0 (1.12)

and (Siow, Liow) satisfies (4.8) and (4.10).

(ii) In addition, suppose that (4.7) holds. Let dy and Ry, be given by Theorem 4.2.2 and fix

1 <Ro <Rpo- Then, for each 0 < ds < d3, system (1.5) has a mazimal endemic equilibrium
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solution (Shigh, Inign) and a minimal endemic equilibrium solution (Siow, liow). Moreover, as
ds — 0, 11, satisfies (4.8), Siow satisfies (4.10) up to a subsequence, and (Shigh, Inign) satisfies
(4.12).

Theorem 4.2.2 shows that as dg — 0, the profiles of the endemic equilibrium solutions of (1.5)
depends on the chosen subsequence. These results also show that the two scenarios discussed in
[31] are possible. Theorem 4.2.2 also complements Theorem 3.3.2 which establishes the asymptotic

profiles of endemic equilibrium solutions of (1.5) as dy — 0.

4.4 Discussion

In this chapter, we examined the questions of multiplicity or uniqueness of the endemic equi-
librium solutions of a diffusive epidemic model with the mass-action transmission mechanism. In
doing so, we have obtained some interesting results. In particular, we have discovered new phenom-
ena which cannot be observed from either the ODE model (1.1) or the corresponding PDE model
(see [3]) with the frequency-dependent transmission mechanism.

As mentioned in the introduction, for the ODE-SIS model with simple nonlinearity (i.e. frequency-
dependent or mass-action transmission), the basic reproduction number is enough to completely
characterize the existence of endemic equilibrium solutions. This is also the case for the diffusive
epidemic model with the frequency-dependent transmission. However, for the diffusive model (1.5)
with mass-action transmission, we showed that the basic reproduction number is not enough to
predict the persistence of the disease.

Indeed, Theorem 4.1.1 indicates that, for the dynamics of solutions of (1.5), the disease may
persist even if Ry < 1. More precisely, there is a critical number 0 < RBOW < 1, uniquely determined
by dy, such that (1.5) has no endemic equilibrium solution if Ry < ’R%)OW for any diffusion rate dg of
the susceptible population. However, thanks to Theorem 4.1.1, if R}]OW < Ry < 1, then there exist
at least two endemic equilibrium solutions when dg is sufficiently small. In this case, we see that
R is not enough to predict the persistence of the disease. In Proposition 4.1.2, we showed that if
the average of the ratio of the recovery rate over the transmission rate is smaller than the ratio of

the average of the recovery rate to the average of the transmission rate, then R%;’W < 1 for large
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values of d;. By Theorem 4.2.1, if the average of 8% is smaller than the product of the averages
of 1 and By?, we again have that R%)OW < 1. In fact, there is a backward bifurcation at Rg =1 in
this case.

When Ry > 1, Theorem 4.2.2 shows that it is possible for (1.5) to have at least three endemic
equilibrium solutions when dg is small. Despite the many possible scenarios shown above concerning
the global structure of the endemic equilibrium solutions of (1.5), Theorem 4.1.3 shows that Ry is
enough to predict the persistence of the disease if the susceptible population moves at a fast enough
rate compared to the infected population.

Thus, from the above results and by Theorem 4.3.1, we can conclude that decreasing the
movement rate of the susceptible population could be an effective disease control strategy as long

as any accumulation of the population is also minimized.

4.5 Construction of Examples
We conclude this chapter with a construction of examples that satisfy the hypotheses of our
main results.

Let \g=0< A <X <. <\, < ... denote the eigenvalues of

Ap+Arp=0, €,

Orp =0, x € 01,

satisfying \,, — +00 as m — 400. Let {¢m,}m>0 denote the orthonormal basis of L*(Q) where
each y, is an eigenfunction associated with the eigenvalue \,, for each m > 0. Now, consider the
Banach space Z = {w € L*(Q) | W = 0} = span(yg). For every ¢ > 2, the restriction of the Laplace
operator on Dom, N Z to Z, = L) N Z is invertible. Let T = A|Domqm2 and let C} = HT&H.

Then for every w € Z~q, the unique solution W' € Dom, N Z of

AW +w=0, z€

OzW =0, z € 09, (4.13)
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satisfies

HWHWZ‘I(Q) < C; HwHLq(Q) : (4.14)

Fix a non-constant, Holder continuous function h on § and fix positive constants k and d;. Define

I =k, @0:@, and I =h. (4.15)

Let ¢1 be the unique solution to (4.13) with wy = [5(I7 — h)@o/d;. Note that ¢; is well-defined

since / wy = 0. Next, define
Q

I3 = (A= TDh + Kl — @)/, (4.16)

and P9 to be the unique solution of (4.13) with we == (kl5p0 — h(h —17)@o — k(h —17)$1)/d;. Note

also that @9 is well-defined since / wg = 0. Throughout the rest of this section, whenever h, k,
Q

and dj are given, we shall suppose that [j, 7,5, @0, p1, and P9 are defined as above.

Proposition 4.5.1. Fix k > 0 and d; > 0 and suppose that h = ¢y ppm for some m > 1 where ¢,

is a nonzero constant. Then @1 = —(kR)/(|Q|drAm) and 15 = (1 — k2/(d1Am))h2/k.
Proof. Tt can be verified by inspection. O

Proposition 4.5.2. Fiz d; > 0, k > 0, and a Hélder continuous, non-constant function h on €.

k
For every, 0 < e < ey = W} define
(o9}

/Bk,h,e =k+e€h (417)

and let I*(¢) denote the principal eigenvalue of the weighted linear elliptic equation

dIASb + ﬂk,h,e(l(e) - /Bk,h7€)¢ = 0, T c Q:
(4.18)

Ozp =0, x € 0.
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Denote by ¢(-;€) the unique positive solution of (4.13) satisfying / o(;€) = 1. Next, define
Q
G3(6) = (P(s56) — o —egr — @a) [ and  [5(e) = (I"(€) — I§ — elf — €°13)/€”. (4.19)

It holds that

limsup [|@3(+5 €)[ o1 @) < +oo and  limsup |I3(e)| < +oc. (4.20)
e—0 e—0

Proof. By straightforward calculation, we have that @3 and 3 satisfy

¢

drAGs + (kls + h(I; — 1)) ($1 + eB2 + €33)
+(Brnels + hl3)P + k(7 — h) (P2 +€p3) =0, z €K,

(4.21)
Ozps = 0, x € 01,

/%5320-
Q

Fix ¢ > 1 such that W%%(Q) is continuously embedded in C'(Q). Applying similar arguments as

in the proof of (2.46), we obtain the existence of 0 < €, , < 1 and My > 0 such that

1935 )l () < Magn(L+1130), 0 <e<egpn (4.22)

After integrating the equation in (4.21), setting Ay = kl5 + h(l] — h) and As = k(I] — h), and

rearranging the terms, we obtain

i / Brned = — / AL(1 + o) — 13 / h / Asps — e / (Az + cA1)s.
Q Q Q Q Q

2 3
Therefore, from (4.22), and after setting B = |Q] || A1]| (||s51||oo+”§52||oo)+z HA%'”oo"’Z 1Bill o
i=1 i=1

we have, for every 0 < € < €, that

|l5(€)] /Qﬁk,h,e%é < Q[ A1l o (1211l + €llP2lloe) + [QUl] @]l + (llArlloe + €llA2lloo) 73]l

< B+ |9/|5](|20lloo + € [21lloc + € B2lloc + € 185llc) + B 1830
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< (1+[Q[ll3)) B + Mg k(B + [Q]l2 = )(1 + |13(e)])
or, equivalently,

Ilél(/gﬁk,h,ecﬁEMq,k,h(BHﬂIIlSI)) < (1+[Q[[I ) B+eMpn(B+Q|3]), 0 <e<egpp (4.23)

Observe that

- N k
/ﬁk,h,eso > (k—enhnoo)/ G—k—clhll,, O<e<—F_.

1+ |Q|i3)H)B
Then, from (4.23), we have that limsup |I5] < 4+ LDE kH 2)
e—0

limsup ||@3/ 1) < +0oo since W?29(Q) is continuously embedded in C?(0). O
e—0

which implies, with (4.22), that

Proposition 4.5.3. Fiz k > 0 and df > 0 and suppose that h = cppm for some m > 1. For every

0<ex 1, let Yihe = ﬂ,ihf_ where Pp . is defined by (4.17). Then Ry = Moreover, for

1
1*(e)’

sufficiently small values of €, it holds that

>0 dfdiag > K
L/R1 = Yihe/ Brhe (4.24)
<0 ifdiam < K2,

and

>0 if didm < 2K2,
5]1,]{:,6(/9? - ﬁ(ﬁk,h,e@%) (4'25)
<0 ifdih > 2k%.

Therefore,

(i) if k% < di\, < 2k?, then 1 > (Ve h,e/ Brhe)R1 and Bh,k’ego‘{f > W(ﬁl@h?e@%) for0<e<1.

(i) of 2k% < dihm, then Bhk.cfs < P1(Brnep?) for 0 < e < 1.
Proof. From (2.2) and (4.18), we can see that [*(¢) = 1/R;. By Proposition 4.5.2, we can write
I*(€) as
1Ry =1"(e) = k+eh+ 15 + S3l5(e), 0<e< 1, (4.26)

where 05 is given by (4.16) and [3(e) satisfies (4.20). Since Vi h.e/Bkhe = Brhe =k +€h =k + eh,
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we can use Proposition 4.5.1 to get

<1/721 —m)/e =13 —eli(e) = <<1—k /(drAm )ﬁ)/k—ezg(e), 0<e< 1. (4.27)

Notice that lir% el3(e) = 0 by (4.20) and so (4.24) holds.
e

Next, we show that (4.25) holds. Set ¢ = gpl/(/ 4,01). Then
)

Brhct? = BT(Brne?) = Bne?® — Bene?) o1l 710 - (4.28)

Observe from (2.2) and the fact that {*(¢) = 1/R; and / ¢ = 1, that ¢ is the unique solution of
Q

(4.18). By Proposition 4.14, ¢ can be written as
¢ =1/1+ef1 + P2+ 3, 0<e<, (4.29)

where @3 satisfies (4.20). Hence,

Brhe?> — Bih,ep? = 6/ Brh e (P1 + €P2 + €233). (4.30)
0

For convenience, set P = @3 + ep3 and Q = ¢1 + eP. Then, ¢ = 1/|Q| + eQ and

- k 2k
Bl hep?Q = |Q|2<,01 +e<|mgol + k:<p2P+htp2Q> + ke? <|Q|P+Q )

Now, observe that
i -
k@GP = ——=@g + ke ( +( +6Q>Q >
€2 1\ 1€
and
P 2
h@*Q = ==h@1 + 6h< + ( + 6Q> QQ)
IQ\2 (/EAN{Y]
Then,

B p2Q = <2k|9| 1+k‘<ﬁ2+hs51) + H(-se),

lﬂl2 IQI2
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where

e = k(jggp @)+ 4 (5 + (s 2)r) 1 + (g + 2)7)

Therefore, since / p; =0,7=1,2, then we have
Q

/ﬁkhew Q= <2kIQ/¢%+/Qh¢1)+e/QH(-;e), 0<e< 1.

Due to Proposition 4.5.1, we have

2kr|Q|/ ~2+/h~ = ( 2k —1) k /h2 (4.31)
PR A V75 W AT T TS W A ‘

Thus, since by (4.20) we get € ||H(-;€)|| — 0 as e — 0, then from (4.28), (4.30), and (4.31), we
get that (4.25) holds. O
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CHAPTER 5

PROOFS OF MAIN RESULTS

This chapter contains the proofs of the results stated in Chapters 3 and 4.

5.1 Proofs of Results from Chapter 3
5.1.1 Proof of Theorem 3.1.1

Proof of Theorem 3.1.1. Let (So, Ip) € [CT(Q)]%. The proof is divided into three steps.

Step 1. In this step, we show that (1.5) subject to the initial condition (Sp,Ip) has a unique

classical solution (S(¢,x), I(t,z)) defined for all ¢ > 0. To this end, write (1.5) in the form

Ou = Au+ F(u)
8ﬁu =0
where u = (5,1), Au = (dgAS,d;Al), and F(u) = (vI — SI,B5S1 — ~vI). Observe that A has

domain

D(A) = {(S,1) € Mp=1W2P(Q) x WP (Q) | (AS, AI) € [C(Q)]}.

From the theory of parabolic equations (see [21]), A generates an analytic Cp-semigroup {7T'(¢)}+>0

on [C(Q)]?. That is, given any initial data uy = u(0,-) € [C(Q)]?, then

is the classical solution of

U(O7 ) = Uo,
and u(t,-;ug) € D(A) for all ¢ > 0. By Theorem 2.5.1, there exists a unique mild solution that
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exists locally on some time interval [0, tmax). By Theorem 2.5.2, this mild solution is a classical
solution of (1.5).
If we can show that the local solution is bounded, then the solution is defined for all positive

times, in other words, tmax = +00. To that end, we show that

sup [[u(t)|| o < +o0.
>0

We begin by showing that I is nonnegative on [0, tmax). Take a(t,z) = y(z) — B(x)S (¢, x). Then

the second equation of (1.5) becomes

5.1

0z1 =0, x €09, 0<t<tnax.

Observe that I(t,z) = 0 is also a solution of (5.1). Since I(0,z) > 0 by assumption, we can
apply the comparison principle for linear parabolic equations to conclude that I(¢,z) > 0 for all
0 <t < tmax and z € Q.

We now show that S(¢,z) > 0 for all 0 < t < tpax. Since I(¢t,z) > 0 and ~y(x) > 0, then from

(1.5) we have that S is a supersolution to

oW =dsAW — B(x)IW, z€Q, 0 <t < tpax, (5.2)
5.2

ozW =0, €00, 0<t<tnax.

Observe that S(t,z) = 0 is a sub-solution of (5.2). Since S(0,z) > 0, then after applying the
comparison principle again, we get that S(¢,z) > 0 for all 0 <t < t;ac and = € Q.

Now, from (1.5), we have that S satisfies

8tS:dSAS+ﬁ(%—S)I, 2 €0, 0<t < tax, 5.3)
5.3

075 =0, x €09, 0 <t<tmax

Then, S is a super-solution of (5.3) and, since S(0,z) < S, then

[oon

Take § = H%H + 180,
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S(t,xz) < S for all 0 < t < tpay. Hence, S is uniformly bounded on (0, typay)-

Now, since |S(t,x)] < S for all 0 < t < tmax and I(¢,x) > 0 for all ¢t € (0, tymax), then

Ol < diAT + ||B|leoST € Q, 0 <t < tmax,

ozl =0 €00, 0<t<tmax.

It then follows from the comparison principle for parabolic equations that
‘|I(t7 )HOO < ”IOHOOQtHﬁ”OOSy 0 <t <imax-

This along with the boundedness of ||S(¢,)|lecc and Theorem 2.5.1 implies that tmax = co.

Step 2. Here, we show (3.2) and (3.3). First, by the arguments given in Step 1, sup ||a(¢,)|lcc <
>0
1V]loo + lIB]locS and I(t,x) > 0 and solves (5.1). By the Harnack’s inequality [16]*Theorem 2.5,

there is a positive number ¢, such that

(T, ) |loo < cx mm](t y), t>1. (5.4)
zeN
Define

W(t) maX{ } + LO@ g0 [0 [‘Q s,y dde t > O,

and
. N v B CE e duds
W (t) :mln{—, _H }_ Lie 0 fo Jo I(s:y)dyds 4 < 0,
o 1271 B lleo
ﬂmin 1 I dud ‘

where og = >0, Ly = HS(l, -)Hooego Jo Jo I(sy)dy sy and Ly is chosen so that w(l) _o

| Q|
By direct computation and using (5.4), we have that

W — dsAW — B(x) (% - W) I(t,z)

—ooLpe Jo JaT(sy dyd‘s/ I(t,y)dy + ﬁ(max{ } — =+ Lge™7° Jo JaX(sy dyds)](t, x)
Q

2Lo<5(x)](t,a:)—ao /Q I(t,y)dy) oo Jo oo
>Lo(B@)I(1,) — o /

I(t,y)d ) ~00 f Jo 1(s,9)dyds
Q
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> Lo (Bmin — o0lQle, )e o0 o Jo b (1 ) — 0

Thus, since W (1) > S(1,-) and 93W = 0 on 09 then, by the comparison principle for parabolic
equations, we have

S(t,) <W(t), t>1. (5.5)

Next, by direct computation and using (5.4) again, we have

o — dsAW — (o) (33~ W) 1t
I(t,

y)dy + B(mm{

_O'OLle 90 fO fsz 7y dyds

L} -5 e B e 1)

Q

<L (o0 / I(t,y)dy — B(x)I(t ) )™ fn“s’y)dyds
Q
<Ly (00l (¢ @) = B@)I(t, ) )em Jo Jo T duds

<Ly (00\9‘0* — 5min> —o0 [y Jo I(siy dyds[(t x) =0

Thus, since W (1) =0 < S(1,-) and 03 = 0 on 92, then by the comparison principle for parabolic
equations, we have

S(t, ) > W(t), t>1 (5.6)

From this point, we distinguish two cases.

Case 1. Here, we suppose that /OC/ I(t,x)dxzdt = +oo. In this case, letting t — 400 in both
(5.5) and (5.6), we obtain that (3.3) an% (3.3) hold.

Case 2. Here, we suppose that /OO/ I(t,x)dzdt < 4+o00. Thus /I(t,-)dx — 0 as t — +oo.
It then follows from the Harnack’s Oineqﬁality (5.4) that ||I(t,)]c %Q+oo as t — +o00. Note also

that / S=N— / I — N ast — +o0o. We can now apply a perturbation argument to the first
Q Q

N
equation of (1.5) to derive that HS(t, ) = @H — 0 as t — 400, which implies that (3.2) and
o0

(3.3) hold.
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Step 3. Here, we show that (3.1) holds. Due to (3.2) and (3.3), there is ¢; > 0 such that

3t

Therefore, we can apply the Harnack’s inequality to derive that (5.4) for ¢ > t; + 1, where the

N
sup [ S(t,)lloo < 2max { -,
= ]

N
constant ¢, depends only on d; and {ﬁ, H%” } Therefore,

Cx c« N
I(t,- < — [ I(t,x)de < — = M", t>1t; +1.
Il < i [ Ta)de < S e 2, ez

Hence, (3.1) holds.

5.1.2  Proof of Theorem 3.2.1
Proof of Theorem 3.2.1. Thanks to Lemma 2.3.1, studying the existence of endemic equilibrium
solutions of (1.5) is equivalent to studying the existence of positive solutions of (2.13) satisfying

(2.12). Hence, we introduce the function

a1 5.7
Fo Jo (5.7)

Nay.as (1) = Na; (1) +

where u' is the unique positive solution of (2.17), Ny, is introduced in (2.18), and I* is introduced
as in (2.16). By Lemma 2.4.2, the function Ny, 4, is of class C'. Furthermore, by (2.20)-(2.21), it

holds that
Napas (%) = lim Ny, 4,(1) = QI =1 and  lim Ny, 44(1) = +oo. (5.8)
l—1* l—+o0

By Lemma 2.3.1, (1.5) has an endemic equilibrium solution if and only if there is some [ > [* such

that Ro = Ny, 45(1). Now, observe that

deI:dI(l) . 1 l l *

52



where ! is the unique positive solution of (2.24). Next, by (2.20) and (2.26), we have that

. dNg, (1) 1 1 dg
! nds\t) _ Q4+ (ds —dp) [ =) = 0.
St T dl 0] (1921 + (s I)/le) i~

Therefore, the quantity l4, 45 defined by

deladS (T>

ldl,ds = inf{l > [* ’ dl

> 0 for all 7 > [}

is well-defined. Define
Ry :=max{Ng, 45 (1) | 1 € [I",la;.d5]}-

If ds > dy, then Ny, 4, is strictly increasing by (5.9), which implies that l4, 4, = [*, and hence
R = Ny as (1) = 1.

1
If % = ¢ is constant, then u! = d—(l — %) for all I > [*, which yields
I

deI,dS(l) _ 1
dl l*|Q‘

c 1 c dg .
(120 + (ds = dnj@l(iz5 + 0= D)) = 2% >0, 1> 1"

Thus, Ny, 44(1) is strictly increasing and lg, 45 = I*. So, R, =1 if 7 is constant.

B
(i) Suppose that Ry > 1. By (5.8) and the Intermediate Value Theorem, there is some Iy > [*

such that Ny, 45 (In) = Ro. Thus the following set
Sp = {l > [* |Nd1,ds(l) = RO}

is not empty. We have that the set Sy contains exactly one element if Ry > R, in which case
(1.5) has unique endemic equilibrium solution by Lemma 2.3.1. Note that the function Ny, 4 is
analytic on (I*,+00) since ! is by the Implicit Function Theorem. Note also from (5.8) that the
function Ny, g4 is not constant. Therefore, the set Sy has only finitely many elements. This shows

that (1.5) has a finite number of endemic equilibrium solutions. If Sy contains m > 2 elements, say
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l1 <lg < -+ <lp, then by Lemma 2.3.1, the functions (S;, [;), i = 1,--- ,m, defined by

lids .
S; = li(l — d[uli) and I; := l*|élul7'

are the endemic equilibrium solutions of (1.5). Because of the monotonicity of u! in I, we have that
I <Iliyg,fori=1,--- m—1.
Finally, suppose, in addition, that either % is constant or dg > dy. Let (S*,I") be the unique

endemic equilibrium solution of (1.5). Linearizing (1.5) at (S™,I"), we obtain the linear parabolic

system

,

S = dgAS — BI*S + (y — BS*), z€Q, t>0,

I = diAI + (BS* — ) + BI*S, z€Q, t>0,

(5.10)
038 = 0z1 =0, x e i, t>0,
\Jo
The eigenvalue problem associated with (5.10) is
dsApy = pIo1 + (v = BS%)pa + Ap1 = 0, z €,
diAgs + (BS* = )2+ I o1+ A2 =0, z €, _—
5.11

078 = 051 =0, T € 092,

/m +2) =0,
Q

If % is constant, then (S*,I*) is spatially homogeneous and v — 3S* = 0. In this case, (5.11)

becomes
dsAp1 — BI* o1+ X1 =0, z€Q,
dIAsz‘f‘ﬁI*@l‘i‘)\(PQ:Oa IL'EQ,
(5.12)
08 = 0z1 = 0, x € 012,

/9(901 +¢2) = 0.
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If ©1 # 0 then, by the first equation of (5.12), A is real and A\ > A(dg, —BI") > (BI")min > 0.
If ¢1 = 0 then, by the second equation of (5.12), we also have that X is a real number. Moreover,
A > A(d7,0) = 0 with equality if and only if ¢o is a constant real number. In the latter case, it
follows from the last equation of (5.12) that ¢9 = 0, which is impossible. Therefore, if ¢ = 0, we
must have that A > 0. This shows that any eigenvalue of (5.12) is real and positive, so that (S*, ")
is linearly stable.

Now, suppose that dg > d;y. We show that A = 0 is not an eigenvalue of (5.11). Let A be an
eigenvalue of (5.11) and (¢1,¢2) be an associated eigenfunction. If w9 = 0, then ¢; # 0 and it
follows from the first equation of (5.11) that A is real with A > A(dg, —8I*) > (8L )min > 0. So
we may suppose that ¢o # 0. In this case, we proceed by contradiction to show that A % 0. So,

suppose to the contrary that A = 0. Adding up the first two equations of (5.11) gives

0= A(dsp1 +drp2), €S

This, along with the boundary conditions, implies that dgy1 + drps = k for some complex number

k € C. Therefore, by (5.11), we have that

( d I*

diBpr + (55" —2) — SpI)en + Dk =0, e q,
S I

Orp2 =0, x € 09, (5.13)

dy 1
= () /

" (ds ] Jo 7

d I d 1
Note that, since the functions ((BS* —5) — —IBI*) and g are real-valued and (—I - 1)—

dg I ds 1|

is a real number, then then both the real part vector (Re(¢2),Re(k)) and the imaginary part
(Im(p2),Im(k)) satisfy (5.13). Therefore, we may suppose that ¢ is a real-valued function and
that x is a real number. Next, since (S*,I*) is an endemic equilibrium solution of (1.5), then

A(dr, BS* —~) = 0. As a result, by Lemma 2.4.1, we have that

d
A(dg, BS* —~ — d—j/ﬂ*) > A(dj, BS* —7) = 0.
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Therefore, the linear operator u ((BS* —) — %BI*)U — drAu, subject to the homogeneous
Neumann boundary conditions, is invertible. Furthermore, by the strong maximum principle for
elliptic equations, its inverse function is strongly positive. Therefore, by the first equation of (5.13),
we have that 9 has the same sign as . This, along with the last equation of (5.13) and the fact
that 3—; < 1, implies that x = 0, which in turn implies that @9 = 0. So, we obtain a contradiction.

Therefore, A = 0 is not an eigenvalue of (5.11), and hence (5™, I) is not degenerate.
(i) Since for every I > I*, I(1 — dyu') > (7/8)min by the maximum principle for elliptic equations,
then

Nd d (l) > |Q|(7/ﬂ)m1n

= " + ldS/ ul = (7/6)111111731 + ldS/ ul > (7/5)1111117 I >1".
|92 Q Q

Hence, since (1.5) has an endemic equilibrium solution if and only if there is some ! > [ such that
N, a5 (1) = Ro, we conclude that (1.5) has no endemic equilibrium solution if Ro < (7/8)minR1-

Finally, observe that

Ny (1) = g (191 + 2 = i) = (s =d)-) [ o)

>li*<1 - (flf - 1),) — li*min{l,cji—f} > min{l, Z‘j}.

d
Thus, (1.5) has no endemic equilibrium solution if Ry < min {1, d_S}
I

5.1.3 Proof of Theorem 3.3.1
Proof of Theorem 3.3.1. (i) Let d; be a fixed positive number and suppose that Ro(N,d;) > 1 so

that (3.1) has an endemic equilibrium solution (S(-,dg), I(+,dg)) for every ds > 0. Suppose also

that N < / % Let (k,S(-),I(-)) be given by (2.9) and (2.10). We show that
Q

no = liminf/ (1— d]j(',ds)) > 0. (5.14)
Q

dsﬁo
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Suppose that (5.14) were false. Then, there exists a sequence of positive numbers {dg,, }m>1

converging to 0 such that

lim [ (1 —dfI(-,ds,m)) = 0.

m——+00 Q

~ 1
Hence, equation (5.49) combined with (2.12) and the fact that / I< 7 imply
Q I

i K(dsm) . N
lim = lim - =
m—+oo  dg,, m—+00 fQ(l —diI(-,ds)) + dsm fQ I(-,ds,)

= +00.

(5.15)

(5.16)

Now, by (2.13), I(-,ds, ) = U, rdg,, for all m > 1. So, we can conclude from (2.22) and (5.16) that

I, dSm

lim ﬂﬂ@%l—mﬁy@m»=%

m—r—+00 dSm

K(dSm)
Sm

uniformly in €. Therefore, since S(-, dg,,) =

we have that

N> lim S(-,dsm):/l,
Q o

m——+00
which contradicts our assumption that N < / % Therefore, (5.14) holds and so
Q
d N N
lim sup ri(ds) = limsup = =< —.

Therefore, there is a C7 > 0 such that

Next, we show that

n1 = liminf min I(z, dg) > 0.
ds—0 zeQ

(1—diI(-,dg,,)) and N = /Q(S +1)

z/s,
Q

(5.17)

(5.18)

Suppose that (5.18) were false. Observe from (5.17) and the fact that 0 < d;I(-,ds) < 1 that

Br(ds)

ds

(=il ds) =3 <GBl t Il 0<ds <1,

(e o]

o7

(5.19)



Then, by (5.19) and the Harnack’s inequality for elliptic equations, there exists a sequence of

— 0 as m — +o00. Therefore,

o0

positive numbers {dg,, }m>1 converging to 0 such that Hf(, dsm)‘

. /ﬂ(dSm) . N N
lim = lim =
Mmoo dSm Mmoo fQ(l 7d1[('7d5m)) +dSmI(7dSm) |Q|

Therefore, if we define I = , then it follows from the regularity theory for elliptic equations

I
I
~ ~ S A~
that I(-,dgs,,) — I* (up to a subsequence) as m — +oo for some function I* € C%(Q) satisfying

I*>0, ||I*|| =1, and

[e.e]

~ N «
diAT* + (ﬁf 7)1* =0, z€Q,

ozl* =0, z €00,

N
which, by (2.2), implies that Ry = @Rl = 1. This contradicts our assumption that Ry =

Ro(N,dr) > 1. Therefore, (5.18) holds.
Now, from (5.17), we have that

11¢,ds)l = nds) | 7 ds)|_ < Crds, 0<ds <1. (5.20)

On the other hand, applying the maximum principle to the equation for S, we get

min + < S(-,dg) < max L (5.21)
2cq B 20
Hence,
k(ds) dr Y
=S+ —I>min—, dg>0. 5.22
ds ds  — zea B (5:22)
Then, (5.22) combined with (5.18) yield that
lim inf min It.ds) _ lim inf ~ds) min I(-,dg) > 1, min T>o. (5.23)
ds—0 gzcq  dg ds—0 S zeQ zcq B

Thus, (3.4) follows from (5.20) and (5.23).

Finally, by (5.14), (5.18), (5.19), and the fact that 0 < d;I < 1, we can apply the regularity
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- 1
theory for elliptic equations to obtain that there is I* € C?*(Q), 0 < u < 1, satisfying 0 < I [* < T
I

and (3.6) such that I(-,ds) — I* as dg — 0 (up to a subsequence) in C?(Q). Therefore,

N(—di) = — Sk N(L = dil”) drl") as dg — 0
= = S ’
Jol (1 —dgl) ) +ds Jo I Jo(1 —diT¥)

21 —dil) =

uniformly on C?(Q) and so (3.5) holds.

(ii) Now, suppose that N > / % By Lemma 2.4.2; the elliptic equation (2.17) has a unique
Q

for every | > —. Moreover,

ositive solution 0 < u < —
b dr,l dr Ry

1
l_l)lin Udyl = R and l_lg_xglocl(l —drug, ;) = 3 (5.24)
uniformly in z € Q. Define, for each [ > —,
1
N—-1],(1—d
dg; = Jo = druay) (5.25)

! fQ Udy,l

We then have that, from (5.24) and the fact that N > / there exists lp > 1 such that dg; > 0

0B’
for [ > ly. Take

S(-,ds;) =11 —drug,y) and I(-,ds;) = ( /5 .dsy >f il s .
0

ud[v

Then, it can be easily verified that (S(-,ds;), I(-,ds;)) is an endemic equlhbrlum solution of (3.1)

B

as | — 400, uniformly in €. Finally, using the regularity of the function [ uq,; and using (5.25),

for every | > lp. Moreover, we have from (5.24) that (S(-,ds;),I(-,ds;)) — (ﬂ 9] ( 7))
we have that the function [ — dg; is continuous and

lim dSl = 0.
l—+o00
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5.1.4 Proof of Theorem 3.3.2

Proof of Theorem 8.3.2. Suppose that H' # ().

(i) Since H™ is nonempty, then by Theorem 3.2.1 (i) and Lemma 2.2.1, there exists a 0 < dy < 1
such that (1.5) has an endemic equilibrium (S(-), I(-)) for every dg > 0 and 0 < d; < dy. Observe
from Theorem 3.2.1 (7) that the endemic equilibrium (S(-), I(+)) of (1.5) is unique whenever dg > dy,

in particular for d; < min{dy,dg}. Let (x,S(:), I(-)) be given by (2.9) and (2.10). Observe that
K N N N

_—= pos - = = S
ds  [o(1—dil)+dsI Q|+ (ds —dp) [o 1 ~ |9

for all 0 < d; < min{dp,ds}

which combined with (5.22) gives

(z

2

. N
min —

< di < for all 0 < d; < min{do,ds}. (5.26)
S

~—

The rest of the proof will be divided into three steps.
Step 1. In this step, we will show that (3.8) holds. We begin by claiming that

lim BAN min 7(1‘)

max{df,;l—é}at) ds zeQ) 5(1')

(5.27)

Suppose, for the sake of contradiction, that (5.27) were false. Then, we can find sequences of

d
positive numbers {dy,, }m>1 and {dg,, }m>1 satisfying max{dy,,, i} — 0 as m — +o0o such that

ds,,
N N ()
— >n2:= lim —— > min . 5.28
[ N 0 529
Observe that the function @(-) = d;I(-) satisfies
_ . (BK _ _
di At + (—(1 —a) —’y)u =0, xe€
ds (5.29)
Ozt = 0, x € 08,
d‘['"L

K
} — 0and —— — 7, it follows from the singular perturbation

™m ™m

for every dy > 0. Since max{dy,,, y
S,
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theory (see [5]) that

. - v
1 =(1-— 5.30
Clhm - w ( >+ ( )
uniformly on 2. Additionally, we have from (5.26) that

d [ |
/a:_f <N Ny Wy
0 R Jo K dSminxeﬁ% ds’

Therefore, we can conclude from (5.30) that

(1- 1), 0. aen

which yields that

72 < min 7(1‘)
weﬁ (‘T)

This contradicts (5.28). Thus, we have that (5.27) must hold. From (5.21), we get

() K () dr
min < min S(z) <maxS(z) < — — min as max{d;,—} — 0.
z€Q B(IL‘) T zeQ ( ) z€N ( ) dS z€Q /B(:U) { ! dS}
Therefore,
S — min (@) as max{dy, ﬂ} — 0 (uniformly on Q) (5.31)
e B(J?) dS
and
. (z) dr
I=N- [ S— N—|Q min as max{d;,—} — 0. (5.32)
) 0 2 () ds

So, (3.8) holds.
Step 2. Here, we will show that (3.10) holds. Let K be a compact subset of Q\ 2. Let O; and
O5 be two open sets such that K € O C O C O3 C O3 C Q \ Q. Using (5.31), the definition of

the set Q*, and the fact that Oy N Q* = (), there are 0 < d, < 1 and 7, > 0 such that

z)
(@)

=

— d
N < — S(z) for every x € Oz whenever max{dy, —I} < dy. (5.33)

ds

=
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As a result,

d
dIAT = (v — SB)I >0, =z € Oy, max{dy, d—f} < d,.
S

d
This shows that, if max{dy, d—I} < dy, then I is subharmonic on O,. Hence, since K CC O1 CC Os,
S

there is a positive constant ¢, > 0 such that

max [ (z) < c*/ I(y) dy for all max{ds, ﬁ} < dy. (5.34)
reK 01 ds

Next, choose a smooth function ¢ satisfying [[¢|/c2@q) < +00, 0 < ¢ <1, =1on O, and ¢ =0

on Q\ O2. Multiply the equation for I by ¢ and integrate by parts to obtain
[a=ssie=dr [ 180 <ailacle [ 1<aiVapl (535)
Q Q Q

Observe from (5.33) and (5.34) that, when max{dy, j—l} < dy,
S

Iy >, minﬁ(a:)/ I> Emimﬂ(gv) max I (x),

01 Cx zeK

/Q(’Y55)190:/02(755)I<PZH*H1£H5($)/

O2

«drN||A
Therefore, by (5.34), max I(x) < M
zeK n* ming (x)

Step 3. In this step, we show that there is a Radon probability measure on 2 such that (3.11) and

d
— 0 as max{dy, —} — 0.
ds

(3.12) hold. By (5.32), there is a Radon probability measure x on 2 and a sequence {(ds m, dsm)}

dl,m

dSm

)

satisfying max{dr m, } — 0 as m — +oo such that (3.11) holds in the sense that

lim /fo_/gf dp, forall fe C(Q). (5.36)

m——+0o0

Next, if we integrate the second equation of (2.1), we get

0= /(68(7 dS,ma d],m) - 7)1('a dS,ma dl,m)a m > 1.
Q
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Letting m — +o0 in this equation and using (5.31) and (5.36), then we have that

which implies that (zne%l gg; — %) B(x) = 0 p- almost everywhere since (216%1 Z)Ez; - %) Bx) <
0 for every = € Q. Therefore, (2 \ 2*) = 0 since (min ) _ m)B(:E) < 0 for every = € Q\ Q*.

vea Bly)  B(x)

(ii) Suppose N < / % Using the same arguments from (i), we know that there is a 0 < dy < 1
Q

such that (1.5) has an endemic equilibrium solution (S(-), I(+)) for every dg > 0 and 0 < d; < dy
since H™ is not an empty set.

Next, we will show that (3.13) and (3.14) hold. We begin by first claiming that

vo:= liminf /(1 —diI) > 0. (5.37)
Q

max{dl,i—f}ﬁo

Suppose (5.37) were false. Then, there is a sequence {(d,,,ds,,)}m>1 of positive pairs with

d
max{dy,,, dS_m} — 0 such that
I

m

lim [ (1—d; I)=0.

m—+o00 [o

This, together with the fact that / drI < 1, implies that
Q

N
lim - = lim — = 1o (5.38)
m—+oo dg, =~ m—foo Jo(L—dp, I)+ df_m Jodr. I

Recalling that S = di(l —dy, I), it follows from (5.21) that

Sm
ds—mmin () < —dpI)< ds—mmax V(CC), m>1,
K 2cq B(z) K azeq B(z)
which implies that
lim d;, I —1 uniformly on Q, (5.39)

m—-+o00o
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since (5.38) holds. Observe also that

dg

di,, —*AS + (B8 = ) (ds =0, ze€,

™m ™m

(5.40)
075 =0, x € 01,

d
for every m > 1. In view of (5.39) and the fact that d[m% — 0 as m — 400, it follows from

singular perturbation theory that

S—>7

B

as m — 400

uniformly on ©, which in turn yields that

N> lim /S:/l.

Consequently, we have a contradiction to our assumption that N < / 1. Therefore, we obtain
Q

that (5.37) must hold. Next, observe that

. K . N N
lim sup — = lim sup = = < —.
max{dl,((il—f}—)0+ S max{dl,‘;—f}—>0+ fQ(l —drI(-,dr,ds)) +ds fQ I(-,dr,ds) Yo

This tells us that there exists a C7 > 0 such that

d
i <y forall max{dy, —S} < dp. (5.41)
ds dl

Next, we claim that

vi:=  liminf  ||d;I(2,dr,dg)|le > 0. (5.42)

max{dj,j—f}AO

For sake of contradiction, suppose that (5.42) were false. Then, there exists a sequence of positive

ds,,
dr

m

pairs (dy,,,dg,, ) with max{dy,,, } — 0 as m — +o0 such that

G :=dy, I — 0 asm — +oo. (5.43)
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v()

K
Since — > min in view of (5.41) and the Bolzano-Weierstrass theorem, we may suppose,

dS z€Q B(x) ’
without loss of generality, that there is vo € [min V(@) , C1] such that
el /B(x)
) K
Iim — = s,
m——+00 dsm

Now, observe that the function i, = d;, I satisfies (5.29). Then, as in (5.30), we have that

Hm Gy, = (1 _ l)
m—+00 B/ +

which together with (5.43) yields that (1 — #)Jr = 0, that is 1 < 1;16%1 gg; So, we get
vy = min ggi; and, hence, we may use similar arguments that led to (5.31) and (5.32) to obtain
- =)
S — min V(@) and / I - N — Q| min V(@) as m — +oo. (5.44)
veq B(x) Q veq B(z)

But, by (5.41), we have

ds dg
1]loo < -2 —(5m> " <01 0 as m - oo,

i, \dp,/ds, dr,,
N
which together with (5.44) yields that @ = min % Therefore, H™ is an empty set, which is a
zeQ P\T

contradiction. So, (5.42) must hold. Now, by (5.42), there is a Ca > 0 such that

= d
Co < ||diI||se for all  max{dy, d—S} < dy. (5.45)
I
Inequality (5.41) yields
d d
1 1|loo < 2<% forall max{dy, —S} < dp,
dl dI d[

while from (5.45), it holds that

d d
’y(x)} =5 forall max{d, d—}q} < dy.

K -
1] dIHdI loo = |C2 min pp

z€Q ,3(33‘)
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Hence, (3.13) follows. Next, we show (3.14).

K
From the arguments given above, we can see that, up to a subsequence, o —VE [mln 5 Cl]
S

~ d
Moreover, up to a further subsequence, @ = dI — (1 — %) as max{dj, d_S} — 0 uniformly on
14 + I

Q. We have seen that H (1 — —) H > 0, that is ¥ > min v(x) Observe also that, up to a
5 zEQ 6( )
subsequence,
K dg . a
S=—(1-a)— V(l - (1= —) > as max{ds, —} — 0 uniformly on . (5.46)
ds vp't dr
V(z)

But, if it were the case that ¥ > max (ie. (1- l)+ —1- L on 2), we would obtain that

zeq B(z) vB vB

d
S — % as max{dy, d—S} — 0, up to a subsequence. This, combined with the fact that ||I||o — 0 as
I

max{dy, j—s} — 0, yields
1

which is not possible since N < / 7 Therefore, it must also be the case that v < max ’y(x)

Finally, since ||I||~c — 0 as max{dy, d—‘j} — 0 and (5.46) holds, then N = I//Q (1 - (1- %)Jr) =

/ min{v, 1}. Hence, because the function (min z,m@( 1) 5 v — [ min{y, 1} is strictly de-
Q ﬁ z€eQ) e Q B

creasing, then v is uniquely determined by N = / min{v, %} This implies that the limit of S in
Q
(5.46) does not depend on the chosen subsequence. Finally, observe that

N = /mm{y -} and min £ < v < max 2 imply N</1/:V\Q|.
2@ B v Q

1 - 1
dr R(dr)

(iii) Suppose that Ry > 1. By Lemma 2.2.1, there is 0 < dyp < 1 such that

Jo

1
for every 0 < dy < dy since ==— < R(dy) < ||éHOo For every 0 < dy < dp, with [ = —, it

Jav ~ =y dr

1
< —. By taking
dr

wr = lr(1—drug,1,), we know that wy satisfies (2.30). Hence, by the maximum principle for elliptic

follows from Lemma 2.4.2-(i), that (2.17) has a unique positive solution 0 < ug, ,

equations, we get that

=2
8
S~—

E.
=

0 < dy < dy,

8
Mm
]
=
8
~
8
m
o]
™
—~~
8
~



which is equivalent to saying that

V(z) 1 () 1 V() V()
dy min 1 = — min <1-—du < —max —dmx—, 0 < dj < dp.
Yoea Bx)  lreea Blw) = TN T e Bla) T e Bla) =
Hence
Uy = dludl,h —1 as d] —0 (5.47)

uniformly on €. Next, multiplying (2.30) by d;, we get

dr
O—Z—Awﬂr(v Bwr)uy  x €,
I

0 = dzwr x € 0fd.

d
Therefore, since &y — 1 and Z_I = d% — 0 as d; — 0, we can make use of singular perturbation
I

theory to conclude that wy — % uniformly on  as d; — 0. This implies that

N — / wy — N — /—>0 as dy — 0.

So, there is 0 < d; < dy such that N — / wy > 0 for every 0 < dy < di. Now, define
Q

N — |ow
ds; = ﬁ, 0<dy <d.
lr fQ Udy Iy
We have that dg 1 > 0 for every 0 < df < dy and
d N — N —
ST _ fﬂwI :dI( fflwl)—ﬂ) as dr — 0.
dr Ir Jo drua,, Jo s

Moreover, taking

S(dy,ds) =w; and 1(.,d1,ds,1)=(N / )f L 0<dp <dy,
Q

we have that (S(-,dr,ds ), I(-,dr,dgs r)) is an endemic equilibrium solution of (1.5) with dg = dg .
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Furthermore, it follows from above that

S(,dr,dss) — % and /I(-,dl,ds_l)—>N— T as dr—o.
B Q ' ob
This completes the proof of (3.16). O
5.1.5  Proof of Theorem 3.3.3
Proof of Theorem 3.3.3. Suppose that H™ is nonempty and N < / % By Lemma 2.3.1 and
Q

Theorem 3.2.1, there is 0 < dyp < 1 such that (1.5) has an endemic equilibrium solution (S(-),I(+))
for every dg > 0 and 0 < dj < dy. By Theorem 3.3.1-(i), up to a subsequence, S(-) — S*(-,d)

— d
uniformly on 2 as d—S — 0 for every 0 < dy < dp. But by Theorem 3.3.2-(ii), we know that S — S,
1

— d —
uniformly on Q as max{dy, d_S} — 0. Hence, we must have that S(-,d;) — S,» uniformly on ) as
1

d[—)O. O

5.1.6 Proof of Theorem 3.4.1
Proof of Theorem 3.4.1. Suppose that dg = 0 and d; > 0.
(i) Suppose that N < / % Let (S, 1) be an equilibrium solution of (3.1). Then, (S, ) satisfies

Q
(77/85)-[:07 .IGQ,
drAI =0, x € (),
(5.48)
0z1 =0, T € 0f2
N=[(S+1I).

Q

Thus, we see that I = ¢ for some nonnegative constant c. If ¢ is positive, then from the first
7
B

dM:NA%gQ

Thus, we get ¢ = 0 which means there is no endemic equilibrium solution to (3.1) in this case.

equation in (5.48), it follows that S = —. From the last equation of (5.48), we get
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Clearly, if we have some nonnegative function S € C(Q) that satisfies / S = N, then (S,0) is a
Q
disease-free equilibrium solution of (3.1).

Next, suppose that N < / % Suppose also that (S(t,z), I(t,z)) is a classical solution of (3.1)
Q

with positive initial data. Define

and the sets

Q_={zeQ|U((0,2) <1}
Q={zecQ|U(0,z) =1}

Q. ={zeQ|U©0,z) > 1}.

Note that (U(t, z), I(t,x)) satisfies

,

U =p(1-U)I, re, t>0,
W =di AT +~(U-1)I, z€Q, t>0,
(5.49)
OzI =0, red, t>0,
_ 2
N/(I+—U), t>0.
) B

By the comparison principle for ODEs and the first equation in (5.49), it follows that the sets
Q_,Qp, and Q are all invariant for U(t,-). Also, the function U(t,-) is monotone increasing in ¢
on Q_ and has a nonnegative pointwise limit U_(-) as t — +oo. Similarly, the function U(t, ) is
monotone decreasing in ¢ on 24 and has a pointwise limit U, (-) as t — +o00. On Qg, we have that

U(t,-) = U(0,-) for every t > 0. Define a function U* on € by

U_(z), if ze€Q_,
U'(z) = U(0,2), if =€,

Up(z), if xeQy.
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Then U(t,z) — U*(x) as t — +oc for every x € 2. Applying the Lebesgue Dominated Convergence

Theorem, we have that

. v [
i QBU(t,-)—/QﬁU. (5.50)

For each 0 < n < 1, define the set
Q, ={z€Q|U"(z) <1-n}
Notice that, by the continuity of measure,
meas({z € | U"(z) < 1}) = lim meas({, ). (5.51)
n—0
Now, by (5.50), we have that

Y . v
=U" = lim =U(t,-

= lim [ S(¢,-)

t—o0 Q

<N
<)o

which implies that meas({z € Q | U*(z) < 1}) > 0. Therefore, from (5.51), there exists some

0 < 1o < 1 such that meas(€;, ) > 0. Now observe that (2; C Q_. Moreover, for each z € Q, , we

have that U(t,z) < U*(x) <1 —mnq for all ¢ > 0. Hence,

U = Bl — U > noBI, z€QF

70”

t>0.

Integrating in the time variable, we obtain

Ult,z) —U(0,2) > 7705/0 I(s,x) ds.
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*

Then, integrating over €2,

v |
Q

where o = 19 min~y. This yields that
z€Q

we get

(S(t,2) — S(0,)) da = /Q HU(t2) ~U(0,)) do > U/O /Q I(s, ) da ds

* *
10 10 10

t>0

t
N
Sup/ / I(s,z) do ds < —. (5.52)
0 Jag, 7

Note that |U(t, )|, < max{L,|U(0,-)||,,}. Since 1 > 0 and U(t,z) > 0 for all t > 0 and x € €,

then
|1 - U(tv x)| < max{l, U(tv $)} < max{l, ||U(t, )Hoo} < max{l, HU(Ov )Hoo}

which implies that
1B =U@E )l < 18/l max{1, [U(0, )]l }-

Furthermore, by Harnack’s inequality for linear parabolic equations (see [16]* Theorem 2.5), there

exists a positive constant C* such that
I(t,x) < C*I(tyy), =zyef, t>1

which gives us
C*

I(t,- <
16 < e

/ I(t,x) dz, t>1. (5.53)
Q

*
10

After integrating (5.53) and combining with (5.52), we obtain

oo N *
|l b e (5.54)

el meas (€2 )

However, using the regularity theory established for parabolic equations, we can see that the map

[1,+00) Dt I(t,-) € CY(Q) is Holder continuous. Hence, we are able to conclude from (5.54)
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that, as t — 400, we have ||I(t,-)|. — 0. Observe that

+oo +oo
[ 100 at= [0 - v 1)L,
1 1
C*

< —_—.
- meas({2; )

A=

18| oo max{L, [|U(0, )l oo }

Hence,

+o00
| 10wl de <o (5.59
1

Now, since

U(t,z) =U(0,x) :/0 OsU(s,x) ds

then for t1 < t9, we have

to
0sU(s,x) ds

t1

t2
HWMM—WE@M—’ < [F10.0s 2l ds

oo 31

Observe that (5.55) implies that

[2)
lim 10sU (s, )], ds =0.

t1,t2——+00 t

Therefore,

lim  ||U(tz,z) — Ul(ty, 2)| o = 0.

t1,ta—+00

Hence, {U(t,-)}+>0 is Cauchy in C(€) which means there exists U* € C'(Q) such that

=0.

[e.9]

lim |, ) - 0

t——+o0

However, by construction U(t,z) — U*(z) for all z € Q. By the uniqueness of limits, U* = U*

and so U* € CQ. Furthermore, we have that U(t,-) — U* as t — 400, uniformly on Q. This also
Y

implies that S(t,-) — S* = 3

U* as t — 400, uniformly on Q, $* € C(Q), and / S* = N. Thus,
Q

we have shown (i).
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(ii) Suppose we have an equilibrium solution (S, ) of (3.1). Then (S, I) satisfies

(v—=B8S)I =0, ze,
diAI =0, x €,
(5.56)
91 =0, z € 00,
N = / (S+1).
Q
As such, [ is identically equal to ¢ for some ¢ > 0. If ¢ > 0 then, from the first equation in (5.56),
we have that S = % Solving for I yields I = N — % O
Q

5.2 Proofs of Results from Chapter 4.
5.2.1 Proof of Theorem 4.1.1
Let d; > 0 and define
REY = inf Ny, (1),

I>0*

where Ny, (1) is defined by (2.18). Tt follows from (2.27) that 0 < R{™ < {1, (v/8)R1}. Moreover,
since Ny, (1) for every [ > I* and converges to a positive number as | — +oo, then RE™ > 0. We
now prove (i) - (iii).

(i) If (S, ) is an endemic equilibrium solution of (1.5) for some dg > 0, then by Lemma 2.3.1,

l:= di > [*, where £ is defined by (2.9). Furthermore, by Lemma 2.3.1, we have that
S

VIV . £ low
Ro Nd,(ds)+l*m/9u 5 > Rlow.

Therefore, (1.5) has no endemic equilibrium solution whenever Ry < RI™ and dg > 0.
(ii) Now, suppose Rg > ’R%)OW. Then, there is I[(Ro,dr) > I* such that Ny, (I(Ro,dr)) < Ro. Set
(RO - Nd{ (Z(R()? df)))‘Q“*

dy = > 0. 5.57
! I(Ro,dr) [g,u!(Ro-dn) (5:57)

For each dg > 0, consider the function Ndz,ds as defined in (5.7). Then, Ndf,ds is continuously
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differentiable in [ > [*. Moreover,

Nypag(®) =1 and  lim Ny, g4(1) = +00.

l—+o00

Now fix 0 < dg < dj. Then, from (5.57), it follows that

dsl(Ro,d
Ndl,ds(l(Rde)):Ndl(l(Ro,d])) st(Ro I)/ URo,dr)

Y
dil(Ro,d
< Ng, ((Ro, dr)) + %/ﬂul(mdn
— R (5.58)

By the Intermediate Value Theorem, there is I(Ro, dr, ds) > [(Ro, dr) such that Ny, 4. (I(Ro,dr, ds))

= Ro. Along with (5.8), this implies that the quantity
lhigh(ds) == max{l > [(Ro,dr) | Na;.as(l) = Ro} (5.59)
is a positive real number. Observe that
Niap.dg(lhign(ds)) =Ro  and Ny, aq(l) > Ro, 1> lhign(ds). (5.60)
By Lemma 2.3.1,
(Shighs Tnigh) = (hign (ds) (1 — dsuier @), dilyign (ds yulrie (4)) (5.61)

is an endemic equilibrium solution of (1.5).
Finally, we show that (4.2) holds. Suppose that (S, I) is another endemic equilibrium solution of

(1.5). By Lemma 2.3.1, we have that d_ >["and [ = ds(d Ju is . Since the mapping (I*,+00) 3
S S

[ — Il is strictly increasing and Nd”ds(dlz) = Ro = Ny, dg (Ihigh(ds)), then % < Ihigh(ds), which
yields I = dg(——)u®s < dglpign(dg)ul=n(@s) = I

ds
(iif) Suppose that R < 1 and RP™Y < R < 1. Let d} be given by (5.57) and {(Ro,d;) be as

in the proof of (ii). Fix 0 < dg < dj and observe that Ny, 4. (I(Ro,dr)) < Ro < 1 = Ny, .a4(l%).
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Therefore, by the Intermediate Value Theorem, there is [(Ro,ds,ds) € (I*,1(Ro,d;)) such that

N, a5 (L(Ro,dr,ds)) = Ro. This implies that the quantity
lhow(ds) == min{l € [I*,1(Ro,ds)) | Na;.a5(1) = Ro} (5.62)
is well-defined and satisfies I* < lj,(ds) < I(Ro,dr). Observe now that
Niapas(liow(ds)) = Ro  and  Ng, 45(1) > Ro, 1" <1 < liow(ds). (5.63)
By Lemma 2.3.1,
(Siows Tiow) = (liow(ds) (1 — dgulow ) dglygy, (dg)ulion(@s)) (5.64)

is an endemic equilibrium solution of (1.5). Since l;oy(ds) < I(Ro,dr) < lhigh(ds) and the mapping
(I*,+00) 3 | — lu! is strictly increasing, then (4.3) holds. Moreover, it can be shown that any

other endemic equilibrium solution of (1.5), if one exists, must satisfy (4.4). O

5.2.2 Proof of Proposition 4.1.2

It follows from Lemma 2.2.1 that 1 > (v/B)R; for every df > R{'(1/(v/B)). Hence, 1 >

(v/B)R1 > R%)OW for every dj > Rl_l(l/('y/ﬁ)). O

5.2.3 Proof of Theorem 4.1.3

Proof of Theorem 4.1.3. Fix d; > 0 and define

*

dr Ll
My = —sup/ u + '),
o Q( )

where u! and v' are the unique positive solutions of (2.17) and (2.24), respectively, for each I > I*.
1
Note, from (2.21) and (2.26) that u' — — and lv' — 0 as | — +o0, uniformly in Q. Hence, [ (u'+

I

d Q
0 2
|d_| as [ — 4o00. Note also, from (2.21) and (2.25) that /(ul + ) — Un #1) U B21) as
1

W —
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(fQ @1)([5) 5@%)
dl fQ ﬁ‘p?

[ — I*. Therefore, max{1, } < My, < +oc. Defining

N 1
my =,
T Mj[
then we have that 0 < my, < 1. Hence, dioy = (1 — my, )d; satisfies 0 < dioy < dj.
Now, for each dg > 0, consider the function Ny, 4, as defined in (5.7). Taking the derivative of

the function Ny, 4, with respect to [, we get

d'N_dI,ds(l) o 1 1 1 N
dl - l*|Q| (|Q| + (dS - dl) /Q(ZU +u )), > 1" (5.65)

From this point, we assume that dg > diow = dr(1 —my,). We will show that

deI ,ds (l)

[ >1" .
¥ >0, > (5.66)

If dg > dj, then it is clear that (5.66) follows from (5.65). So, suppose that djow < dg < d;. Then,

by (5.65), we have that

deuds(l) o 1 l l
g7 = Fa <|Q]+(ds—d1)/ﬂ(lv —|—u)>

(e -5 o)

*

dr
> —
= d[l* (dS dlow) >0

so that (5.66) holds when dioy, < dg < dr as well. Hence, the map [ — Ny, g4 (1) is strictly increasing
on [I*,4+00) when dg > djoy. Thanks to Lemma 2.3.1, (1.5) has an endemic equilibrium solution
if and only if Rg > 1. Moreover, in this case, when an endemic equilibrium solution exists, it is

unique. O

5.2.4 Proof of Remark 4.1.1
Proof of Remark 4.1.1. Fix dr > 0 and let M, and my, be as in the proof of Theorem 4.1.3 so that

d
diow = d1(1—my,). Suppose that diw > 0 and fix 0 < dg < djoy. Hence, my < 1— d_S which means
I

76



1 1 1 dr

0< < —— = M . Therefore, there is Iy > [* such that 0 < ———— < — [ (% + go'),
1_2_? my, dr 0 l—i—f 12| Q( )
which implies that
deI ds(lo) 1 ds\ dr l l
dNddstto) _ 1 1_<1__>_ 0 1 Io) ) < 0. 5.67
dl I+ a7 Jo v o) ) < (5:67)
On the other hand, we know from Lemma 2.4.2-(i)-(ii) that
ANy, as(1) 1 | ds
I s — (1904 (ds - ) = 0. 5.68
e T Fig 8+ (ds —di) ) = 20 > (5.68)

Thanks to (5.67) and (5.68), we deduce that there are Iy < 1 < lg such that Ny, 4.(l1) = Ny, a4 (l2).

As a result, for Ro = Ng, 45(l1) = Na; ds(l2), we have from Lemma 2.3.1 that
(S1,0) = (I1(1 — dru'),dsliu't) and  (Sa, I2) = (la(1 — dyu'2), dslou'?)

are two distinct endemic equilibrium solutions of (1.5). This completes the proof of the remark.

O
5.2.5 Proof of Theorem 4.2.1
Proof of Theorem 4.2.1. Suppose that (4.6) holds. By Lemma 2.4.2-(i)-(ii), we obtain
%l() = (1- (21) (Be}) /B¢ /1" < 0. (5.69)

deuds ()
dl
Now, fix 0 < dg < dj. Define the curve Fy, 4. : [I*, +00) — Ry x [C()]? by

Thanks to (5.69), we can choose d5 > 0 small enough such that < 0forall 0 <dg < d5.

Faras®) = (Napas (0,10 = dpu), dstad ), 1217, (5.70)

where u! is the unique nonnegative stable solution of (2.17). Recalling that Ry = N/(|Q|l*),

N
then (@

the unique disease-free equilibrium solution of (1.5) when Ry = 1. Observe also that Fy, 4, (") =

,0) = (I"Ro,0) is the unique disease-free equilibrium solution of (1.5). Hence (I*,0) is
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(1,7*,0). By Lemma 2.3.1, system (1.5) has an endemic equilibrium solution (S, I') for some Ry > 0
if and only if Ry = Ny, 45(1) and (S,I) = (I(1 — djul),ldgul) for some [ > [*. Therefore, as Ry
increases from zero to infinity, the endemic equilibrium solutions of (1.5) are parametrized by the

curve Fg, 4o This curve is simple and unbounded since the mapping [ — lu! is strictly increasing

deLds (l*)

with ||{u!||ec — +00 as | — +o0o. Furthermore, since ¥

< 0, then the curve parametrized

by Fy,,4s bifurcates from the left at Ro = 1.

5.2.6 Proof of Theorem 4.2.2
Note that the expression on the right-hand-side of (2.17) is analytic in the variables | and u.
Hence, we can use the Implicit Function Theorem and the linear stability of u' to derive that ul is

analytic in [ > [*. Hence, thanks to Lemma 2.4.2 and the limit (5.68), we have the following:

Lemma 5.2.1. Fizd; > 0 and dg > 0. Consider the mapping Ny, 4 defined by (5.7) on [I*,4+00).

Then Ny, 4s is continuously differentiable on [I*,4+00) and analytic on (I*,+00). Furthermore, if

dN., I*

%() # 0, then there exist m numbers I = 1" <3 < --- <}, <y . =400, m > 1, such
that Ny, a4 is strictly monotone on [IJ, 17, 1) for eachi=1,--- ,m; Ny, g is strictly increasing on
(L5, +00); and if m > 2, Ny, 45 changes its monotonicity at each I, i = 2,--- ,m.

Next, we give a proof of Theorem 4.2.2.

Proof of Theorem 4.2.2. Suppose that (4.7) holds. Then, by (2.27),

lim Ny, (1) = (7v/B)R1 < 1 = Ny, (I*). (5.71)

l—+o00

As a result, there exist some I§ >> I* such that M} := sup Ny, () < Ny, (I*). We first set dj :=
>0

| (Ng, (1) — M;I)/(ZNS/ u'0). Next, note from (4.5), (2.25), and (2.26) that
Q

dNilIl(l*) _ <1 — (1) (B2) //3—99:13)73] > 0. (5.72)

deLds (l*)

Hence, there is 0 < dj < dj such that 7l

>0 for all 0 < dg < di. Now fix 0 < dg < di.
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Let m > 1 be given by Lemma 5.2.1. Hence Ny, 4, is strictly increasing on [I*,13) and on [I};,, +00).

Observing that Ny, 4¢(1") = Ng, (I") =1 and

Tx %

. . 1sd j« =
Niyas(I8) = N, (15)+-25 [ 4fs <Nd,(l8)+|9|l*

19 Jo

/ ulo :'/vdl (ZS)_’_MlI:ds(l*)_]\j[;] < Mil,ds(l*)a
Q

then we must have that m > 3. Note that the simple connected curve C parametrized by (5.70)
as in the proof of Theorem 4.2.1 consists of the endemic equilibrium solutions of (1.5). This time
around, since Ny, 44 is increasing on [I*,15], then C bifurcates from the right at Ry = 1.

Next, since Ny, 44 is strictly increasing on [I*,13] and [I,, +00) and Ny, 45 (I5) < N, .as(17),
then Rgi = min{Ng, 4. (I7) | =2,---,3} is the global minimum value of Ny, 4, and is achieved at

some [}

is i0=3,--+,m. So, by Lemma 2.3.1, system (1.5) has no endemic equilibrium solution for

Ro < Rgi and (17, (1 — djulfo), dslfouli*O) is an endemic equilibrium solution of (1.5) for Ry = Rgﬁ.
Thus, (i) and (ii) are proved. Next, set Rgsg = Nu,.ds(15), and R‘Ol% = max{Ny, 4. ([}) | i =
1, ,m}

(iii) First, suppose that Ry € (Rgi, 1]. By the Intermediate Value Theorem, it follows as
in (5.59) and (5.62) that both lnign(ds) > I7, and low(ds) € (I3,1;,) are well-defined. Moreover,
(Shigh, Thigh) and (Siow, llow) defined as in (5.61) and (5.64), respectively, are two distinct endemic
equilibrium solutions of (1.5).

Next, suppose that Rg = Rg%. By the Intermediate Value Theorem, since
d
Napas(ly) < Najas(13) = R < Ro

and Ng, 45(1) — +o0 as I — +oo, there is lhjgn(ds) > Ij, such that Ny, g¢(lnigh) = Ro. Hence,
(Ihigh (1 — djulhigh), dglhighulhigh) and (I5(1 — dluls),dglguls) are two distinct endemic equilibrium
solutions of (1.5). This completes the proof of (iii)

(iv) Suppose that 1 < R < 7?,352 Observe that
Ndhds (l*) =1<Ry < Rg,sZ = Ndl,ds (l;) and Ndhds(lio) < Ndhds(l*) <Ro < Ndhds(l;)'

Hence, since Ny, 44(1) — 400 as | — 400, we can use the Intermediate Value Theorem to deduce
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the existence of minimal numbers liow,1 € (I%,15), how,2 € (I3,1},), and a maximal number ly;gn > 17,

such that (i, Iiy) = (lowi(1 — dpulowi), dslioy juo), i = 1,2, and (Shigh, Inigh) = (hign(1 —
dru'ieh) dgly;gnu'mieh) are three different endemic equilibrium solutions of (1.5). Clearly, (S, 1)
and (Shigh, Ihigh) are the minimal and maximal endemic equilibrium solutions of (1.5) in the sense
of (4.2) and (4.4), respectively.

(v) If Ry > ’Rg% then, since Ny, 45(I) — 400 as | — +oo then, as a consequence of
the Intermediate Value Theorem, we have that there exists a lnign > I3, such that (lhign(1 —
dfulhigh), dslhighulhigh) is an endemic equilibrium solution of (1.5). Now, suppose that Rg > Rg%.
Then, since Ny, q4 is strictly increasing on [I);,, +00), Ny, a5 (1) < Ro, and Ny, a5(1) — +00 as
| — +oo0, there is a unique [ > I, such that Ny, 45() = Ro and Ny, 44(1) < Ry for all I € [I%,,1).
Moreover, observe that

Nagas(l) SRGE < Ro, Le [I%,07].

' m

Therefore, (I(1 — djui), dsiu[) is the unique endemic equilibrium solution of (1.5).

Since Ndz,ds is strictly monotone increasing in dg, we see that Rgi- is strictly increasing
in dg for each ¢ = 1,---,3. Clearly, from the definition of Rgi = ]l“;il{l/\/’dz,ds(l)’ we get that
Rgi — liillf’; Ny, (1) = REY. Finally, from (5.72), we can find I§* > I* such that Ny, is strictly
increasing on [I*,15*]. As a result, we get that Ny, q5(1) = Ng, (1) + (dsl/ ul)/(|QI*) is strictly
increasing on [I*,15*] for every ds > 0 since u! is strictly increasing in lQ> [*. Therefore, for
every 0 < dg < dj, I3 > I¢* and 1 = Ng, a.(I") < Ng, (I5*) < Ny as(l3) = ’Rng. As a result,

RE, = lim RIS > ) > 1.
0,2 d;Ij}o O,Q—NdI(O)

5.2.7 Proof of Theorem 4.3.1
Proof of Theorem 4.3.1. Fix d; > 0 and suppose that R{™™ < 1.
(i) Fix R¥Y < Ro < 1 and let d} be given by Theorem 4.1.1. For every 0 < dg < dj, let

lhigh(ds) and liow(ds) be defined by (5.59) and (5.62), respectively. First, we claim that

llow(dS’,l) < llow(d&g) forall 0< dSJ < d572 < dT (5.73)
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Indeed, fix 0 < d571 < dsjz < dI. Then, since Nd17ds,2 (llow(dsjg)) = Ro,

liow (d
Nipds, (how(ds2)) = Nay ds» (how(ds2)) — (ds2 — ds,1)% /Qul“’w(dsﬂ) < Ro.

Hence, by (5.62) and (5.63), we have that (5.73) holds. Next, we claim that

lhigh(dS,l) > lhigh(dS,Q) forall 0< dS,l < dS’Q < dT (5.74)

Indeed, fix 0 < dS,l < ds72 < dT Then, since Ndlvds,2 (lhigh(dS,Q)) =Ry

Ihien (d )
N ds (hhigh(ds,2)) = Napdg o (lhigh(ds,2)) — (ds2 — dsl)% /Qul‘“gh(ds’z) < Ro.

Hence, by (5.59) and (5.60), we have that (5.74) holds.
Due to (5.73) and (5.74), we have that

o= lm low(ds) = inf low(ds) <l(Rg, N
tow = i how(ds) = | Inf | how(ds) < U(Ro, N)

and

likligh = lim lhigh(ds) = sup lhigh(dS) > Z(Ro,d]).
ds—0% 0<ds<d;

(i-1) Suppose that Ro/R1 < 7/_,6’ We establish that (4.8) holds. First, we proceed by

contradiction to show that

Indeed, if (5.75) were false, then lhign(ds) — 400 as dg — 0. As a result, it follows from Lemma

2.3.1-(i) that / Inign(ds)(1 — dputisn(ds)y 5 1Q|(v/B) as dg — 0. Moreover, since
Q
1
Ro = Ny (Inign(ds)) > T / Inigh(ds) (1 — dyu™= (@) for all 0 < dg < dj,
Q

we obtain that Ry >

a dlgir_r)lo/ﬂlhigh(dg)(1—d1ulhigh(d5)) = (v/B)R1, which gives a contradiction.
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Thus, (5.75) holds. This shows that there is a positive constant C; = C1(Ro, dr) such that

d*
lhigh(ds) < C1, 0<dg < 51 (5.76)
In particular,
— Inign (ds) & di
Dow < Inigh = dSlhigh(dS)U g < d—ds forall 0<dg < 5 (5.77)
I

Next, we claim that

low > 1" (5.78)

If (5.78) were false, then ljoy(ds) — I* as dg — 0. This in turn implies that

dsliow(ds)

Ro = Na, (liow(ds)) + G

/ ullow(dS) — ]_ as dS — 07
Q

which contradicts our initial assumption that Ry # 1. Therefore, (5.78) holds. Thus, there is

Cy = CQ(R(), d]) > [* such that

*

d
Cy < low(ds) < 1(Ro,d;) forall 0<ds< 71 (5.79)

*

As a result, for all 0 < dg < %, we obtain that

Dow =dgliow (dg)ubov(s) > Chdgu® > Cou? dg . (5.80)

min

Combining (5.80) and (5.77) we derive that (4.8) holds.

Next, since lp;gp > lioy > 7, then by Lemma 2.4.2-(i), we have that Sioy — loy (1 — dyubiow)
and Shigh — lpign(1 — dyu'tien) as dg — 0 in C'(Q). On the other hand, since N = /Q(S + 1), we
have that

N=1I / (1—dpuliow) and N =, / (1 — dyulbien).
Q Q

Finally, since ljo,, < {(Ro,dr) < lpign, then ujgy, := ullow < y'hien = Upigh-

(i-2) Suppose that Rg/Ri > /8. Note that the proof of (5.79) only uses the fact that
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Ro # 1. Hence, (Siow, liow) satisfies (4.8) and (4.10) as dg — 0. We claim that

Indeed, since Ro > (v/B)R1 = lh_lgl Ny, (1) then, for every m > 1, there is l,,(Ro,dr) > m such
—+0o0
that
Nd; (lm(R(), d[)) < Ro.

(Ro = N, (ln(Ro, d1))) |21
Im(Ro, dr) [q ulmRo-dr)
we can use the Intermediate Value Theorem and similar arguments as in (5.58) to conclude that

Therefore, if we take d,,(Ro,ds) :=

for every 0 < dg < dm(Ro,dr),

there is l,;,(ds) > lm(Ro, dr) such that Ny, 45 (lm(ds)) = Ro. This shows that
lhigh(dS) > lm(Ro, ds) >m, 0<ds< dm(Ro, d[).

Letting m — +o0 in the above inequality leads to (5.81). Thus, since (1 — dju’) — % as [ - 400
in C(Q) (see Lemma 2.4.2-(1)), we conclude that Shigh = lhign(ds)(1 — d]ulhigh(dS)) — % as dg — 0
uniformly in C'(Q). Using the fact that wisn(ds) — dl as dg — 0 uniformly on €2, we can observe
that dglhig(ds) = (N — /Q Shigh )/ /Q ubisn(ds) (N — /Q %) /19| as dg — 0 to conclude that
Tnigh — <N - /Q %) /|9 as ds — 0 in C(Q).

(ii) In addition, suppose that (4.7) holds. Let d3 and R , be given by Theorem 4.2.2 and fix
1 <Rop < Rpg Hence, 1 <Ry < Rgi for every 0 < dg < d3. Note from the proof of Theorem
4.2.2-(iv) that, for every 0 < dg < dj, (S Libw) and (Shigh, Ihign) are the minimal and maximal
endemic equilibrium solutions of (1.5) in the sense of (4.4) and (4.2), respectively. Observing from
(4.7) that Ry > WRl then, by the similar argument as in (i-2), we have that (Shign, Ihigh) has
the asymptotic profiles (4.12) as dg — 0. Next, observe that the constant number l~§ obtained in the
proof of Theorem 4.2.2 depends only on d; and satisfies I < [} for every 0 < dg < dj. Therefore,
how,1 < l~8 for every 0 < dg < d3. Finally, since Ry # 1, we can proceed by the similar arguments
leading to (5.78) to obtain that Cy := lidr? iI(l]f liow,1 > 0. In view of the preceding details, we see
that ljow,1 satisfies inequalities (5.79) with I(Ro, dr) being replaced by l~8 So, Tiow,1 satisfies (4.8).

Furthermore, up to a subsequence, Si.  satisfies (4.10) as dg — 0. O
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CHAPTER 6

ONGOING WORKS, FUTURE WORKS, AND CONCLUSION
6.1 Conclusion

This dissertation focused on a diffusive SIS epidemic model where we have represented the ac-
tion of infection using the mass-action transmission mechanism. In Chapter 3, we evaluated the
effectiveness of control strategies centered on the restriction of population movement. In doing so,
we discussed the well-posedness of our model as well as the existence of endemic equilibrium solu-
tions. We examined the asymptotic profiles of these endemic equilibrium solutions and concluded
that limiting only the movement of susceptible individuals can reduce the overall impact that the
disease might have on the entire population. Hence, such a control strategy appears to be effective
at reducing the spread of disease.

In Chapter 4, we looked at the question of possible non-uniqueness of endemic equilibrium
solutions in the model. Unlike in the ODE model (1.1) or the model presented in [3], we found that
the basic reproduction number cannot solely predict the dynamics of the infectious disease in the
model (3.1). In particular, we showed that it is possible for the disease to persist even in the case
that Ry < 1 which is a surprising result. Moreover, we found conditions on the parameters that
lead to various bifurcation curves which suggest a multiplicity of endemic equilibrium solutions.
We also provided a way to construct examples that satisfy the conditions presented in our results.

Chapter 5 was dedicated entirely to the proofs of our main results.

6.2 Ongoing and Future Work

Current work has been on exploring the multiple-strain diffusive SIS model with mass-action.
In the presence of multiple strains, new issues arise concerning competitive exclusion. In the case of
competitive exclusion, it is possible for one strain of the disease to completely dominate the other

strains. It might also be possible for two or more strains to coexistence and both persist within the
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population after enough time has passed. Our work on the multiple-strain model so far has been
able to discover the precise conditions leading to both competitive exclusion and coexistence.
Future work is dedicated to expanding the diffusive SIS model into a diffusive SEIR model. In
the SEIR model, we presume that susceptible people do not immediately become infected after
being exposed to the disease. Once exposed to the disease, the susceptible person is moved to the
exposed group where there is some chance that they do not become infected and, instead, return
to the susceptible group. By including the recovered group, we make the additional assumption
that people gain complete immunity after being first infected then recovering from the disease. So
far, our preliminary results have been promising and demonstrate the striking differences between

the diffusive SIS model and the diffusive SEIR model.
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