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Abstract 

Introduction: Wearable technology is increasingly utilized across various fields, yet the validity and 

reliability of the physiological data these devices provide are often unverified due to a lack of rigorous 

testing standards. 

Purpose: This dissertation contains three primary works, and therefore multiple purposes. The purpose 

of the first project (Chapter 2) is to introduce a new risk of bias assessment tool, specifically for assessing 

methodological quality and the risk of bias in validity and reliability studies using wearable technology, 

with a focus on consumer-grade wearable technology. The purpose of the second project (Chapter 3) 

was to perform a systematic review and meta-analysis that served a dual purpose: to review the current 

validity and reliability literature concerning consumer-grade wearable technology 

measurements/estimates of physiological variables (e.g. heart rate, energy expenditure, etc.) during 

exercise. Additionally, we sought to perform risk of bias assessments utilizing the novel WEArable 

technology Risk of Bias and Objectivity Tool (WEAR-BOT) and perform meta-analytic calculations on the 

reported data. The purpose of the third project (Chapter 4) was to evaluate the accuracy (validity) of 

maximal oxygen consumption (VO2max) estimates and blood oxygen saturation (BOS) measured via 

pulse oximetry using the Garmin fēnix 6 with a general population participant pool. 

Methods: Chapter 1: The development of WEAR-BOT through a multi-institutional collaboration, 

employing iterative discussions, Delphi-style surveys, and pilot testing. Chapter 2: A systematic review 

and meta-analysis using WEAR-BOT to assess the risk of bias and analyze the validity and reliability data 

of physiological measurements from consumer-grade wearables during exercise. Chapter 3: A validation 

study employing WEAR-BOT guidelines to test the accuracy of a wearable device in measuring aerobic 

capacity (VO2max) and pulse oximetry in the general population. 
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Results: The development of WEAR-BOT established a detailed and structured approach to evaluate 

wearable technology studies. The systematic review highlighted a prevalent high risk of bias within the 

field, indicating the need for standardization. The validation study demonstrated the practical application 

of WEAR-BOT, confirming its effectiveness in guiding rigorous research methodologies and producing 

reliable data. 

Conclusion: By introducing and applying the WEAR-BOT, this dissertation significantly contributes to the 

standardization and enhancement of research methods in the domain of wearable technology. The tool 

not only aids researchers in designing and evaluating studies but also ensures that the data generated 

from wearable devices are both reliable and valid, fostering greater trust and broader application in 

health-related and athletic settings.  
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Chapter 1 - Introduction 

Wearable technology is becoming increasingly pervasive in society (Benson et al., 2018; Vogels, 2020). Its 

application can be seen in the general population, collegiate and professional athletics, military, 

construction, healthcare, academic research, as well as others. Wearable technology has the potential to 

revolutionize physiological research, due to its constant monitoring and production of granular 

physiological and physical data, examining many aspects of human life (Carrier et al., 2020; Wright et al., 

2017). However, the need for independent validation of this technology is needed, as there exists no 

governing entity to ensure accuracy. The demand for independent validity and reliability studies has 

been met by academic researchers, performing validity and reliability testing on consumer-grade 

wearable technology to establish whether these devices are valid and reliable, and under what 

circumstances and scenarios they perform well. This can be seen by the dramatic increase in validation 

and reliability studies that have been published over the last 10 years. This increase in research has also 

introduced the need for standardized and appropriate practices when evaluating validity and reliability, 

as well as risk of bias assessment tools.  

This dissertation was inspired by my personal research journey in wearable technology. Our lab group 

was performing a systematic review previously and experienced the lack of appropriate risk of bias 

assessment tools specific to wearable technology (Carrier et al., 2020). The review not only highlighted 

the need for such tools but also underscored the limitations of existing tools, including COSMIN, in fully 

addressing the nuances of consumer-grade wearable devices, especially related to the field of exercise 

physiology, which has been my concentration in graduate school (Mokkink et al., 2006; Mokkink et al., 

2010; Prinsen et al., 2018). 

This realization birthed the development of the WEArable technology Risk of Bias and Objectivity Tool 

(WEAR-BOT) checklist, a tool meticulously designed to fill a gap in current risk of bias tools. The WEAR-
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BOT represents a significant leap forward, offering an easy-to-use tool for evaluating bias in wearable 

technology studies by reviewers performing systematic reviews, as well as suggesting best practices for 

researchers looking to design their own validity or reliability studies. The WEAR-BOT was developed by a 

multi-institutional team of experts in wearable technology research and who’s research specifically 

focused on validity and reliability of wearable technology. Through numerous hours of discussion, 

literature review, and pilot testing, it was developed and encapsulates a set of best practices and 

recommendations that can be used by reviewers performing a systematic review, or individual 

researchers looking to perform their own studies. It is meticulously crafted to ensure that studies on 

wearable devices are not only conducted with the utmost rigor but also presented in a manner that 

facilitates critical evaluation and replication. This standardization is crucial for advancing the field, 

enabling researchers to build upon each other's work with confidence in the reliability and validity and 

to clearly establish the validity and reliability of these devices, so they can further influence many other 

fields of research. 

Diving deeper into the practical application of this tool, this dissertation features a systematic review and 

meta-analysis (D2) that employs the WEAR-BOT checklist to critically evaluate validation and reliability 

studies focusing on physiological variables measured by consumer-grade wearable devices during 

exercise. This exploration serves a dual purpose: validating the WEAR-BOT’s efficacy in a real-world 

research scenario and refining its parameters to ensure broad applicability and robustness. This phase of 

the project is pivotal, acting as a proving ground for the WEAR-BOT checklist and setting a precedent for 

its adoption in future wearable technology research. 

The final project of this dissertation (D3) is a validation study of wearable technology on aerobic capacity 

(VO2max) and pulse oximetry. This study illustrates the type of research the WEAR-BOT can be used to 

evaluate, or to guide researchers in planning to reduce bias. By conducting this validation study, the 

dissertation not only contributes to the body of knowledge on wearable technology's capabilities but 
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also demonstrates the practical application of the WEAR-BOT tool in guiding and assessing research 

quality. 

Overall, this doctoral dissertation propels the field of validation and reliability studies with consumer-

grade wearable technology design forward. The first paper details the WEAR-BOT checklist and 

guidelines for use. The second study provides an example of a systematic review and utilizes the WEAR-

BOT checklist to determine risk of bias. The final investigation displays an example of how an individual 

study can be designed to align with WEAR-BOT best practices so that valid and reliable physiological data 

can be produced from commercially available wearable devices. 
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Chapter 2 - The WEAR-BOT Checklist: A Risk of Bias Tool for Evaluating Validity and Reliability Research in 

Wearable Technology. 

 

Abstract 

This paper proposes an innovative tool designed to standardize the evaluation of validity and reliability 

studies in the rapidly evolving field of wearable technology. We introduce the WEArable Technology Risk 

of Bias and Objectivity Tool (the WEAR-BOT), a tool that addresses the need for a comprehensive and 

systematic way to assess bias in studies examining consumer-grade and research-grade wearable 

devices. The development of the WEAR-BOT involved extensive collaboration among experts, 

encompassing iterative, open-ended discussions, several rounds of anonymous Delphi-style 

questionnaires, and pilot testing. The tool comprises detailed checklists for both validity and reliability 

studies, with subdivisions focusing on study design, methodology, statistical analysis methods, and other 

critical aspects. The tool balances need for rigor with ease of use. It incorporates a variety of questions 

to rigorously evaluate the risk of bias in these studies, and aims to enhance and standardize 

methodological approaches in the field. The tool is practical, easily available, and easy to use, as it is built 

in Google Sheets and contains macros that are intuitive and easy to use that allow the user to work more 

efficiently. The WEAR-BOT represents a significant advancement in the standardization of research 

methods and statistical analysis in the domain of wearable technology.
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Introduction 

The popularity of wearable technology has led to corresponding increases in research on the reliability 

and validity of these devices. For instance, using the search terms “wearable technology or fitness 

tracker or activity monitor + validity or reliability” in Google Scholar (Alphabet Inc., Mountain View, CA, 

USA) produces 486, 1080, 3,640, 11,100, and 14,900 results for the years 2005, 2010, 2015, 2020, and 

2022, respectively. There has been a steady increase in this type of research, with a nearly 1000% 

increase from 2010 to 2020. This nascent technology is being used by a range of different people for 

numerous use cases, frequently without a clear indication of the validity or reliability of the devices. 

Individual users, organizations, and even researchers often assume that the objective data on these 

devices are valid and reliable, frequently without any evidence to support such conclusions. These 

devices may be used to make training decisions or health assessments, though they may have provided 

poor results from inaccurate devices. Independent research determines the validity and reliability of 

these devices so users may be aware of their accuracy under different use cases is warranted. This is 

especially important as consumer-grade devices and many “research-grade” devices are not regulated by 

any governing entity. The responsibility of testing the accuracy of these devices’ rests upon independent 

researchers (other than the testing specific organizations may do internally, which are not generally 

made available to the public). As researchers have sought to validate these devices, the studies have 

used varied methodologies, statistical analyses, and reporting practices across studies and researchers 

(BUNN et al., 2018; Carrier et al., 2020; Evenson et al., 2015; Patel et al., 2021; Welk et al., 2019). 

Methodological and statistical best practices have been suggested by some researchers (Carrier et al., 

2020; Keadle et al., 2019; van Lier et al., 2020; Welk et al., 2012; Welk et al., 2019), but a consensus has 

not been adequately reached. Thus, a standardizing of the methods, statistical analyses, and reporting 

practices is needed. We have addressed this gap with the development and refinement of an easy-to-use 

checklist. 
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Risk of bias assessment tools have several use cases. For instance, they are frequently used (i) when 

performing systematic reviews to evaluate the literature being reviewed, or (ii) by journal reviewers to 

assess the bias risk in a particular study, or (iii) by researchers aiming to design a study that will reduce 

the risk of bias in their own research. There are many tools that have been developed for almost all 

study designs. Common tools are the Cochrane Risk of Bias (ROB) 2.0 (Sterne et al., 2019), the Cochrane 

Risk Of Bias In Non-randomised Studies-of Interventions (ROBINS-I) (Sterne et al., 2016), JBI’s critical 

Appraisal Tools (Aromataris et al., 2015; Barker et al., 2023; Campbell et al., 2020; Munn et al., 2020), 

along with many others. For assessing the risk of bias and methodological quality for studies on 

measurement properties, the COnsensus-based Standards for the selection of health status 

Measurement Instruments (COSMIN) checklist was published in 2006 with additional publications 

regarding clarifications and guidelines being published subsequently (Gagnier et al., 2021; Mokkink et 

al., 2006; Mokkink et al., 2010; Prinsen et al., 2018). The COSMIN is designed to evaluate measurement 

properties associated with patient-reported outcome measures (PROM), and thus spends time on 

aspects that may not be relevant to validity and reliability literature broadly, or with consumer-grade 

wearable technology. It has been utilized by researchers performing a risk of bias assessment in 

conjunction with a systematic review and meta-analysis; however, it lacks the specificity needed to 

systematically evaluate the rigor and methodological approaches in validity and reliability studies using 

consumer-grade wearable technology. Since the publication of the COSMIN checklist, the field of 

wearable technology has grown rapidly, and acceptable practices have been further established for 

validity and reliability studies. An updated risk of bias checklist should is needed that reflects the many 

changes that have occurred in wearable technology and make recommendations based on updated best 

practices for methodology, analysis, and reporting practices. Therefore, the purpose of this paper is to 

introduce a new risk of bias assessment tool, specifically for assessing methodological quality and the 

risk of bias in validity and reliability studies using wearable technology, with a focus on consumer-grade 
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wearable technology. The WEArable Technology Risk of Bias and Objectivity Tool (WEAR-BOT) is 

introduced here, with accompanying instructions for use below. 

 

Tool Development Methodology 

This tool was developed through iterative discussions and subsequent use with academics and 

professionals involved in the field of wearable technology, with a focus on testing the validity and 

reliability of consumer-grade devices. Eight researchers were invited to participate in the development of 

this tool, and seven agreed to participate. Discussions with individual researchers and the primary 

investigators were first conducted to introduce the general idea and discuss the need for development of 

a novel risk of bias tool. Regular group meetings then commenced, spanning several months, where 

published literature was reviewed and discussed and suggestions for tool development were made. This 

included reviewing published risk of bias tools, validity and reliability studies, and other 

recommendations made in published literature, while gradually developing the checklist. Discussion on 

recommendations, questions, wording, and the overall scope were constantly evaluated over the 

months of tool development. As researchers were located throughout the United States, all meetings 

were completed virtually. All meetings were an open-ended discussion, where each researcher 

contributed as they wished. Decisions on scope, content, wording, and all other aspects of the tool were 

discussed in an open manner until all researchers were satisfied with the initial results. 

Once the questions and tool were mostly established, a pilot study or proof-of-concept systematic 

review was performed. The results of this systematic review will be published elsewhere. After the 

completion of the review, any suggestions for changes to the tool from the researchers involved in the 

systematic review were considered by the entire group, and instituted where consensus was reached. 

After several iterations of the tool were developed, criticized, and pilot tested, several rounds of an 
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anonymous, Delphi-style questionnaire were conducted to determine if consensus had been reached on 

several aspects of the checklist. These included aspects such as: question wording, category scope, and 

other aspects. Minor changes were made as a result of the Delphi questionnaires and are reflected in 

the current version of the WEAR-BOT checklist. Consensus was reached on all aspects of the tool that 

were questioned in the Delphi questionnaire process. 

The final tool can be seen below, but the use of the tool must be done using Google Sheets (Alphabet 

Inc., Mountain View, CA, USA), as macros specific to Google Sheets do not transfer over to other 

spreadsheet products. The link for tool use is: 

https://docs.google.com/spreadsheets/d/1npIGT9SJl0_E6RfLRi7ZFKeQnjR2O05bvuGSkhhtoWM/edit?us

p=sharing. 

 

Results 

The novel WEAR-BOT tool consists of two checklists, one for validity studies, and one for reliability 

studies. Each checklist is split into two broad categories, “Study Design and Methodology”, and 

“Statistical Analysis Methods”. There are subcategories, that each have questions intended to evaluate 

the risk of bias found in the study being evaluated. The researcher using the tool must answer one of the 

following, “Yes”, “Probably Yes”, “Probably No”, “No”, or “Not Applicable”. The subcategories for the 

validity checklist are 1. Test Variables, 2. Criterion Device, 3. Test Devices, 4. Test Protocols and 

Parameters, 5. Participants, 6. Data Processing, 7. Statistical Tests – Continuous Variables, and 8. 

Statistical Tests – Categorical Variables. Subcategories 1-5 are under “Study Design and Methodology”, 

whereas 6-8 are under “Statistical Analysis Methods” (see Figure 1). The validity checklist also has an 

“Areas of Consideration”, that the answers are not factored into the overall risk of bias calculations but 

may be considered by researchers looking to design their own studies (see Figure 2). The reliability 
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checklist has only two subcategories, which are both under “Statistical Analysis Methods”. Therefore, the 

reliability checklist contains questions for “Study Design and Methodology” (no subcategories), and 

“Data Processing” and “Statistical Tests” under “Statistical Analysis Methods” (see Figure 3). Some 

instructions for use are published in the tables/tool itself, for guidance on common issues researchers 

may run into. For more complete instructions, see below under the “General Guidelines and Instructions 

for Use” section of this paper. 
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Figure 2.1. WEAR-BOT Checklist for Validity Studies.  
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Figure 2.2. WEAR-BOT Areas of Consideration Checklist for Validity Studies.  
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Figure 2.3. WEAR-BOT Checklist for Reliability Studies.  
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General Guidelines and Instructions for Use 

This tool is intended for researchers to evaluate previously published research and the risk of bias they 

may contain, as it relates to validity and reliability studies using consumer-grade wearable technology. 

This is frequently performed as part of a systematic review. However, researchers looking to perform 

their own validity or reliability study may also use the checklist to ensure they are designing studies that 

have a minimal risk of bias. The checklist is designed to reduce bias and improve the validity of the 

studies, including internal and external validity, by ensuring appropriate study design and methodology, 

as well as statistical analysis. It can be utilized by researchers evaluating wearable technology 

concurrently or sequentially, thus improving the evaluation of the test devices concurrent, predictive, 

and/or criterion validity.  

This section will provide general instructions for use, describing the overall intent of each section and 

some general guidelines. Detailed instructions for use can be found below this section, which will 

address specific questions researchers may have when utilizing the tool. 

 

Validity Checklist 

Study Design and Methodology 

Subsection 1: Test Variables 

This section focuses on the alignment of measurement units between the test device and the criterion, 

ensuring that the validity of the device is assessed against intended measures. It emphasizes the 

importance of appropriate study design in validation research, discouraging the testing of variables not 

targeted by the device manufacturers. 

Subsection 2: Criterion Device 
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This section evaluates the selection and utilization of criterion devices, requiring evidence of validity, 

proper calibration, and detailed reporting on the software used for analysis. This section highlights the 

need for clear justification when non-standard criterion methods are employed, ensuring the criterion's 

relevance and validity. 

Subsection 3: Test Devices 

This section addresses the standardized use and reporting of test devices, including their calibration, 

reset procedures, input of participant demographics, and placement on participants. It aims to establish 

control over potential confounding variables while balancing internal and external validity, ensuring that 

devices are used as intended by their manufacturers. 

Subsection 4: Test Protocols and Parameters 

This section emphasizes the importance of controlling all appropriate factors, especially when the 

criterion measure and test device are not tested concurrently, but are tested sequentially. It is important 

to control for all possible testing parameters, where appropriate. It recommends the reporting of data 

collection intervals, test settings, and measures taken to control potential confounders, ensuring 

thorough evaluation of the test environment. 

Subsection 5: Participants 

This section focuses on the justification of sample size through power analysis or other means, the 

reporting of inclusion/exclusion criteria, and the description of sample demographics. Additionally, it 

calls for the identification of potential confounding variables related to participants that could influence 

measurements. 

 

Statistical Analysis Methods 
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Subsection 6: Data Processing 

This section is concerned with the transparency and reproducibility of data processing methods, 

reporting on missing or cleaned data, and the alignment of data from test devices with the criterion. It 

stresses the importance of clear methodology in data handling and processing to ensure accurate 

comparisons in validity studies. 

Subsection 7: Statistical Tests - Continuous Variables 

This section is the longest section and evaluates the appropriateness of statistical tests for continuous 

variables, recommending specific tests for 3 different aspects of validity, 1. error, 2. linearity, and 3. 

equivalence testing, while also recommending a Bland-Altman plot be generated to visually represent 

measurement bias. It guides the choice of tests based on data characteristics and emphasizes the 

importance of reporting validity thresholds and proper effect size calculations. 

Subsection 8: Statistical Tests – Categorical Variables 

This section ensures the use of appropriate diagnostic tests for categorical variables, such as sensitivity, 

specificity, and accuracy, and the reporting of classification tables. It suggests association tests suitable 

for nominal or ordinal variables and stresses the importance of establishing and reporting validity 

thresholds. 

 

Areas of Consideration 

Finally, this tool mentions additional factors that, while not directly contributing to the risk of bias 

calculation, may prove valuable for researchers to consider when designing their studies. These 

considerations are meant to further mitigate bias and enhance the validity of research involving 

wearable technology. 
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Reliability Checklist 

Study Design and Methodology 

This section prompts researchers to detail their approach to reliability testing, distinguishing between 

concurrent and sequential methodologies. It emphasizes the importance of standardizing device 

placement, ensuring device and software uniformity, and maintaining consistent testing parameters 

across trials. These elements are crucial for minimizing variability and bias, thus enhancing the reliability 

of study findings. 

 

Statistical Analysis Methods 

Subsection 2: Data Processing 

Within this section, the tool addresses the handling and processing of data, including the description of 

data cleaning methods, reporting of missing or cleaned data, and the justification for any data exclusion. 

This ensures that the data analysis process is transparent and reproducible. Additionally, it queries the 

use of specific software for analysis, promoting methodological integrity. 

Subsection 3: Statistical Tests:  

This section encourages the reporting of multiple measures of reliability, differentiating between 

absolute reliability measures, such as the coefficient of variation and standard error of measurement, 

and relative reliability, typically assessed using the Intraclass Correlation Coefficient (ICC). This approach 

to reliability testing provides a thorough understanding of a device's performance, producing a more 

robust understanding of the device’s reliability. 
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Detailed Instructions for Use 

Validity Checklist 

Study Design and Methodology 

Subsection 1: Test Variables 

Question 1a: Are the units of measurement (or estimated values) between test device and criterion the 

same? 

This question is important to determine whether the validity of the device is being tested, or simply 

correlation between other variables. It would be inappropriate to test whether the device can measure 

variables the manufacturers did not intend for it to measure in the context of a validation study. While 

this could be performed in an exploratory manner, the analysis would be different than in validation 

studies. 

 

Subsection 2: Criterion Device 

Question 2a: Is there clear evidence that the criterion device/method used is valid? 

This question is important because there must be clear evidence that the device chosen for the criterion 

is accurate and/or reliable enough to provide the correct values. There have been several studies that 

use a “criterion device” that is not widely agreed upon to be accurate and/or reliable enough to be 

considered a criterion, which introduces bias to the study. Although at times it is clear whether a certain 

measure is accepted as the gold standard, and should be used as the criterion, this is not always the 

case. In such instances where researchers are using data collection methods that are not widely 
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accepted as the gold standard, it is especially important that researchers evaluate the “criterion” before 

use and report it in the paper. For example, body composition testing using a DEXA scanner would be 

widely accepted as a criterion device, but researchers who utilize bioelectric impedance analysis (BIA) 

may need to establish the device as an appropriate criterion for their study based on previously 

published data. As has been noted by previous literature, thresholds for validity and reliability are not 

widely established (Carrier et al., 2021), nor are thresholds for the criterion devices, so researchers may 

need to use their best judgement when citing a device as a “criterion”, until threshold for criterion 

devices can be established.  

Question 2b: Was the criterion device properly calibrated, synced, and updated prior to testing? 

This is an important aspect for researchers to report to ensure that there was not a systematic or 

random bias in the data due to improper calibration, which may cause the validity and/or reliability 

measures of the test device to be inaccurate due to methodological errors on the researchers’ part. In 

addition, appropriate syncing with devices or having updated devices for some participants rather than 

others may introduce differing results, and thus introduce bias into the study. 

Question 2c: Was the software used for analysis reported and appropriate? 

This question requires the evaluator to determine the suitability of the software used for analysis within 

the study. This is, in part, a judgement call performed by the evaluator to determine whether it was 

appropriate. This task, of assessing whether a measure or aspect of a study was appropriate, is used 

several times in the WEAR-BOT. Given the tool's design to accommodate a broad range of applications, 

we rely on those using the tool to be experts in their fields, and to use their best judgment as to whether 

something was appropriate, based on their experience and current best-practices. 

 



21 
 

Subsection 3: Test Devices 

These questions are mainly concerned with ensuring that the use of the test devices was standardized 

and reported, or justification provided if standardization was deliberately not prioritized.  

Question 3a: Were the test devices properly synced, updated, and/or calibrated (if applicable) prior to 

testing? 

As with calibration of the criterion device, this step is necessary to complete and report for proper bias 

evaluation. Authors should describe how data alignment or syncing between the test device and the 

criterion was performed. Additionally, the version of the operating system or firmware used in the test 

devices should be reported, especially if the system was updated within the study timeframe. 

Question 3b: If necessary, was the data and/or settings reset or adjusted between each test? 

In many wearable devices, previous data may influence the generation of new estimates. For example, a 

device may use accelerometer data in conjunction with GPS data to determine the stride length of the 

user. If this data is not reset between tests, and especially between participants, it represents a potential 

confounding variable. Therefore, it is recommended to reset the settings between tests, when necessary. 

However, if the researchers are sure that the device does not use previous data to influence the 

physiologic or physical estimates, then this step is not needed and should be noted in the manuscript.  

Question 3c: If necessary, were participant demographics input for each test? 

This is important for similar reasons to question “b”. If the test device participant demographics for their 

estimates, such as bodyweight being used in the calculation of energy expenditure, then not resetting 

these settings between tests may alter the algorithms used by the manufacturers and create a 

confounding variable and ultimately misrepresentation of the validity of the devices. Again, if the 
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researchers are sure that demographics are not used in any calculations by the device, this step is not 

necessary, but should be justified in the manuscript. 

Question 3d: Was device placement on the participant standardized and appropriate? 

The placement of test devices should be used as the manufacturers intended, and researchers should 

report the anatomical attachment point in the paper. With that being said, it should be noted that 

devices are meant to be used by the general population, and most manufacturers allow for a level of 

variety in how they are used. As long as the placement and use are properly reported and in-line with 

manufacturer recommendations, this question should be answered “Yes”. This point is assessed further 

in question “3e”. 

Question 3e: Were the devices used in a way the manufacturers would approve of? 

This question assesses in general terms if the device was used appropriately (rather than specific device 

placement as evaluated in Question 3d). This may require those assessing the study to use their best 

judgement and read device manuals if there is a question regarding methodology. Similar to device 

placement, test devices should be used in the manner for which the device was designed, and authors 

should note this in the manuscript. 

Question 3f: Were all devices, software, and accessories used reported? 

Some wearable devices have additional accessories that can be used in conjunction with the base device 

to improve accuracy or broaden the number of variables it can track/estimate. These should be 

reported, if not, comparison across studies cannot be done appropriately. Additionally, whatever 

software or applications were used to collect the data should be reported, whether this be the native 

application for the device, or a third party application. 

 



23 
 

Subsection 4: Test Protocols and Parameters 

Question 4a: Were measurements between the criterion and test device taken concurrently? 

This aspect of testing is important to establish because there are additional factors that need to be 

controlled for when testing sequentially, including device placement, elapsed time, exercise intensity (if 

being used during exercise), environmental factors, among many others. While testing sequentially can 

be used for testing, most consumer-grade devices are relatively inexpensive, and thus testing with two 

devices concurrently, in addition to the criterion (three devices total), is a realistic possibility, and 

reduces the risk of introducing confounding variables associated with time and multiple data collections.  

Question 4b: If tested sequentially, was an appropriate amount of time given between tests? 

As stated above, testing sequentially requires researchers to attempt to control many more variables 

than if testing concurrently to ensure appropriate internal validity. An important factor is time. This is 

specified in the tool, with instructions stating, “Were participants provided a sufficient amount of time 

so the measurement would not be affected by the previous test bout, or too long that physiological or 

physical traits may have changed?”. The amount of time between tests will vary from study to study, and 

possibly across testing bouts and modalities within the same study. If testing something that does not 

require a lot of rest time, such as activities of daily living, or walking, minutes may be enough time 

between trials. However, if testing an exercise modality that requires larger effort, such as running or 

circuit training, minutes may not be long enough, and researchers may be looking at having hours to 

days between trials. In addition, waiting too long, such as weeks to months, could be too long between 

trials, and a person’s physiology may change based on their training status (if testing exercise 

modalities). This question answer should be N/A if the devices were tested concurrently, as stated in the 

tool. 

Question 4c: Was the data collection time interval reported? 
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The length of time the data was collected for should be reported, whether this was five minutes or five 

hours. This will be especially important for compiling results from multiple studies, as MAPE from a 5-

minute bout of exercise should not be weighted the same as MAPE from a 5-hour bout of exercise when 

compiling an overall MAPE for devices. 

Question 4d: Was the test setting reported (e.g. laboratory, free-living, field)? 

This question is asked to determine whether the test setting was reported and what environments the 

device has been tested in, and under what circumstances the device may be considered valid. Knowing 

the environment the device was tested in is important for contextualizing the results and understanding 

the conditions under which the device was evaluated. Whether the measurements were taken in a 

controlled laboratory environment, during free-living conditions, or in a field setting may influence the 

use cases of the device, limiting it to certain scenarios. By clearly stating the test setting, researchers 

enable a deeper understanding of the context in which the device performs as expected or reveals 

potential limitations, guiding both users and developers in making informed decisions about its practical 

applications. 

Question 4e: Were steps taken to control for any potential confounding variables in the test 

environment? 

Authors should report whether potential confounding factors, specifically in their environment, were 

present during testing. As testing environments may vary greatly, it will be difficult to develop a 

questionnaire or checklist to address every potential confounding variable. Therefore, we rely on the 

expertise of those using the tool when evaluating the literature to use appropriate judgement based on 

previous literature and their experience to identify any potential issues in the methodology of the study 

being evaluated. 
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Subsection 5: Participants 

Question 5a: Did researchers perform an a priori power analysis or state other justifications to determine 

sample size? 

Performing an a priori power analysis is important to ensure appropriate power in the study without 

wasting time and resources by testing too many participants. Researchers should utilize a correlation-

based effect size when calculating the necessary sample size (such as Pearson's Product Moment 

Correlation Coefficient), as using effect sizes based on descriptive statistics (such as Cohen’s D) would 

likely result in far too many participants being tested to achieve appropriate power in the study. If a 

power analysis was not performed, authors should justify the sample size tested in another manner, 

otherwise the evaluator can select “No” for this question. 

Question 5b: Was the inclusion/exclusion criteria and sample population reported and described (e.g. 

age, BMI, fitness level, disease status)? 

An appropriate reporting of participant demographic characteristics should be provided by the 

researchers. As the goal of validation and reliability studies are to determine if and when wearable 

devices can produce accurate results, a critical component is the demographics of the population that 

the device was tested on. Comparing device performance during stride length for the general population 

vs. individuals with a musculoskeletal disorder would be improper, thus researchers should report the 

aspects of their population in a thorough manner. 

Question 5c: Were any potential confounding variables regarding participants identified that would 

influence the measurements (see limitations section)? 

Authors should report whether any potential confounding factors, specifically regarding participants, 

were present during testing. This question relies on the researchers utilizing the tool to use their 
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expertise and their best judgement to identify any potential confounding variables that may be present 

in the unique participant pool for each specific study they assess. The rationale should be sound, 

cautiously measured, and be stated in the systematic review or report they produce if they identify any 

potential confounding variables to ensure transparency. 

 

Statistical Analysis Methods 

Subsection 6: Data Processing 

This subsection is the first under the broader category of “Statistical Analysis Methods,” emphasizing the 

critical role of proper data processing in research involving wearable technology. It aims to ensure that 

data processing methods are thoroughly reported and adhere to standards that allow for reproducibility. 

These questions collectively aim to ensure the methodological rigor and transparency of data processing 

in research involving wearable technologies, providing a foundation for the subsequent statistical 

analysis. 

Question 6a: Were the data processing methods described appropriately and in a reproducible manner? 

This question assesses whether the methodology section provides a detailed account of the data 

processing steps, and could include reporting of specific software tools, versions, and settings used. The 

aim is to determine if another researcher could replicate the study based on the information provided. 

Data cleaning is “the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, 

or incomplete data within a dataset” (). Data processing is specific to the device and measurement. If 

the measurement is taken several times throughout the data collection period (such as heart rate or 

accelerometry data), there may be missing data, or data that needs to be cleaned. However, if the data 

is cross-sectional, and only a single value is provided by the device (such as estimated VO2max), then data 



27 
 

cleaning is not necessary. Whether the methods were described “appropriately” will require the 

evaluator to make a judgement call. The researchers should examine whether the methods were 

detailed enough to accurately reproduce the data processing methods, and whether they believe 

anything was omitted from the processing methodology. It is important that the researchers using the 

WEAR-BOT be familiar with at least basic types of data processing that may be required when using 

wearable technology in research, as specific devices have specific data processing needs. 

Question 6b: Was the amount of missing and/or cleaned data reported? 

This question is pivotal to ensuring data processing, and specifically cleaning of the data, is done 

transparently and with integrity. In a validity study, removing data should be done cautiously, and with 

good justification to prevent biased results. Researchers should report the volume and reasons for data 

exclusion, such as outliers, errors in the criterion data, or other reasons. In-text instructions to select N/A 

applies if the data was cross-sectional or if cleaning was deemed unnecessary due to the nature of the 

data collection method.  

Question 6c: Was it reported how missing data from the criterion and/or test devices were handled? 

This question is centered on the methodology for addressing missing data, ensuring that such handling 

does not bias the results. It may be as simple as stating the amount of missing data from each device. 

The amount of missing data will be relative to the granularity of the epoch. For example, devices that 

aggregate sensor data every second compared to every minute will likely have more missing data. If the 

device outputs raw data (unusual in consumer-grade electronics), the scale of processing and missing 

data will be much greater. This should be noted in the report and taken into account by the researchers 

evaluating the study. If imputation was performed, justification must be reported, as in most cases, 

imputation for validity studies of consumer-grade wearable devices would be inappropriate. 

Question 6d: Was justification provided for any data removed by the researchers? 
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This question seeks to ensure that any decision to exclude data from the analysis is transparent and 

justified in the report. It underscores the necessity for researchers to provide a clear and well-founded 

rationale for any data they decide to remove or exclude from their study. Such justifications are crucial 

for understanding the boundaries and conditions the device being tested can be found valid or not valid. 

The criteria for data removal can vary widely, from errors in the criterion device (which should be 

removed so the test device is not faulted due to the criterion’s mistake), to errors in data collection or 

entry. The explicit reporting of these criteria not only enhances the study's reproducibility but also allows 

for a critical assessment of its findings. In-text instructions to select N/A if no data was removed or if the 

removal was not explicitly reported are present. 

Question 6e: If necessary, was the method of aligning data reported and reasonable (e.g. aligned on 

timestamp, elapsed time)? 

The proper alignment of data points is crucial for comparison across devices or time points. This 

question evaluates whether the study described how data from different sources were synchronized. 

Options for alignment could be either by timestamps, event markers, or elapsed time. Other methods 

may be acceptable if the researcher described the process, why it was chosen, and why it was deemed 

necessary. Ensuring that measurements are properly aligned must be done in order for the validity of 

the device to be properly tested. Alignment of data, however, may not be necessary for all devices. In 

the instance that the data is cross-sectional (e.g. total hours of sleep), alignment is not necessary as 

there are not repeated measures. Therefore, evaluators have in-text instructions to select N/A if 

alignment was not a necessary step in the data processing phase. 

Question 6f: If necessary, were steps taken to ensure there was no lag in the data (or signal processing), 

compared to the criterion, to ensure appropriate alignment? 
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This question also deals with data alignment but is a recommended step to ensure any potential lags 

between devices were identified and corrected. Techniques such as cross-correlation analysis might be 

employed to verify temporal alignment. Cross correlation is a statistical method used to measure the 

similarity or correlation between two datasets as a function of the lag of one relative to the other. 

Essentially, it helps to identify the degree to which two series are correlated at different time shifts, 

enabling the detection of patterns or relationships that may not be immediately evident in unshifted or 

simultaneously collected data. If there are significant correlations in the shifted data, an offset should be 

used to properly align the data to account for the lag present. Again, evaluators are provided in-text 

instruction to select N/A if cross correlations are not necessary (if the data is cross-sectional). 

Question 6g: Was the time interval (epoch) for data aggregation reported and appropriate? 

This question examines whether the study clearly reported the time intervals or epochs over which data 

was aggregated and assesses the suitability of these intervals for the study's objectives. The granularity 

of the data, or the smallest time unit of aggregation, is crucial as it influences the level of detail captured 

and the amount of data processing needed. For example, data aggregated at shorter intervals (e.g., 

every 5 seconds) can capture more detailed variability but may require more extensive cleaning than 

data aggregated at longer intervals (e.g., every 5 minutes), which would smooth over finer variations. 

The choice of aggregation interval impacts not only the processing and analysis of data within the study 

but also the comparability and synthesis of findings across studies and devices, especially in future meta-

analyses. Therefore, it's important that the selected intervals are justified in the context of the study's 

goals and the characteristics of the data collected. Each device and measurement may justify different 

epoch’s and evaluators should use their expertise in the field and common practices in previous 

literature to determine if the level of aggregation is appropriate for each study they evaluate. 
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Question 6h: Was all software, programming scripts, or other resources used for statistical analysis 

disclosed? 

Transparency in the tools and software used for analysis is critical for reproducibility. This includes not 

only the names and versions of statistical packages but also any custom scripts or code developed for the 

study. 

 

Subsection 7: Statistical Tests - Continuous Variables 

This subsection discusses the statistical methodologies applied to continuous variables in validation 

studies, recommending several statistical tests and reporting methods as best practices. This detailed 

approach to evaluating the application of statistical tests to continuous variables ensures that the 

methodologies employed are rigorously scrutinized for appropriateness, comprehensiveness, and 

transparency, when evaluating the credibility and risk of bias of the validation study. 

Question 7a: Were the test variables continuous? 

This preliminary question establishes the nature of the data used by researchers, confirming that the 

subsequent questions are relevant to the study's statistical analysis. If the test variables are not 

continuous, the evaluator should go on to subsection 8, which has questions pertaining to categorical 

variables, and mark subsequent questions in this section as N/A. 

Question 7b: Were multiple tests used to determine validity? 

This question is important to understand whether a comprehensive approach was taken in analyzing the 

data, employing multiple statistical tests to evaluate the validity of the findings. This approach is crucial 

for a thorough evaluation of wearable technology. While we recommend specific tests later in the tool, 

this question does not require those specific tests to be performed, and evaluators may select “Yes” or 
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“Probably Yes” if the original researchers utilized multiple tests that they claim to be used for validity 

analysis. 

Question 7c: Was a test of error performed (e.g., MAPE, MAE, RMSE)? 

This question asks about error testing, which is among the most common aspects of validity that is 

currently tested in published works. While we recommend that a test of error is performed, we do not 

specify which error measurement should be used. While mean absolute percentage error (MAPE) is the 

most common and makes it easy to compare results across different variables, as percentages are widely 

understood metrics, some researchers may prefer root mean square error (RMSE) or mean absolute 

error (MAE) which both will maintain the original units of whatever estimate or calculation the devices 

use, or other error measurement. Ultimately, the selection of an appropriate error metric should be 

chosen based on the nature of the data, study protocols, and specific objectives of the study. 

Question 7d: Was linearity between the test device and criterion established via correlation and/or 

regression? 

This question addresses the fundamental aspect of establishing a linear relationship between the 

measurements obtained from the test device and those from the criterion device in validation studies. 

Linearity is crucial because it indicates that the test device can accurately reflect changes in the variable 

of interest across the range of measurements in a manner consistent with the criterion device. It is 

necessary to demonstrate that for any increase or decrease in the measured variable, the test device's 

response is directly proportional to that of the criterion device, without systematic overestimation or 

underestimation at specific ranges. Establishing linearity involves statistical methods such as correlation 

analysis, which assesses the strength and direction of the relationship between two variables, and 

regression analysis, which models the relationship between a dependent variable (test device readings) 

and an independent variable (criterion device readings). A strong linear relationship (e.g., high 
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correlation coefficient, regression line closely fitting the data points) provides evidence that the test 

device is capable of accurately tracking the criterion across its measurement spectrum. The question of 

which correlation and regression tests should be used will be specified below in subsequent questions. 

Question 7e: If correlation was used, was the appropriate correlation test employed (Pearson’s, Lin's 

Concordance, Spearman's, etc.)? 

This question examines the selection of correlation tests in the study. We do not recommend a specific 

correlation test, as different data may require specific tests. However, some considerations as to when 

you would use each test can be found here. Pearson's correlation coefficient can be used for continuous 

variables with a normal distribution, offering straightforward linear relationship insights. It's widely used, 

facilitating comparisons across studies and allowing for sample size calculations with common statistical 

software. Spearman's rank correlation is suited for non-normally distributed data, as it assesses the 

relationships through ranking, thus providing a viable option for non-linear associations. Lin's 

Concordance Correlation Coefficient, on the other hand, is generally recommended for validation studies 

due to its comprehensive assessment of both precision and accuracy between two variables. This makes 

Lin's particularly valuable when evaluating the agreement between a test device and a criterion 

standard, capturing the essence of variability in measurement. The choice between these tests hinges on 

the data's distribution and the study's specific needs. Justification should be provided by the original 

researchers as to why they used certain tests, and the evaluators best judgement should be used to 

determine if it was appropriate for the study being evaluated. 

Question 7f: If necessary, was repeated measures correlation determined if there were non-independent 

samples? 

This question is important and often overlooked in validation studies, which is why it is further specified 

from the previous question. The aim of this question is to address the analysis of data from studies with 
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measurements that are not independent, typically seen with repeated measures on the same subjects. 

Traditional correlation assessments may not accurately depict the relationship between variables due to 

the interrelated nature of these data points. The use of repeated measures correlation tests, such as the 

repeated measures correlation or an intraclass correlation coefficient (ICC) designed to handle multiple 

measurements is necessary to properly evaluate linearity in validation studies with repeated measures. 

Question 7g: If regression was used, was the appropriate regression analysis utilized (e.g., Simple Linear, 

Deming, Passing-Bablok)? 

This question evaluates the tests for linearity, specifically different regression models. Choosing the right 

type of regression analysis is important to accurately assess the relationship between the measurements 

obtained from the test device and those from the criterion device. While we do not recommend specific 

tests in the WEAR-BOT checklist, the reader can find brief explanations of when to use different models 

for validity testing. Simple linear regression is the most straightforward approach, modeling the 

relationship between a single independent variable and a dependent variable by fitting a straight line 

through the data points. This is the most widely known form of regression, and due to its simplicity, the 

most digestible for the reader. However, it assumes that the independent variable (criterion device 

measurements) is measured without error, which may not always be the case in validation studies where 

both devices could have measurement errors. Deming regression, also known as errors-in-variables 

regression, extends beyond simple linear regression by accounting for measurement errors in both the 

test and criterion devices. This method adjusts the regression line based on the ratio of the variances of 

the measurement errors, offering a more accurate estimation of the relationship when both variables 

have associated uncertainties. Deming regression is generally the preferred model for validity studies 

where the data is normally distributed. Passing-Bablok regression is a non-parametric approach that, like 

Deming regression, does not assume one of the variables to be error-free. It is robust against outliers 

and does not require the distribution of measurement errors to be normal, making it suitable for a wide 
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range of data types. Therefore, Passing-Bablok will be the better regression model if the data is not 

normally distributed. Taking into account these considerations will enable the researchers to utilize the 

correct regression model and allow evaluators to properly assess the risk of bias in the statistical 

methods of the studies in question. 

Question 7h: If regression was used, were appropriate model fit statistics reported? 

This question evaluates if appropriate results were reported from the regression model used. In 

validation studies where regression analysis is employed to examine the relationship between a test 

device and a criterion standard, reporting model performance is recommended for a comprehensive 

understanding of the model's fit and predictive accuracy. The coefficient of determination (R2), residual 

sum of squares, y-intercept, and slope of the regression line is appropriate for simple linear regression, 

while Deming and Passing-Bablok regression should report the y-intercept and slope, as they do not 

produce a true R2 value. Together, these metrics provide a detailed account of the linear relationship, 

allowing for an evaluation of how well the test device's measurements align with those of the criterion 

across the range of values tested. Reporting these metrics will allow the reader to better understand the 

amount of linearity between the devices, and will allow for comparisons between studies in future meta-

analyses. 

Question 7i: Was equivalence testing performed (e.g., TOST test, confidence interval for difference in 

means)? 

This question investigates whether the study included equivalence testing to statistically determine if the 

test device's measurements are acceptably close to those of the criterion device. Equivalence testing, 

such as the Two One-Sided T-Tests (TOST test) and analysis using confidence intervals for the difference 

in means, is another method to determine validity (or equivalence) in validation studies. These can be 

used to establish that the test device's measurements are practically equivalent to a criterion standard 
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within a pre-defined margin. Unlike traditional hypothesis tests aiming to find significant differences, 

equivalence testing flips the null hypothesis and verifies that any deviations between devices are within 

acceptable limits. The TOST test procedure, for instance, checks if differences fall within specified 

equivalence bounds, offering a stringent criterion for method validation. This ensures the test device 

performs closely to the standard, supporting its use for the intended applications with confidence. This is 

particularly relevant for validation studies aiming to establish that two measurement methods agree 

within a tolerable margin of error. 

Question 7j: Was bias/agreement plotted via a Bland-Altman plot? 

This question simply asks if the researchers utilized Bland-Altman plots for assessing agreement/bias 

between the test device and the criterion. This graphical method is a widely utilized method for 

identifying any systematic bias and the limits of agreement in validation studies. By providing a visual 

representation of how the differences between the two measurement methods vary across the range of 

measurements, Bland-Altman plots facilitate the identification of any systematic bias or trends, such as a 

tendency for differences to increase as the magnitude of the measurement increases. 

Question 7k: If performed, were bias and limits of agreement estimates reported for the Bland-Altman 

analysis? 

This question is to evaluate whether, in addition to plotting, the study reports quantitative estimates of 

bias (average difference) and limits of agreement as calculated from the Bland-Altman analysis, providing 

a clear indication of the test device’s accuracy and consistency. Reporting this is valuable to the readers 

and may be used in the future for comparisons between devices or modalities. 

Question 7l: If effect size was calculated, was it based on linear association (e.g., R2) rather than less 

appropriate calculations using descriptive statistics (e.g., Cohen’s D)? 
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This question ensures the appropriate use of effect sizes for studies performing validity testing, such as 

those based on linear associations, rather than those more suited to comparing group means. Utilizing 

effect sized based on descriptive statistics (group means) will produce small effect sizes for most 

validation studies, as the goal of the test device is to be as close to the criterion in its measurements as 

possible. Therefore, it would be inappropriate to use effect sizes based on descriptive statistics and 

association-based effect sizes should be utilized. However, if the effect size based on descriptive statistics 

was not utilized in the interpretation of the validity of the device, that would not introduce bias into the 

study. Therefore, we include in-text instructions that state, “Select N/A if effect size was not calculated or 

effect size based on descriptive statistics was not used in the interpretation of the validity of the device 

(if it was calculated but not used to determine if validity was achieved).” 

Question 7m: Were validity thresholds reported? 

This question gets to the very heart of validity studies, to answer the question of whether a device was 

valid or not. As thresholds for validity have not been widely established (as of the publication of this 

paper), it is left up to the individual researchers to determine whether the device meets their standards. 

There have been several authors who propose varying thresholds for validity, some more conservative, 

and others more liberal. Whatever thresholds the researcher chooses should be established prior to data 

collection and reported in the published work. 

 

Subsection 8: Statistical Tests - Categorical Variables 

This subsection addresses the application and analysis of categorical variables within the context of 

consumer-grade wearable device validation studies. It emphasizes the importance of selecting 

appropriate statistical methodologies for analyzing categorical data, ensuring the validity and reliability 

of the devices under study. 
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Question 8a: Were the test variables categorical? 

This question serves as a preliminary filter, confirming whether the data analyzed in this section is 

indeed categorical. If the data is not categorical, in-text instructions direct the reader to fill out the 

previous section on continuous variables and select “Not Applicable” (N/A) for all subsequent section 8 

questions. 

Question 8b: Were diagnostic tests performed to assess predictive validity (e.g. sensitivity, specificity, 

accuracy, AUC)?  

This question evaluates the use of diagnostic accuracy tests to determine how well the device can 

correctly classify or predict outcomes compared to a criterion standard. This includes assessing whether 

measures such as sensitivity (true positive rate), specificity (true negative rate), overall accuracy, and 

area under the receiver operator curve (AUC) were calculated and reported, providing insight into the 

device's performance in categorical terms. This could be used for human activity recognition, where 

devices are attempting to predict what activity is being performed (e.g. walking, washing dishes), or 

classifying exercise intensity into light, moderate, and vigorous intensity exercise based on metabolic 

equivalents (METs), or other categories. Overall, these tests are fundamental in evaluating the predictive 

validity of a test device in classifying or predicting categories against a criterion standard. 

Question 8c: Was the classification table (confusion matrix) reported? 

This question simply seeks to confirm that the study provided a confusion matrix, detailing the number 

of true positives, true negatives, false positives, and false negatives. This matrix is an important reporting 

metric for understanding the device's classification accuracy and for calculating the diagnostic tests 

mentioned in question 8b, as well as being an avenue to improve transparency in the results. 
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Question 8d: Was association between the test device and criterion established with appropriate 

categorical correlation statistics (e.g., Cohen's Kappa, Cramer's V, tetrachoric [for nominal variables], 

rank-based correlations, polychoric [for ordinal variables])? 

This question attempts to ensure that appropriate association statistics were run for the categorical 

variables, as correlation tests for continuous variables (such as Pearson’s) are inappropriate to use for 

categorical variables. In validation studies, establishing the association between the test device and the 

criterion standard requires selecting the appropriate correlation statistics tailored to the data's nature. 

Cohen's Kappa is a robust measure used to assess the agreement between two raters or methods 

categorizing data into nominal categories, correcting for chance agreement. It is particularly useful when 

the categories are mutually exclusive and exhaustive. Cramer's V expands this concept to cases with 

more than two categories, providing a measure of association between nominal variables. For data that 

fall into ordered categories, rank-based correlations like Spearman's rho can be applied to assess the 

relationship between two variables. When the data is dichotomous or ordinal but assumed to follow an 

underlying continuous distribution, tetrachoric (for dichotomous variables) and polychoric (for ordinal 

variables) correlations are preferred as they estimate the Pearson correlation coefficient that would have 

been obtained if the underlying continuous variables were observed. These statistics can be used in 

validation studies for assessing the strength of the association between categorical outcomes measured 

by the test device and the criterion, ensuring that the chosen method aligns with the data's 

characteristics and the study's objectives. 

Question 8e: Were validity thresholds reported? 

As stated previously in question 7n, this question gets to the very heart of validity studies, to answer the 

question of whether a device was valid or not. As thresholds for validity have not been widely 

established (as of the publication of this paper), it is left up to the individual researchers to determine 
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whether the device meets their standards. There have been several authors who propose varying 

thresholds for validity, some more conservative, and others more liberal. Whatever thresholds the 

researcher chooses should be established prior to data collection and reported in the published work. 

Developing thresholds for categorical variables may pose more challenges than for continuous variables, 

and there have been few thresholds suggested based on diagnostic tests. Fortunately for evaluators, 

there is no judgement call to be made whether the researchers thresholds were appropriate, but rather 

whether they were reported. As widely accepted thresholds are developed, this tool may need to change 

to reflect the updated practices. 

 

Areas of Consideration 

This section addresses additional factors that, while not directly affecting the risk of bias score, may 

provide context for interpreting the validity and reliability of wearable device studies. These 

considerations encompass inference testing, environmental factors, and participant biological variability, 

offering insights into the risk of bias of the studies. These areas were of concern to many of the authors, 

but consensus was not able to be reached by the entire group to include it into the risk of bias tool 

calculations, therefore we offer it here, as areas of consideration. 

I. Inference Testing 

Question Ia: Were any tests of mean differences performed that are unable to determine the validity of 

the test devices (e.g., ANOVA, t-test)? 

This question probes the use of inferential statistical tests designed to compare group means, such as 

ANOVA or t-tests, which are not directly applicable for validating a device's measurements. 
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Question Ib: If yes to question Ia, were the results of the inference test(s) used in the interpretation of 

the validity of the device? 

This question inquires whether the outcomes of these hypothesis tests were used to draw conclusions 

about the device's validity, despite their inherent limitations for this purpose. This question highlights 

the importance of distinguishing between statistical significance and practical relevance in the context of 

device validation. Simply performing these tests (maybe because a reviewer requested it) will not 

inherently increase bias in the paper, but using them in the interpretation of the validity of the device is 

surely a poor choice. 

II. Environmental Factors 

Question IIa: Were environmental factors reported (e.g., temperature, humidity, altitude)? 

This question assesses the reporting of environmental conditions during data collection, recognizing 

their potential impact on the performance of wearable devices. Detailed reporting of such factors may 

help identify possible confounding variables that could influence the validity of the test device under 

certain circumstances. In any case, understanding the conditions under which the device was validated 

can only improve the strength of the paper guide future generalization of the results. 

III. Participant Biological Variability 

Question IIIa: Were any steps taken to assess or control for participant biological variability, such as 

potential bilateral asymmetries in participants (differences between left and right sides) or other intrinsic 

biological variability? 

This question is meant to evaluate whether the study being evaluated accounted for biological variability 

among participants that could potentially affect the measurement accuracy of the device. Due to the 

variability inherent in this aspect, recommendations for best practices in validity studies would be 
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difficult to establish. Therefore, it remains in the “Areas of Consideration”, and if further research 

establishes how to deal with participant biological variability, this tool may need to be updated to reflect 

the recommendations of researchers. 

 

Reliability Checklist 

Study Design and Methodology 

Question 1a: Was reliability tested concurrently (using two devices at the same time) as opposed to 

sequentially (using two trials with one device)? 

This question determines which approach to reliability testing was used, concurrent or sequential. 

Concurrent testing assesses reliability by using two devices simultaneously on a subject, whereas 

sequential testing uses the same device across multiple trials. This distinction is necessary for 

understanding the context in which reliability is assessed and directs the subsequent focus of the 

evaluation. Evaluators should answer “Yes” if there is clear evidence that the devices being tested 

concurrently were the exact same model (i.e., it is explicitly stated in the manuscript) or answer 

“Probably Yes” if there are indications the devices were the exact same model but it was not explicitly 

stated in the manuscript. 

In-text instructions direct evaluators to answer specific questions, based on which testing methodology 

was used. Concurrent testing methodologies answer questions b-d, while sequential testing 

methodologies answer question b, and e-h. 

Question 1b: Was device placement on the participant standardized and appropriate for each device? 

This question checks to see if the placement of devices during testing was consistent and according to 

approved manufacturer protocols, ensuring that data comparability is not compromised by variations in 
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device positioning. As stated earlier, these devices should be used as the manufacturers designed them 

to be used, and to ensure that they were, researchers should report how they were used in their papers. 

With that being said, it should be noted that these devices are meant to be used by the general 

population, and most manufacturers allow for some level of variety in how they are used. As long as the 

placement and use are reported and in-line with manufacturer recommendations, this question should 

be answered “Yes”. However, device placement standardization is particularly important for reliability 

testing, because as many variables as possible need to be the same between trials, or for each device. 

Therefore, device placement must be standardized and appropriate in reliability studies. 

Question 1c: Were the devices the exact same model? 

This question confirms that the devices used for concurrent testing were of the same make and model, 

eliminating variability that could arise from hardware differences. If the devices were not the exact same 

make and model, then that introduces serious bias into the reliability study. 

Question 1d: Did the devices have the same software/firmware updates? 

This question verifies that both devices were operating on the same software or firmware version, 

ensuring that any differences observed are not due to discrepancies in software functionality. As with 

many of the questions for the reliability testing section, researchers need to ensure that as many 

variables as possible are consistent between devices when testing concurrently. 

Question 1e: Were steps taken to ensure consistent intensity and other testing parameters between 

trials? 

This question examines whether measures were in place to maintain uniform testing conditions across 

trials, such as exercise intensity, environmental conditions, activity modality, among other testing 

parameters, to ensure the reliability of results. As the testing environment, activity, and other aspects of 
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the reliability studies can vary widely, evaluators must use their best judgement to decide whether 

enough effort was taken to control for potential confounding variables to ensure successful tests. 

Question 1f: Was the software/firmware the same for each trial? 

This question ensures that no software or firmware updates occurred between trials that could influence 

the comparability of data collected sequentially. This is particularly important if a significant amount of 

time has passed since the initial trial. 

Question 1g: Was device placement on the participant the same for each trial? 

This question checks to see if the placement of device during testing was consistent between trials and 

according to approved manufacturer protocols, ensuring that data comparability is not compromised by 

variations in device positioning. As stated earlier, these devices should be used as the manufacturers 

designed them to be used, and to ensure that they were, researchers should report how they were used 

in their papers. With that being said, it should be noted that these devices are meant to be used by the 

general population, and most manufacturers allow for some level of variety in how they are used. As 

long as the placement and use are properly reported and in-line with manufacturer recommendations, 

this question should be answered “Yes”. However, device placement standardization is particularly 

important for reliability testing, because as many variables as possible need to be the same between 

trials, or for each device. Therefore, device placement must be standardized and appropriate in reliability 

studies. 

Question 1h: Was an appropriate amount of time given between tests? 

This question examines the scheduling of sequential trials within a study, assessing whether the interval 

between them was appropriately chosen to mitigate carryover effects from prior activities while also 

being close enough to prevent any significant alterations in participants' physiological or physical states. 
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The optimal timing between tests is crucial to ensure that each measurement reflects the intended 

conditions without interference from previous tests or natural variations in participants' health or 

performance over time. Evaluators must consider several factors, including the intensity of any exercise 

or activity involved, the total time commitment required from participants, and the nature of the 

measurements being taken, among other potential variables. For example, high-intensity activities may 

necessitate longer recovery periods to return to baseline conditions, while assessments of more stable 

physiological markers might allow for shorter intervals. The appropriateness of the time interval is thus 

contingent upon a nuanced understanding of the study's design and objectives, requiring evaluators to 

apply their expertise and knowledge of the field to determine whether the chosen intervals were 

suitable for the study's aims. 

 

Statistical Analysis Methods 

Subsection 2: Data Processing 

Question 2a: Were the data processing methods described appropriately and in a reproducible manner? 

This question assesses whether the methodology section provides a detailed account of the data 

processing steps, and could include reporting of specific software tools, versions, and settings used. The 

aim is to determine if another researcher could replicate the study based on the information provided. 

Data cleaning is “the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, 

or incomplete data within a dataset” (Tableau.com, nd). Data processing is specific to the device and 

measurement. If the measurement is taken several times throughout the data collection period (such as 

heart rate or accelerometry data), there may be missing data, or data that needs to be cleaned. 

However, if the data is cross-sectional, and only a single value is provided by the device (such as 

estimated VO2max), then data cleaning is not necessary. Whether the methods were described 



45 
 

“appropriately” will require the evaluator to make a judgement call. The researchers should examine 

whether enough data was provided to accurately reproduce the data processing methods, and whether 

they believe anything was omitted from the processing methodology. It is important that the 

researchers using the WEAR-BOT be familiar with at least basic types of data processing that may be 

required when using wearable technology in research, as specific devices have specific data processing 

needs. 

Question 2b: Was the amount of missing and/or cleaned data reported? 

This question is pivotal to ensuring data processing, and specifically cleaning of the data, is done 

transparently and with integrity. In a reliability study, removing data should be done cautiously, and with 

good justification to prevent biased results. Researchers should report the volume and reasons for data 

exclusion, such as outliers, errors in the criterion data, or other reasons. In-text instructions to select N/A 

applies if the data was cross-sectional or if cleaning was deemed unnecessary due to the nature of the 

data collection method.  

Question 2c: Was justification provided for any data removed? 

This question seeks to ensure that any decision to exclude data from the analysis is transparent and 

justified in the report. It underscores the necessity for researchers to provide a clear and well-founded 

rationale for any data they decide to remove or exclude from their study. Such justifications are crucial 

for understanding the boundaries and conditions the device being tested can be found reliable or not 

reliable. The criteria for data removal can vary widely, but the explicit reporting of these criteria not only 

enhances the study's reproducibility but also allows for a critical assessment of its findings. In-text 

instructions to select N/A if no data was removed or if the removal was not explicitly reported are 

present. 
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Question 2d: If necessary, was it reported how missing data from the test devices and/or trials were 

handled? 

This question probes the transparency and methodological rigor with which a study addresses the 

possible issue of missing data, a common challenge in research involving wearable technology. It 

assesses whether the researchers provided a clear account of the approaches used to manage gaps in 

the data, which could range from sophisticated imputation techniques that estimate missing values 

based on available information to straightforward exclusion criteria that remove incomplete 

observations from the analysis. The chosen strategy for handling missing data is pivotal, as it can 

significantly influence the study's findings and their reliability. Imputation is generally not recommended 

in reliability studies examining consumer-grade wearable technology, so if it was performed, good 

justification must be provided. By detailing these methods, a study ensures that other researchers can 

accurately replicate the analysis and assess the robustness of the conclusions drawn, thereby enhancing 

the credibility of the research. 

Question 2e: Was any software used for analysis disclosed? 

This question simply checks if the study provided detailed information on the software tools and versions 

used for data analysis, promoting transparency and reproducibility. Not doing so would introduce a risk 

of bias. 

 

Subsection 3: Statistical Tests 

Question 3a: Were multiple measures of reliability reported? 

This question scrutinizes the depth of the reliability analysis conducted in the study by inquiring if a 

range of statistical measures were utilized to assess the reliability of a device. This question does not 
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recommend which tests should be performed, but is to ensure a complete assessment of the reliability 

was performed. A singular measure, while informative, might not fully capture the nuances of a device's 

performance across different conditions and metrics. For example, reporting both the Intraclass 

Correlation Coefficient (ICC) for relative reliability and the Standard Error of Measurement (SEM) for 

absolute reliability provides a more rounded view of the device's consistency and the precision of 

individual scores, respectively. 

Question 3b: Was a test of absolute reliability reported (e.g. coefficient of variation, standard error of 

measurement)? 

This question delves into whether the study reported measures of absolute reliability. Some examples of 

tests being the coefficient of variation (CV) and the standard error of measurement (SEM). Absolute 

reliability refers to the degree to which repeated measurements vary for individuals, emphasizing the 

importance of understanding the inherent measurement error and its impact on the precision of the 

device. The SEM provides a direct measure of this error in the same units as the measurements 

themselves, offering a clear indication of the expected range within which a measurement might vary 

due to random error. A device that is perfectly reliable would have a SEM of 0. On the other hand, the CV 

is the ratio of the standard deviation to the mean, and expresses the reliability of a device as a 

percentage, providing an easily understandable metric of reliability that can be used across 

measurements without the need for conversions. These tests provide context of the precision of the 

device in question. By reporting these measures of absolute reliability, researchers provide the readers 

with the necessary information to assess the reliability of the device they are testing. 

Question 3c: Was a test of relative reliability reported (e.g. ICC)? 

This question simply assesses whether the study reported a measure of relative reliability, possibly 

through the use of the Intraclass Correlation Coefficient (ICC). Relative reliability refers to the degree to 
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which individuals maintain their position in a sample over repeated measurements under varying 

conditions, highlighting the consistency and reproducibility of the measurements. The ICC is a versatile 

statistical tool used to evaluate this aspect of reliability, offering a quantifiable measure of the 

correlation between measurements taken at different times or under different conditions. By reporting a 

measure of relative reliability, researchers provide the readers with necessary information to assess the 

reliability of the device they are testing. 

Question 3d: Were the reliability thresholds stated? 

This question gets to the very heart of reliability studies, to answer the question of whether a device was 

reliable or not. As thresholds for reliability have not been widely established (as of the publication of this 

paper), it is left up to the individual researchers to determine whether the device meets their standards. 

There have been several authors who propose varying thresholds for reliability, some more conservative, 

and others more liberal. Whatever thresholds the researcher chooses should be established prior to data 

collection and reported in the published work.  
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Chapter 3 - The Risk of Bias in Validity and Reliability Studies Testing Physiological Variables using 

Consumer-Grade Wearable Technology: A Systematic Review and Meta-Analysis with WEAR-BOT Analysis 

 

Abstract 

INTRODUCTION: Wearable technology is a quickly evolving field, and new devices with new features to 

measure/estimate physiological variables are being released constantly. This technology is being used by 

recreational athletes, coaches, collegiate and professional athletes, military personnel, and researchers 

to quantify physiological variables during sport and exercise. Despite their use, the validity of the devices 

are largely unknown to the users or researchers, and the quality of the studies that do test validity and 

reliability vary widely.  

PURPOSE: Therefore, the purpose of this systematic review and meta-analysis was to review the current 

validity and reliability literature concerning consumer-grade wearable technology 

measurements/estimates of physiological variables (e.g. heart rate, energy expenditure, etc.) during 

exercise. Additionally, we sought to perform risk of bias assessments utilizing the novel WEArable 

technology Risk of Bias and Objectivity Tool (WEAR-BOT), and perform meta-analytic calculations on the 

reported data. 

METHODS: This review was conducted following PRISMA guidelines, searching three databases: Google 

Scholar, Scopus, and SPORTDiscus. Papers published between Jan 2020 and April 2023 were evaluated. 

After screening, 46 papers were identified that met the pre-determined criteria. Then data was extracted 

and risk of bias assessment performed by independent researchers. Descriptive statistics were calculated 

to describe the studies and their results, including counts of devices, exercise modalities, and statistical 

tests. Weighted averages of mean absolute percentage error (MAPE) and Pearson correlations were 
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calculated, weighted by sample size. Sample size statistics were performed utilizing the lower 95% 

confidence interval of the weighted correlation average. 

RESULTS: Of the 46 papers reviewed, 44 performed validity testing, while nine performed reliability. 

Seventy different devices were evaluated across 34 manufacturers. The weighted average for MAPE was 

12.48% for heart rate (HR) and 30.70% for energy expenditure (EE). The weighted average for Pearson 

correlations was 0.737 for HR and 0.672 for EE. Heart rate was the most common variable tested, with EE 

being second most. Walking, then running, then cycling were the three most common exercise 

modalities. Risk of bias assessment of validity studies resulted in 30/44 studies being classified as having 

a “High Risk of Bias”, and 14/44 having “Some Risk of Bias”. None had a “Low Risk of Bias”, according to 

the novel WEAR-BOT. For reliability studies, 7/9 were classified as “High Risk of Bias”, 2 as “Some Risk of 

Bias”, and 0 as “Low Risk of Bias”. 

CONCLUSION: The risk of bias assessment and descriptive statistics paint a troubling picture of the 

overall state of validity and reliability studies. Statistical analyses, methods, and reporting vary 

excessively, as can be expected of an emerging field. This review and associated WEAR-BOT analysis can 

be used by researchers to help standardize methodology, analytics, and reporting of validation and 

reliability studies of consumer-grade wearable technology. 
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Introduction 

As wearable technology continues to grow in popularity, use, and sophistication, validity and reliability 

studies have sought to determine just how accurate and reliable these devices are (Carrier et al., 2020a; 

Evenson et al., 2015; Fuller et al., 2020; Patel et al., 2021). This type of research into all wearable 

technology, but especially consumer-grade wearable technology, is important so that users can 

determine if the results can be trusted. These devices can be used by researchers, athletes, coaches, and 

the general population to help improve fitness metrics and better understand a person’s physiology 

during sport or exercise. Wearable technology represents an untapped wealth of data regarding human 

physiology in real-world settings that can be utilized to improve our understanding of human behavior, 

physical activity, and physiology (Wright et al., 2017). However, without an understanding of the overall 

accuracy and reliability of these devices, use in research, athletics, military settings, or even recreational 

applications should be done cautiously, and possibly not at all. 

As with any emerging field, there are growing pains in the beginning, as best practices are yet to be 

established. That, unfortunately, includes the validation and reliability studies done up to this point. 

These studies can vary widely in their methods, and especially their statistical analyses  (Carrier et al., 

2020a; Welk et al., 2019). Authors have proposed statistical tests to standardize the analytics when 

validating new devices, such as a test of error, test of linearity, and a test of equivalence, as well as bias 

graphically represented via a Bland-Altman plot (Carrier et al., 2020a; van Lier et al., 2020; Welk et al., 

2019). As a result, we have seen improved consistency of analytics in papers, which has also allowed for 

greater comparisons across studies. 

While the number of these types of studies have increased, systematic reviews for these studies have 

increased proportionately. However, when authors of systematic reviews for wearable technology 

attempt to evaluate the risk of bias in the studies they are analyzing – which is recommended practice 
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when performing systematic reviews – some authors note the inability to do so, as there is not a 

sufficient tool for this type of research (Carrier et al., 2020a). A risk of bias analysis is generally a checklist 

or list of questions the researcher will answer for the study in question, and once filled out, a ranking of 

low risk, some risk, or high risk of bias is generally provided. This is useful for those reading the 

systematic review, as they can quickly see the quality of the research done prior, and what level of bias 

there may be in that research. Additionally, risk of bias checklists can provide guidance to researchers as 

they seek to perform their own research. It can identify several aspects they should seek to include, 

report, or control for, in their experiments and data collections to minimize the risk of biasing their own 

research.  

When performing systematic reviews and risk of bias analyses on wearable technology literature, some 

researchers will use a risk of bias tool not designed for this type of research, such as the Cochrane Risk of 

Bias (RoB) 2.0, Joanna Briggs risk of bias tools, or none at all (BUNN et al., 2018; Carrier et al., 2020a; 

Evenson et al., 2015; Volkova et al., 2023). They may even note their inability to properly evaluate the 

risk of bias in the published studies (Carrier et al., 2020a). Recently, authors have used a portion of the 

COSMIN risk of bias checklist, as it is somewhat more appropriate for evaluating these studies (Patel et 

al., 2021; Prill et al., 2021). Fortunately, a collaborative effort involving experts from multiple Universities 

and industry, including several authors of the current review with expertise in wearable technology 

testing, has led to the development of a risk of bias tool tailored for assessing studies on the validity or 

reliability of consumer-grade wearable technology. This tool, known as the WEArable technology Risk of 

Bias and Objectivity Tool (WEAR-BOT), is now established and ready for implementation (citation 

pending, awaiting publication). 

As current wearable technology is a quickly evolving field, testing the validity and reliability of these 

devices is difficult to keep up with. Studies are continually being published as devices evolve. Thus, it is 

important to review the most current literature to evaluate the validity of the devices, and the practices 
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of the researchers. While wearable technology can measure a myriad of variables, both physiologic and 

physical, of specific interest to the authors of the current paper, is physiological variables. This systematic 

review is unique, because it will be the first ever systematic review to make use of the novel risk of bias 

tool for consumer-grade wearable technology. This will provide the clearest picture yet of the state of 

the literature, and the risk of bias that is in the validity and reliability studies. Therefore, it is the aim of 

this paper to perform a systematic review and meta-analysis to describe the methods and results of the 

wearable technology literature evaluating validity and reliability. In addition, we seek to determine the 

risk of bias of each published paper, using the novel risk of bias tool, the WEAR-BOT. 

 

Methods 

This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines (Page et al., 2021). Search and screening occurred between March 

2023 and July 2023. 

 

Inclusion/Exclusion Criteria 

The inclusion/exclusion criteria for the papers were as follows: 1). Validity or reliability of consumer-

grade wearable technology needed to be tested. 2). The measurements from the wearable technology 

needed to be regarding an individual’s physiology and taken during sport or exercise. 3). Healthy or 

apparently healthy individuals were the population of interest. 4). The article needed to be peer 

reviewed, available in English, and published between January 2020 and April 2023. For the purposes of 

this review, consumer-grade wearable technology was loosely defined as, marketed to multiple groups of 

the population (athletes, general population, etc.) and was currently available to purchase online. If 
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there were any disagreements between members as to whether a device should be considered 

“consumer-grade”, it was resolved through discussion with the research group. We adopted the 

American College of Sports Medicine definition of exercise for this review, namely “Exercise is a type of 

physical activity consisting of planned, structured, and repetitive bodily movement done to improve 

and/or maintain one or more components of physical fitness” (American College of Sports Medicine, 

2013). Studies that examined only activities of daily living were not included, but if exercise was 

specifically analyzed in addition to activities of daily living, it was included. Walking was considered a 

type of exercise and included if only walking was performed in the study. Only physiological variables 

were considered (heart rate, core body temperature, energy expenditure, etc.), while physical variables 

were not (steps, repetitions, speed, vertical oscillation, etc.). The timeline going back to 2020 was chosen 

to represent the most current literature, while limiting the scope of the review to a manageable number 

of papers. 

 

Search Strategy 

Researchers searched three databases for this review. The included databases were Google Scholar, 

Scopus, and SPORTDiscus. Google Scholar was accessed directly through the website 

https://scholar.google.com/ (Google LLC., Mountain View, CA, USA). Scopus and SPORTDiscus databases 

were both accessed through the researcher’s institution’s library website. The same search combination 

was used for each database, which was: “wearable AND technology OR tracker OR monitor AND exercise 

OR fitness OR activity AND validity OR accuracy OR reliability”. Search results were verified by the 

researchers prior to beginning the screening process, and results were the same for Google Scholar and 

Scopus databases, while SPORTDiscus had slightly different results for researchers depending on the date 

of the search (exact numbers below). Filters were applied to each database after pilot searching and 
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discussion with the research group to determine a sufficient scope for the review. Google Scholar had 

one filter applied, a time filter using the “Custom range” option, and 2020 – present was input as the 

timeline (second date for range left blank). Scopus filters had time, document type, publication stage, 

and language filters applied (Time: 2020 - Present; Document Type: Article; Publication Stage: Final; 

Language: English). SPORTDiscus had time, peer review status, publication type, and language filters 

applied (Time: 2020 - Present; Peer Reviewed; Publication Type: Academic Journal; Language: English). 

The search results for Google Scholar were 85,700 articles on April 6, 2023. However, Google Scholar 

limits the accessible search results to 1,000 articles, therefore, that was the number of articles screened 

from Google Scholar. The search results for Scopus were 800 articles on April 13, 2023. Search results for 

SPORTDiscus were 11,599 and 11,597 for two different researchers on April 14, 2023, and was 

subsequently split into assigned page numbers for separate teams to review, and the results increased to 

11,739 by May 4, 2023. 

 

Screening Process 

Six researchers in pairs of two independent reviewers per team conducted three phases of screening 

across the three different databases. The screening process began with title screening, then abstract 

screening, and ended with a full-text review of the articles. Each individual in the team worked 

separately from their counterpart, only meeting to discuss possible issues as a whole research group to 

ensure independence across the screening of the articles. Discrepancies between researchers (when 

only one would choose to include the article) resulted in the article moving forward to the next 

screening process. Any discrepancies that persisted after full-text review was reviewed by a third 

reviewer for final decision on inclusion/exclusion. Figure 1 shows the flowchart of the screening process. 

There were 761 articles included after title screening, 330 articles after abstract review, and 46 articles 
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after full-text review. The most common reasons for excluding studies were that the device being studied 

was not consumer-grade (it may have been a novel device, proof of concept being tested, etc.), the 

wearable device was not being tested for validity or reliability, the study was actually testing an 

algorithm associated with wearable technology (rather than the device performance), the study did not 

contain an exercise or sport-related task (activities of daily living may have been tested, or sleep, etc.), 

among many others.  
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Figure 3.1. Flowchart of Search Strategy. 

Flowchart includes identification, screening, and inclusion/exclusion process.  
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Data Extraction and Risk of Bias Assessment 

Data extraction was completed after the screening process by pairs of two independent reviewers, per 

team. The research group created an Excel spreadsheet with the areas of interest for the researchers to 

extract. After extraction was completed by each researcher, team members met and resolved any 

discrepancies together to create a final data extraction file that was compiled and sent to the research 

group to help synthesize the papers succinctly for the current paper. In conjunction with the data 

extraction, a risk of bias assessment was provided for each study utilizing the novel WEAR-BOT. 

 

Data Analysis 

Summary statistics were calculated from the data extracted, including test variables, exercise modalities, 

counts of manufacturers and device models, average sample size, weighted average of overall Pearson 

correlations, weighted average of overall MAPE, and sample size statistics (based on weighted average of 

correlations). Summary statistics were performed in Google Sheets (Google LLC, Mountain View, CA, 

USA) and Excel (Microsoft Corporation, Redmond, WA, USA) with the MetaXL add-in for the meta-

analysis and forest plot generation (EpiGear International Pty Ltd., Queensland, AUS). Counts of 

physiological variables tested are calculated per study and exercise modality. For example, if a study 

tested heart rate (HR) during walking, running, and biking, each would be added in the counts. Exercise 

modalities are calculated per study. The weighted correlation average was calculated by MetaXL while 

the weighted MAPE average was based on the sample size and the reported MAPE, per device and 

exercise modality. If a study reported Pearson correlation coefficients (or MAPE) for 20 individuals for 

walking and running for two different devices, there would be four coefficients (or MAPE values) taken 

into account in the weighted average, and the sample size would be 20 for each coefficient. MetaXL also 

produced 95% CI, and the lower bound was used as the effect size for sample size calculations. Sample 
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size statistics were performed using G*Power version 3.1.9.4 (Faul et al., 2009) using a correlation 

(bivariate normal model), and a desired power of 0.95, for HR, energy expenditure (EE), and VO2max 

variables. No other variables had a sufficient number of studies that reported Pearson’s correlation to 

warrant analysis. In addition, if a specific variable did not have several data collection periods 

constituting the overall average, it was excluded from reporting in this paper. 

 

Results 

Of the 46 articles that were included in this review, 44 of them performed validation testing, while eight 

performed reliability testing. Only two studies performed reliability testing exclusively, the other six that 

performed reliability also performed validity testing. The complete list of included articles can be found 

in Table 1  (Alfonso et al., 2022; Baek et al., 2021; Bent et al., 2020; Budig et al., 2021; Carrier et al., 

2020b; Chow & Yang, 2020; Climstein et al., 2020; Cosoli et al., 2022; Cosoli et al., 2023; Costello et al., 

2022; Damasceno et al., 2022; Davarzani et al., 2020; de la Casa Pérez et al., 2022; Düking et al., 2020; 

Goods et al., 2023; Haddad et al., 2020; Hajj-Boutros et al., 2023; Hashimoto et al., 2022; Haveman et al., 

2022; Hermand et al., 2021; Ho et al., 2022; Hopkins et al., 2020; Jachymek et al., 2021; Jagim et al., 

2020; Kristiansson et al., 2023; Lucernoni et al., 2022; Martín-Escudero et al., 2023; Muggeridge et al., 

2021; Navalta et al., 2020a; Navalta et al., 2020b; Nazari & MacDermid, 2020; Newton et al., 2023; 

Nissen et al., 2022; O’Driscoll et al., 2020; Paradiso et al., 2020; Reece et al., 2021; Rider et al., 2021; 

Rodin et al., 2022; Schams et al., 2022; Shumate et al., 2021; Snarr et al., 2021; Snyder et al., 2021; Stove 

& Hansen, 2022; Støve et al., 2020; Takahashi et al., 2022; Tokizawa et al., 2022).  
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Table 3.1. Complete List of Included Studies. 

Number Title Author Year 

1 

Agreement between two photoplethysmography-based wearable 
devices for monitoring heart rate during different physical activity 
situations: a new analysis methodology Alfonso et al. 2022 

2 
Accuracy of wearable devices for measuring heart rate during 
conventional and Nordic walking Baek, Ha, & Park 2021 

3 
Investigating sources of inaccuracy in wearable optical heart rate 
sensors 

Bent, Goldstein, 
Kibbe, & Dunn 2020 

4 

Heart Rate and Distance Measurement of Two Multisport Activity 
Trackers and a Cellphone App in Different Sports: A Cross-Sectional 
Validation and Comparison Field Study Budig et al. 2021 

5 
Validation of garmin fenix 3 HR fitness tracker biomechanics and 
metabolics (VO2max) Carrier et al. 2020 

6 

Accuracy of optical heart rate sensing technology in wearable 
fitness trackers for young and older adults: Validation and 
comparison study Chow & Yang 2020 

7 
Reliability of the polar vantage m sports watch when measuring 
heart rate at different treadmill exercise intensities Climstein et al. 2020 

8 
Wearable Electrocardiography for Physical Activity Monitoring: 
Definition of Validation Protocol and Automatic Classification 

Cosoli, Antognoli, 
& Scalise 2023 

9 
Accuracy and Precision of Wearable Devices for Real-Time 
Monitoring of Swimming Athletes 

Cosoli, Antognoli, 
Veroli, & Scalise 2022 

10 

Isolated & combined wearable technology underestimate the total 
energy expenditure of professional young rugby league players; a 
doubly labelled water validation study Costello et al. 2022 

11 Criterion validity and accuracy of a heart rate monitor Damasceno et al. 2022 

12 
Validity and reliability of StriveTM Sense3 for muscle activity 
monitoring during the squat exercise Davarzani et al. 2020 
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13 

Is the xiaomi mi band 4 an accuracy tool for measuring health-
related parameters in adults and older people? an original 
validation study 

de la Casa Pérez et 
al. 2022 

14 

Wrist-worn wearables for monitoring heart rate and energy 
expenditure while sitting or performing light-to-vigorous physical 
activity: validation study Düking et al. 2020 

15 

Concurrent validity of the CORE wearable sensor with BodyCap 
temperature pill to assess core body temperature during an elite 
women’s field hockey heat training camp Goods et al. 2023 

16 

Ecological validation and reliability of hexoskin wearable body 
metrics tool in measuring pre-exercise and peak heart rate during 
shuttle run test in professional handball players Haddad et al. 2020 

17 

Wrist-worn devices for the measurement of heart rate and energy 
expenditure: A validation study for the Apple Watch 6, Polar 
Vantage V and Fitbit Sense Hajj-Boutros et al. 2022 

18 

Validation of Wearable Device Consisting of a Smart Shirt with Built-
In Bioelectrodes and a Wireless Transmitter for Heart Rate 
Monitoring in Light to Moderate Physical Work Hashimoto et al. 2022 

19 
Continuous monitoring of vital signs with wearable sensors during 
daily life activities: validation study Haveman et al. 2022 

20 
Accuracy and reliability of pulse O2 saturation measured by a wrist-
worn oximeter 

Hermand, Coll, 
Richalet, & 
Lhuissier 2021 

21 
Accuracy of wrist-worn wearable devices for determining exercise 
intensity Ho, Yang, & Li 2022 

22 
Consumer-grade biosensor validation for examining stress in 
healthcare professionals Hopkins et al. 2020 

23 
Wristbands in Home-Based Rehabilitation Validation of Heart Rate 
Measurement Jachymek, et al. 2021 

24 
The accuracy of fitness watches for the measurement of heart rate 
and energy expenditure during moderate intensity exercise Jagim et al. 2020 

25 
Validation of Oura ring energy expenditure and steps in laboratory 
and free-living Kristiansson et al. 2023 

26 
ActivPAL accuracy in determining metabolic rate during walking, 
running and cycling 

Lucernoni, Kim, & 
Byrnes 2022 
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27 
Are Activity Wrist-Worn Devices Accurate for Determining Heart 
Rate during Intense Exercise? 

Martin-Escudero 
et al. 2023 

28 

Measurement of heart rate using the polar OH1 and Fitbit charge 3 
wearable devices in healthy adults during light, moderate, vigorous, 
and sprint-based exercise: validation study Muggeridge et al. 2021 

29 
Concurrent heart rate validity of wearable technology devices 
during trail running 

Navalta, Montes 
et al. 2020 

30 
Validity and reliability of three commercially available smart sports 
bras during treadmill walking and running 

Navalta, Ramirez 
et al. 2020 

31 
Reliability of zephyr bioHarness respiratory rate at rest, during the 
modified Canadian aerobic fitness test and recovery 

Nazari & 
MacDermid 2020 

32 
The Validity of a Novel Low-Cost, Wearable Physical Activity 
Monitor in a Laboratory Setting: Direct Original Research 

Newton, 
Glickman, & 
Barkley 2023 

33 
Heart rate measurement accuracy of fitbit charge 4 and samsung 
galaxy watch active2: Device evaluation study Nissen et al. 2022 

34 
The validity of two widely used commercial and research-grade 
activity monitors, during resting, household and activity behaviours O'Driscoll et al. 2020 

35 
The validity and reliability of the mi band wearable device for 
measuring steps and heart rate 

Paradiso, Colino, 
& Liu 2020 

36 
Assessing heart rate using consumer technology association 
standards Reece et al. 2021 

37 Examining the accuracy of the polar A360 monitor Rider et al. 2021 

38 
An accurate wearable hydration sensor: Real-world evaluation of 
practical use Rodin et al. 2022 

39 
Validation of a smart shirt for heart rate variability measurements at 
rest and during exercise Schams et al. 2022 

40 
Validity of the Polar Vantage M watch when measuring heart rate at 
different exercise intensities Shumate et al. 2021 

41 

Validity of Wearable Electromyographical Compression Shorts to 
Predict Lactate Threshold During Incremental Exercise in Healthy 
Subjects 

Snarr, Tolusso, 
Hallmark, & Esco 2021 
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42 
Comparison of the Polar V800 and the Garmin Forerunner 230 to 
predict VO2max 

Snyder, 
Willoughby, & 
Smith 2021 

43 
Accuracy of the Apple Watch Series 6 and the Whoop Band 3.0 for 
assessing heart rate during resistance exercises Støve et al. 2022 

44 
Measurement latency significantly contributes to reduced heart rate 
measurement accuracy in wearable devices Støve et al. 2020 

45 
Accuracy of Heart Rate and Respiratory Rate Measurements Using 
Two Types of Wearable Devices Takahashi et al. 2022 

46 
Validity of a wearable core temperature estimation system in heat 
using patch-type sensors on the chest Tokizawa et al. 2022 

Complete list of included studies based on inclusion/exclusion criteria stated above, from 3 databases 

(Google Scholar, Scopus, and SPORTDiscus).  
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Study Characterization Results 

In this analysis, the studies reviewed included 70 different wearable devices across 34 different 

manufacturers. A list of all devices and the studies that tested them can be found in Table 2. There were 

14 different physiological variables tested, with HR and energy expenditure (EE) being the top 2 (see 

Table 3). The average sample size was 29.80 participants. The weighted Pearson correlation average was 

0.81, 0.73, 0.83 for HR, EE, and VO2max, respectively (see Figures 2-4). The combined sample size for HR 

is 2,780, across 89 data collection periods (modalities and devices per study), 2,178 (across 61 data 

collection periods) for EE, and 61 (across 3 data collection periods) for VO2max (see Table 4). While there 

were 14 physiological variables evaluated, only data for six are aggregated and included in Table 4, 

because there was not enough data to provide a meaningful aggregation in all variables tested. The data 

for the weighted average can be found in the appendix (Table A.1). The lower bound of the 95% 

confidence interval (CI) for HR, EE, and VO2max is 0.77, 0.68, and 0.70. The minimum sample size 

needed to reach a power of 0.95 is 13, 18, and 17, for HR, EE, and VO2max, respectively. The weighted 

average for MAPE was 12.48%, 34.13%, 19.29%, 2.42%, and 6.21% for HR, EE, respiratory rate (RR), 

oxygen saturation (OS), and skin temperature (ST), respectively. The combined sample size for HR is 

4,084 (across 154 data collection periods), 1,108 for EE (across 32 data collection periods), 120 for RR 

(across 6 data collection periods), 80 for OS (across 4 data collection periods), and 120 for ST (across 6 

data collection periods) (see Table 4). The data for the weighted average can be found in the appendix 

(Table A.2). 

Of the 44 studies that tested validity, 33 (75%) of them utilized some form of correlation analysis, with 

21 (47.73%) using Pearson’s, seven (15.91%) using Lin’s Concordance Correlation Coefficient (CCC), seven 

(15.91%) using Intraclass Correlation Coefficient (ICC), and two (4.55%) using Spearman’s. Some studies 

utilized multiple correlation tests (e.g. Pearson’s and Lin’s). Additionally, 32 (72.73%) tested error in some 

manner, with 23 (52.27%) using mean absolute percentage error (MAPE), 12 (27.27%) using mean 
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absolute error (MAE), and 11 (25%) using root mean square error (RMSE). There were 36 (81.82%) that 

plotted Bland-Altman plots, and only two (4.55%) that utilized any type of equivalence testing. 
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Figure 3.2. Forest Plot for Correlation Studies that Examined HR. 
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Figure 3.3. Forest Plot for Studies that Examined EE.  

EE_WEARBOT

Correlation

10

Study 

Düking et al. o  

Düking et al. p  

Düking et al. t  

O'Driscoll et al. f  

O'Driscoll et al. e  

O'Driscoll et al. a  

O'Driscoll et al. l  

Düking et al. {  

Düking et al. u  

Düking et al. i  

Jagim et al. b  

O'Driscoll et al. h  

Düking et al. q  

O'Driscoll et al. b  

Hajj-Boutros et al. h  

Hajj-Boutros et al. k  

Costello et al. a  

O'Driscoll et al. g  

Düking et al. f  

Düking et al. h  

Costello et al. c  

O'Driscoll et al. i  

Hajj-Boutros et al. e  

Hajj-Boutros et al. l  

O'Driscoll et al. c  

O'Driscoll et al. k  

O'Driscoll et al. j  

Hajj-Boutros et al. g  

Düking et al. a  

Düking et al. b  

Hajj-Boutros et al. d  

Hajj-Boutros et al. i  

Düking et al. j  

Düking et al. n  

Düking et al. |  

Overall  

Q=266.92, p=0.00, I2=78%

Hajj-Boutros et al. c  

Hajj-Boutros et al. f  

Düking et al. x  

Hajj-Boutros et al. a  

Düking et al. g  

Düking et al. y  

Hopkins et al. a  

Düking et al. w  

Costello et al. b  

Düking et al. c  

O'Driscoll et al. d  

Costello et al. d  

Düking et al. r  

Jagim et al. c  

Düking et al. m  

Hajj-Boutros et al. b  

Hajj-Boutros et al. j  

Düking et al. v  

Düking et al. s  

Düking et al. z  

Kristiansson et al. a  

Jagim et al. a  

Düking et al. e  

Düking et al. d  

Düking et al. k  

Düking et al. l  

    Corr (95% CI)          % Weight

   0.20  ( -0.21,  0.55)      1.6

   0.21  ( -0.20,  0.56)      1.6

   0.21  ( -0.20,  0.56)      1.6

   0.37  (  0.12,  0.57)      1.9

   0.38  (  0.14,  0.58)      1.9

   0.39  (  0.15,  0.59)      1.9

   0.41  (  0.17,  0.60)      1.9

   0.42  (  0.03,  0.70)      1.6

   0.45  (  0.07,  0.72)      1.6

   0.49  (  0.12,  0.74)      1.6

   0.54  (  0.13,  0.79)      1.5

   0.56  (  0.35,  0.71)      1.9

   0.57  (  0.23,  0.79)      1.6

   0.59  (  0.39,  0.74)      1.9

   0.60  (  0.41,  0.74)      1.9

   0.61  (  0.42,  0.75)      1.9

   0.61  ( -0.40,  0.95)      0.5

   0.62  (  0.43,  0.76)      1.9

   0.66  (  0.36,  0.84)      1.6

   0.67  (  0.37,  0.84)      1.6

   0.68  ( -0.29,  0.96)      0.5

   0.69  (  0.51,  0.81)      1.9

   0.69  (  0.53,  0.80)      1.9

   0.69  (  0.53,  0.80)      1.9

   0.70  (  0.52,  0.82)      1.9

   0.70  (  0.54,  0.81)      1.9

   0.71  (  0.47,  0.85)      1.7

   0.71  (  0.56,  0.82)      1.9

   0.71  (  0.44,  0.86)      1.6

   0.71  (  0.44,  0.86)      1.6

   0.72  (  0.57,  0.82)      1.9

   0.72  (  0.57,  0.82)      1.9

   0.72  (  0.45,  0.87)      1.6

   0.72  (  0.45,  0.87)      1.6

   0.72  (  0.45,  0.87)      1.6

   0.73  (  0.68,  0.77)    100.0

   0.74  (  0.60,  0.84)      1.9

   0.74  (  0.60,  0.84)      1.9

   0.74  (  0.49,  0.88)      1.6

   0.75  (  0.61,  0.84)      1.9

   0.75  (  0.50,  0.88)      1.6

   0.76  (  0.52,  0.89)      1.6

   0.78  (  0.36,  0.93)      1.1

   0.78  (  0.56,  0.90)      1.6

   0.79  (  0.09,  0.97)      0.7

   0.80  (  0.59,  0.91)      1.6

   0.81  (  0.64,  0.91)      1.7

   0.83  (  0.21,  0.97)      0.7

   0.84  (  0.67,  0.93)      1.6

   0.85  (  0.65,  0.94)      1.5

   0.85  (  0.68,  0.93)      1.6

   0.86  (  0.78,  0.91)      1.9

   0.88  (  0.81,  0.93)      1.9

   0.88  (  0.74,  0.95)      1.6

   0.91  (  0.80,  0.96)      1.6

   0.92  (  0.82,  0.96)      1.6

   0.93  (  0.86,  0.97)      1.7

   0.93  (  0.83,  0.97)      1.5

   0.93  (  0.85,  0.97)      1.6

   0.95  (  0.89,  0.98)      1.6

   0.95  (  0.89,  0.98)      1.6

   0.95  (  0.89,  0.98)      1.6
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Figure 3.4. Forest Plot for Studies that Examined VO2max.  

VO2max_WEARBOT

Correlation

0.950.90.850.80.750.70.650.60.550.5

Study 

Snyder, Willoughby, & Smith a  

Snyder, Willoughby, & Smith b  

Overall  

Q=2.85, p=0.24, I2=30%

Carrier et al. a  

    Corr (95% CI)          % Weight

   0.76  (  0.50,  0.90)     35.7

   0.80  (  0.57,  0.91)     35.7

   0.83  (  0.70,  0.91)    100.0

   0.92  (  0.78,  0.97)     28.7
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Table 3.2. Wearable Technology Tested, by Study 

Manufacturer Model Author Year 

Adidas Smart Sports Bra Navalta, Ramirez et al. 2020 

Ambiotex Ambiotex Smart Shirt Schams et al. 2022 

Apple 
Apple Watch (model not 
specified) Martin-Escudero et al. 2023 

Apple Apple Watch Series 2 Støve et al. 2020 

Apple Apple Watch Series 4 Bent, Goldstein, Kibbe, & Dunn 2020 

Apple Apple Watch Series 4 Düking et al. 2020 

Apple Apple Watch Series 4 Reece et al. 2021 

Apple Apple Watch Series 6 Ho, Yang, & Li 2022 

Apple Apple Watch Series 6 Støve et al. 2022 

Apple Apple Watch Series 6 Alfonso et al. 2022 

Apple Apple Watch Series 6 Hajj-Boutros et al. 2022 

Berlei Sports Bra Navalta, Ramirez et al. 2020 

Biovotion AG Everion Haveman et al. 2022 

BodyMedia SenseWear Pro3 Costello et al. 2022 

Fitbit Charge Martin-Escudero et al. 2023 

Fitbit Charge 2 Baek, Ha, & Park 2021 

Fitbit Charge 2 Bent, Goldstein, Kibbe, & Dunn 2020 

Fitbit Charge 2 O'Driscoll et al. 2020 

Fitbit Charge 3 Haveman et al. 2022 

Fitbit Charge 3 Muggeridge et al. 2021 

Fitbit Charge 4 Jachymek, et al. 2021 
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Fitbit Charge 4 Nissen et al. 2022 

Fitbit Sense Hajj-Boutros et al. 2022 

Fitbit Versa Düking et al. 2020 

Fitbit Versa Jagim et al. 2020 

Garmin fēnix 3 HR Carrier et al. 2020 

Garmin fēnix 5 Düking et al. 2020 

Garmin fēnix 5 Navalta, Montes et al. 2020 

Garmin fēnix 5 Düking et al. 2020 

Garmin Forerunner 230 Snyder, Willoughby, & Smith 2021 

Garmin Forerunner 235 Støve et al. 2020 

Garmin Forerunner 245 
Hermand, Coll, Richalet, & 
Lhuissier 2021 

Garmin Forerunner 735 XT Reece et al. 2021 

Garmin Forerunner 735XT Damasceno et al. 2022 

Garmin Forerunner 945 Budig et al. 2021 

Garmin Forerunner 945 Ho, Yang, & Li 2022 

Garmin Venu Sq 
Cosoli, Antognoli, Veroli, & 
Scalise 2022 

Garmin Vivosmart 3 Bent, Goldstein, Kibbe, & Dunn 2020 

Garmin Vivosmart HR+ Chow & Yang 2020 

Goldwin C3fit IN-pulse Hashimoto et al. 2022 

greenTEG CORE Goods et al. 2023 

Hexoskin Smart Shirt Haddad et al. 2020 

Jabra Elite Sport Earbuds Navalta, Montes et al. 2020 

Jabra Elite Sport Earbuds Reece et al. 2021 

Mad Apparel Athos 
Snarr, Tolusso, Hallmark, & 
Esco 2021 
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MediBioSense VitalPatch Haveman et al. 2022 

Motiv Motiv Ring Navalta, Montes et al. 2020 

Movband Movband 3 Newton, Glickman, & Barkley 2023 

Movband Movband 4 Newton, Glickman, & Barkley 2023 

Murata Moni-Patch Tokizawa et al. 2022 

Oura Gen2 Kristiansson et al. 2023 

PAL Technologies ActivPAL Lucernoni, Kim, & Byrnes 2022 

Polar A360 Rider et al. 2021 

Polar Ignite Budig et al. 2021 

Polar Ignite Jagim et al. 2020 

Polar OH1 Muggeridge et al. 2021 

Polar H7 Baek, Ha, & Park 2021 

Polar TeamPro Sensor Jagim et al. 2020 

Polar Vantage M Climstein et al. 2020 

Polar Vantage M Shumate et al. 2021 

Polar Vantage M2 Alfonso et al. 2022 

Polar Vantage V Düking et al. 2020 

Polar Vantage V Hajj-Boutros et al. 2022 

Polar Vantage V2 
Cosoli, Antognoli, Veroli, & 
Scalise 2022 

Polar Vantage V3 
Cosoli, Antognoli, Veroli, & 
Scalise 2022 

Samsung Galaxy Watch 3 Cosoli, Antognoli, & Scalise 2023 

Samsung Galaxy Watch Active 2 Nissen et al. 2022 

Samsung Gear S2 Martin-Escudero et al. 2023 

Scosche Rhythm 24 Reece et al. 2021 
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Scosche Rhythm+ Navalta, Montes et al. 2020 

Sensewear Armband Mini O'Driscoll et al. 2020 

Sensoria Fitness Biometric Sports Bra Navalta, Ramirez et al. 2020 

SpectroPhon 

Dehydration Body Monitor 
(DBM) Paired with Samsung 
Gear Fit2 Rodin et al. 2022 

SpectroPhon 

Dehydration Body Monitor 
(DBM) Paired with Samsung 
Gear S2 Rodin et al. 2022 

Spire Health Stone Takahashi et al. 2022 

Striv Sense3 Davarzani et al. 2020 

Suunto 
Spartan Sport Watch + Chest 
Strap Navalta, Montes et al. 2020 

TDK Silmee W22 Takahashi et al. 2022 

TomTom Runner Cardio Martin-Escudero et al. 2023 

Vital Scout Hopkins et al. 2020 

Whoop Band 3.0 Støve et al. 2022 

Xiaomi Mi Band 2 Chow & Yang 2020 

Xiaomi Mi Band 2 Paradiso, Colino, & Liu 2020 

Xiaomi Mi Band 3 Bent, Goldstein, Kibbe, & Dunn 2020 

Xiaomi Mi Band 4 de la Casa Pérez et al. 2022 

Xiaomi Mi Band 5 Jachymek, et al. 2021 

Zephr Bioharness Nazari & MacDermid 2020 

Chapter 3 Table 2. Complete list of manufacturers and models tested, and what study tested them.  
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Table 3.3. Total Variables Tested and Exercise Modalities Used 

Variables Count Modalities Count 

Heart Rate 88 Walking 30 

Energy Expenditure 16 Running 26 

Core Body Temperature 6 Cycling 15 

Respiratory Rate 5 Sprinting 2 

Fluid Loss 2 Swimming 2 

Oxygen Saturation 2 Resistance Training 2 

Skin Temperature 2 Squatting 2 

VO2max 2 Stairs 2 

Moves (correlated to HR) 1 Trail Running 1 

Moves (correlated to VO2) 1 Hockey 1 

R-R Interval 1 Rugby 1 

Lactate Threshold 1 Arm Ergometer 1 

Oxygen Consumption (VO2) 1 
  

Muscle Activation 1 
  

Counts of variables testes and modalities used in all included studies.  
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Table 3.4. Weighted Averages for Correlation and MAPE Values 

 

Heart 
Rate 

Energy 
Expenditure VO2max 

Respiratory 
Rate 

O2 
Saturation 

Skin 
Temperature 

Pearson Correlation 
Weighted Average 0.74 0.67 0.82 

   

Lower 95% CI 0.70 0.64 0.82 
   

Upper 95% CI 0.77 0.70 0.82 
   

Standard Deviation 0.23 0.19 0.08 
   

Sample Size 2,780 2,178 61 
   

MAPE Weighted 
Average 12.48% 30.70% 

 
19.08% 2.40% 6.13% 

Lower 95% CI 4.75% 27.27% 
 

18.88% 2.38% 6.05% 

Upper 95% CI 20.20% 34.13% 
 

19.29% 2.42% 6.21% 

Standard Deviation 51.85% 38.65% 
 

9.18% 1.20% 3.66% 

Sample Size 4,084 1,108 
 

120 80 120 

Statistics for weighted averages based on studies that reported either Pearson correlation coefficient or 

mean absolute percentage error (MAPE). Weighted average is weighted by sample size per data 

collection period. CI = confidence interval.  
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Validity Risk of Bias Results 

Of the 44 studies that tested validity, 14 (31.82%) were classified overall as having “Some Risk of Bias”, 

and 30 (68.18%) were classified as having a “High Risk of Bias” (see Table 5). None of the published 

studies were classified overall as having a “Low Risk of Bias”. The areas that pose the greatest risk of 

introducing bias in validation studies are in the “Data Processing” and “Statistical Tests” sections of the 

WEAR-BOT (specifically “Statistical Tests – Continuous Variables”). Some areas generate an N/A if the 

study does not address that section, so while a total of 44 studies were tested, some sections have fewer 

total results. For the “Data Processing” section, 26/44 (59.09%) studies examining validity had a “High 

Risk of Bias”, 14/44 (31.82%) had “Some Risk of Bias” rating, and 4/44 (9.09%) had a “Low Risk of Bias”. 

This section asks questions such as, “Was the data processing methods described appropriately and 

reproducible?”, “Was the amount of missing and/or cleaned data reported?”, “If necessary, was the 

method of aligning data reported and reasonable (e.g. aligned on timestamp, elapsed time)?”, among 

others. The next section that introduced the greatest risk of bias into studies was the “Statistical Tests” 

section, with 14/43 (32.56%) and 29/43 (67.44%) studies being classified as “High Risk of Bias” and 

“Some Risk of Bias”, respectively.  0 studies produced a classification of “Low Risk of Bias” for the 

“Statistical Tests” section. 

The areas where studies performed the best were in the “Test Variables” and “Test Protocols” sections. 

The “Test Variables” section had 43/44 (97.73%) studies classified as “Low Risk of Bias”, 1/44 (2.27%) as 

“Some Risk of Bias”, and 0 as “High Risk of Bias”. The “Test Protocols” section had 42/44 (95.45%) studies 

as “Low Risk of Bias”, 2/44 (0.455%) studies as “Some Risk of Bias”, and 0 as “High Risk of Bias”. The “Test 

Variables” portion of the WEAR-BOT is a single question that asks, “Are the units of measurement (or 

estimated values) between test device and criterion the same?”. The “Test Protocols” section asks 

questions such as, “Were measurements between the criterion and test device taken concurrently?”, “If 

tested sequentially, was the test order randomized?”, among others.  
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Table 3.5. Risk of Bias Analysis for All Validation Studies Reviewed 

Article 
Information Category Risk of Bias Results: 

 

Over
all 
Resul
t 

Author 
Yea
r 

Test 
Variabl
es 

Criteri
on 
Device 

Test 
Devic
es 

Test 
Protoc
ols 

Participa
nts 

Test 
Environm
ent 

Data 
Processi
ng 

Statistic
al Tests - 
Continu
ous 
Variable
s 

Statistic
al Tests - 
Categori
cal 
Variable
s 

Alfonso 
et al. 

202
2 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Baek, Ha, 
& Park 

202
1 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Bent, 
Goldstei
n, Kibbe, 
& Dunn 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Some Risk 
of Bias 

Some 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Budig et 
al. 

202
1 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

High 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Carrier et 
al. 

202
0 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Chow & 
Yang 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Cosoli, 
Antognol
i, & 
Scalise 

202
3 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias N/A 

Some 
Risk of 
Bias 

High 
Risk 
of 
Bias 



81 
 

Cosoli, 
Antognol
i, Veroli, 
& Scalise 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Costello 
et al. 

202
2 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Damasce
no et al. 

202
2 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias 

High 
Risk 
of 
Bias 

Davarzan
i et al. 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Low 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

de la 
Casa 
Pérez et 
al. 

202
2 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

High 
Risk 
of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Düking 
et al. 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Goods et 
al. 

202
3 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Haddad 
et al. 

202
0 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Hajj-
Boutros 
et al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Hashimo
to et al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias Low 

Risk 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A High 

Risk 
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of 
Bias 

of 
Bias 

Haveman 
et al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Hermand
, Coll, 
Richalet, 
& 
Lhuissier 

202
1 

Low 
Risk of 
Bias 

High 
Risk of 
Bias 

High 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Ho, Yang, 
& Li 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Hopkins 
et al. 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Jachyme
k, et al. 

202
1 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Jagim et 
al. 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Kristianss
on et al. 

202
3 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Lucernon
i, Kim, & 
Byrnes 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Martin-
Escudero 
et al. 

202
3 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 
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Muggeri
dge et al. 

202
1 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Navalta, 
Montes 
et al. 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Navalta, 
Ramirez 
et al. 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Newton, 
Glickman
, & 
Barkley 

202
3 

Some 
Risk of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Nissen et 
al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Some Risk 
of Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

O'Driscol
l et al. 

202
0 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Paradiso, 
Colino, & 
Liu 

202
0 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Reece et 
al. 

202
1 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Rider et 
al. 

202
1 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias 

High 
Risk 
of 
Bias 

Rodin et 
al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias Low 

Risk 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias N/A Some 

Risk 
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of 
Bias 

of 
Bias 

Schams 
et al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Shumate 
et al. 

202
1 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Snarr, 
Tolusso, 
Hallmark
, & Esco 

202
1 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Low Risk 
of Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Snyder, 
Willough
by, & 
Smith 

202
1 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Støve et 
al. 

202
0 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

High 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Støve et 
al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Low 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Takahash
i et al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

High 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

High 
Risk 
of 
Bias 

Tokizawa 
et al. 

202
2 

Low 
Risk of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk 
of 
Bias 

Low 
Risk of 
Bias 

Some 
Risk of 
Bias 

Low Risk 
of Bias 

Some 
Risk of 
Bias 

Some 
Risk of 
Bias N/A 

Some 
Risk 
of 
Bias 

Risk of Bias results for all validation studies reviewed.  
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Reliability Risk of Bias Results 

Of the eight studies that tested reliability, 6/8 (75%) are classified overall as having a “High Risk of Bias”, 

2/8 (25%) studies are classified overall as having “Some Risk of Bias”, and zero studies overall classified as 

having “Low Risk of Bias” (see Table 6). The reliability risk of bias analysis in the WEAR-BOT only has 

three overall sections, “Study Design and Methodology”, “Data Processing”, and “Statistical Tests”. The 

area that researchers performed the best on, was “Study Design and Methodology”, with 6/8 (75%) 

studies being classified as “Low Risk of Bias”, 1/8 (12.5%) as “Some Risk of Bias”, and 1/8 (12.5%) as 

“High Risk of Bias”. The area that researchers have the most room for improvement is “Data Processing”, 

where 6/8 (75%) are listed as “High Risk of Bias”, 1/8 (12.5%) as “Some Risk of Bias”, and 1/8 (12.5%) as 

“Low Risk of Bias”. As there is significantly less research examining reliability in these devices, descriptive 

statistics and weighted averages are not presented here due to the lack of available data.  
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Table 3.6. Risk of Bias Analysis for All Reliability Studies Reviewed 

Article Information Category Risk of Bias Results: Overall 
Result 

Author Year 
Study Design and 
Methodology 

Data 
Processing 

Statistical 
Tests 

Haddad et al. 2020 Low Risk of Bias 
High Risk of 
Bias 

Some Risk of 
Bias 

High Risk of 
Bias 

Davarzani et al. 2020 Low Risk of Bias 
Some Risk of 
Bias 

Some Risk of 
Bias 

Some Risk of 
Bias 

Climstein et al. 2020 Low Risk of Bias 
High Risk of 
Bias 

Some Risk of 
Bias 

High Risk of 
Bias 

Hermand, Coll, Richalet, & 
Lhuissier 2021 High Risk of Bias 

High Risk of 
Bias 

Some Risk of 
Bias 

High Risk of 
Bias 

de la Casa Pérez et al. 2022 Some Risk of Bias 
High Risk of 
Bias 

High Risk of 
Bias 

High Risk of 
Bias 

Navalta, Ramirez et al. 2020 Low Risk of Bias 
High Risk of 
Bias 

Low Risk of 
Bias 

High Risk of 
Bias 

Nazari & MacDermid 2020 Low Risk of Bias 
Low Risk of 
Bias 

Some Risk of 
Bias 

Some Risk of 
Bias 

Paradiso, Colino, & Liu 2020 Low Risk of Bias 
High Risk of 
Bias 

High Risk of 
Bias 

High Risk of 
Bias 

Chapter 3 Table 6. Risk of Bias results for all reliability studies reviewed.  
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Discussion 

With overall MAPE averages ranging from 2.4% to 30.7%, and Pearson correlation averages ranging from 

0.67, to 0.82, there are highly variable results in overall validity in current wearable technology. Thus, 

those seeking to utilize these devices should first seek to determine their validity, either by testing 

themselves, or reviewing published literature. The tables in the appendix of this paper may help 

researchers, coaches, or other users to evaluate the appropriate use-case of the devices they are looking 

to use. However, without established thresholds for validity, users will be required to make their own 

decisions on whether the device has appropriate validity for their specific use-case. 

The Consumer Technology Association has previously recommended a sample size of 20 for validity 

studies (Consumer Technology Association, 2016). This analysis shows that 20 individuals should be 

sufficient for studying the validity of devices estimating or measuring HR, EE, or VO2max, given that their 

sample is also properly diverse. Sample diversity can affect sensor readings, such as skin type, tattoos, or 

body fat percentage for light-based PPG sensors  (Consumer Technology Association, 2018). However, as 

the VO2max weighted average is only from three data collection periods (studies), and 61 participants, 

the minimum sample size of 17 should be cautiously considered, and efforts should be made to reach at 

least the recommended sample size of 20 until more is known about testing this variable. It is also 

important to consider that the weighted average was for many different exercise modalities. Certain 

modalities may require additional sample sizes, but these calculations can give researchers a starting 

point for planning studies. 

As can be seen in the risk of bias analysis, the validation and reliability studies looking at physiological 

variables, published between January 2020 and April 2023, vary widely. This is despite several attempts 

to standardize the practices for validating consumer-grade wearable devices. There is substantial risk of 

bias in the majority of the reviewed studies. The biggest areas of concern are in the statistical tests and 
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data processing areas. There is less risk of bias in the study methodology. This means that, while the 

statistical analyses performed may not be easily compared across studies, and may be inappropriate at 

times, the heart of the studies (data collection methodology) being performed is generally performed 

properly. 

Data processing is sometimes referred to as cleaning the data. This is needed only during repeated 

measures, and the amount of data processing necessary is generally proportional to the granularity of 

the signal. Raw data will need the most cleaning to be useful, and sensors that are more susceptible to 

motion artifacts or other noise in the signal will need more processing. Depending on what the signal to 

noise ratio is, researchers may need to perform additional cleaning, possibly even applying algorithms to 

clean the data. However, consumer-grade wearable technology does not generally make the raw data 

available to the user. Therefore, the initial processing is generally performed by proprietary algorithms, 

unknown to the user or researcher, rather than applying their own algorithms to clean the raw data. It is 

likely, however, that the data will still require cleaning if the signal processing time interval (epoch) 

accessible to the researcher is still relatively granular (e.g. second-by-second). If the data is aggregated 

into a larger epoch (e.g. 5-min, 10-min), then less cleaning is generally required, and possibly none at all. 

The risk for bias occurs if cleaning is done to alter the dataset that is not reported or not reasonable. This 

was the biggest concern for the published literature. Studies would not report how much missing data 

there was, what and how much data the researchers removed, and why and how it was done. 

Researchers should strive to properly describe their efforts to clean their data, and reviewers should 

ensure it is properly described before allowing the study to be published. Another possibility to reduce 

bias in the literature is for wearable technology companies to make a greater amount of raw, or semi-

raw data available to users and researchers (encouraging agnostic data). Having the data prior to any 

proprietary cleaning or smoothing algorithms performed by the company will allow the devices to be 

evaluated more completely and increase our understanding of their appropriate use cases. The WEAR-



89 
 

BOT asks questions to evaluate the amount of data processing that was performed, why, and if it was 

justified and appropriate. It also seeks to evaluate the alignment of data. When comparing two devices, 

there may be a lag in the data (such as a PPG test device vs an ECG criterion device when testing HR). 

Statistical measures have been established to identify lags in the signal, such as cross-correlations. The 

use of these tests in validation of consumer wearables have been proposed by researchers (van Lier et 

al., 2020), yet they are extremely rare in the literature. In addition to more advanced statistical tests, 

even basic aspects of data processing were missing from several papers reviewed, such as the epoch 

used for data aggregation, if any. Thus, the WEAR-BOT seeks to guide researchers to a better practice of 

performing and reporting their data processing efforts. 

As has been reported in previous literature, the statistical tests performed for validity and reliability 

literature are far from uniform across papers. The most common test is a test of linearity, in the form of 

correlation (Pearson, Lin’s, Spearman, etc.), though regression is also appropriate (Carrier et al., 2020a; 

Welk et al., 2019). The next most common type of test is a test of error (MAPE, RMSE, MAE, etc.). Finally, 

Bland-Altman plots are commonly reported, however, mean bias and limits of agreement are frequently 

not reported alongside the plots. Previous literature has proposed correlational tests, error tests, Bland-

Altman, and equivalence tests to properly evaluate the validity of a device (Carrier et al., 2020a; Welk et 

al., 2019). The WEAR-BOT suggests three types of tests, (1) a test of error, (2) linearity, and (3) 

equivalence, in addition to a graphical representation of bias. While correlation tests for assessing 

linearity are discussed above, regression models for assessing linearity may be less well known. There 

are specific regression techniques best suited for method comparison, including Deming regression 

(parametric) and Passing-Bablok regression (non-parametric). While the FDA does not have specific 

guidance on validating consumer-grade wearable technology, they do recommend establishing linearity 

through regression in other method verification procedures (Office of Regulatory Affairs (ORA) 

Laboratory Manual Volume II, 2020). For validation purposes, reporting the y-intercept and regression 
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slope would be appropriate for Deming regression, while adding residual sum of squares, and the R2 

would be appropriate after performing simple linear regression. This is all assuming that the variables 

are continuous (which most are). However, if the variables in question are categorical, such as human 

activity recognition or physical activity classification, these tests are not appropriate. For validation 

studies with categorical variables, the WEAR-BOT proposes diagnostic tests (accuracy, specificity, 

sensitivity, AUC), reporting the classification table (confusion matrix), and a test of association 

appropriate for the level of measurement (Cohen’s Kappa, rank-based correlations, etc.). While there are 

validation studies that performed some type of regression (Amitrano et al., 2020; Donisi et al., 2021; 

Hinde et al., 2021; Sen-Gupta et al., 2019), the vast majority of studies reviewed did not. For reliability 

testing, most performed either a test of absolute reliability (coefficient of variation) or relative reliability 

(Intraclass Correlation Coefficient). Thus, the results for the statistical tests for reliability performed 

much better than the validity testing. As stated previously, there is significantly less research examining 

reliability in these devices, thus additional insights, including descriptive statistics and weighted averages 

are not presented here due to the lack of available data. 

The WEAR-BOT goes one step further than previous works, evaluating and recommending methodology 

and statistical tests for validity and reliability studies. However, there still is no universal acceptance on 

validity and reliability thresholds. As has been proposed in previous literature, establishing appropriate 

thresholds for validity and reliability are important to establish appropriate use cases (Carrier et al., 

2021). While wearable technology is being used in research (Coughlin & Stewart, 2016; Mansi et al., 

2021; Park & Jayaraman, 2003; Xiang et al., 2022), and even medical research (Burnham et al., 2018; 

Greiwe & Nyenhuis, 2020; Iqbal et al., 2016; Wu & Luo, 2019), the validity of the devices is often not 

known. Wearable technology has the potential to revolutionize biomedical and physiological research 

(Carrier et al., 2020a; Wright et al., 2017), but only if the appropriate devices are used in the appropriate 

scenarios. In the absence of regulation from a governing entity, the responsibility of testing these devices 
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falls to independent researchers. It is likely that tiered thresholds will need to be established as the 

accuracy thresholds for recreational use will not be as stringent as those necessary for research, 

professional/collegiate athletics, or military scenarios. Thus, we encourage researchers to seek to 

establish such thresholds. 

As stated previously, the work of validating these devices is important. However, as these devices are 

meant for the general population, and the studies are oftentimes behind a paywall, there is a need for an 

easily accessible database for consumers, coaches, athletes, and researchers to access. Such a database 

would be a valuable resource for many. To compile the results of years, and soon-to-be decades of 

research is a difficult feat. Something no one person or lab group could reasonably accomplish. An 

organization would need to dedicate serious resources to compile and host this database, while 

continually monitoring it for the world to use. But the need for this will only continue to grow, as 

wearable technology grows. Therefore, we encourage the development of collaborative efforts to 

establish such a database and make it free for the world to use. 

 

Limitations 

This review was done with a version of the WEAR-BOT that was slightly different than the WEAR-BOT 

that has been published since. Minor grammatical changes, as well as question differences were made 

between the time this analysis was performed and the tool was published. The largest difference 

between the published WEAR-BOT and the WEAR-BOT used in this analysis is that the “Test Protocols” 

and “Test Environment” sections have been combined into a single section, entitled “Test Protocols and 

Parameters”. Readers should take this into consideration when reviewing this paper and the risk of bias 

analysis results. In addition, the weighted average only takes into account the reported participant 

sample size, and does not take into account the sampling rate of individual studies. For example, if two 
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studies examined HR during 20 minutes of running, and one study took HR measurements cross-

sectionally after 20 minutes of running for 20 individuals, and the other recorded the repeated measures 

for the entire time and aggregated an overall average, they would both have the same weight. As almost 

all studies did not report the overall count of their repeated measures, a more appropriate weighted 

average (based on individual measurement observations, rather than participants) was not possible. 

Therefore, readers should use the results of the weighted average analysis carefully. We would also like 

to direct the reader to some limitations stated earlier, regarding the calculated sample size statistics and 

reported (or lack of reported) individual observations. 

 

Conclusion 

This systematic review looked at the risk of bias in validity and reliability research using consumer-grade 

wearable technology using the novel WEArable Technology Risk of Bias and Objectivity Tool (WEAR-

BOT). We found that every study evaluated from January 2020 to April 2023 had either “Some Risk of 

Bias” or “High Risk of Bias”, overall. No study that was evaluated was classified as “Low Risk of Bias”, 

overall. While some sections of the WEAR-BOT had some or the majority of the studies classified as “Low 

Risk of Bias”, every study had at least one section that introduced risk of bias into the research. This most 

often came from the “Data Processing” or “Statistical Tests” sections. In addition, sample size 

calculations based on weighted averages of Pearson correlations from previous studies show a minimum 

sample size of 13, 19, and 17, for heart rate, energy expenditure, and VO2max validation studies, 

respectively. Therefore, the recommended sample size from the CTA of 20 is supported as being 

sufficiently powered for validity and reliability studies when studying HR, EE, or VO2max. In conclusion, 

we encourage those performing validity or reliability research into wearable technology to utilize the 
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WEAR-BOT checklist to ensure they reduce the amount of bias in their studies, and to improve the 

standardization across studies of methodology, analysis, and reporting. 
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Chapter 4 - Validation of Aerobic Capacity (VO2max) and Pulse Oximetry in Wearable Technology 

 

Abstract 

Introduction: Wearable technology continues to grow in popularity and sophistication, and the need for 

independent validation of these devices is needed to determine their overall accuracy and possible use-

cases. Therefore, the purpose of this study was to evaluate the accuracy (validity) of maximal oxygen 

consumption (VO2max) estimates and blood oxygen saturation (BOS) measured via pulse oximetry using 

the Garmin fēnix 6 with a general population participant pool. 

Methods: We recruited apparently healthy individuals (both active and sedentary) for VO2max (n=19) 

and pulse oximetry testing (n=22). VO2max was assessed through a graded exercise test and an outdoor 

run, comparing results from the Garmin fēnix 6 to a criterion measurement obtained from a metabolic 

system. Pulse oximetry involved comparing fēnix 6 readings under normoxic and hypoxic conditions 

against a medical-grade pulse oximeter. Data analysis included descriptive statistics, error analysis, 

correlation analysis, equivalence testing, and bias assessment, with validation criteria set at a 

concordance correlation coefficient (CCC) > 0.7 and mean absolute percentage error (MAPE) < 10%. 

Results: The Garmin fēnix 6 provided accurate VO2max estimates, closely aligning with the 15-sec and 

30-sec averaged laboratory data (MAPE for 30-sec avg = 7.05%, CCC for 30-sec avg = 0.73). However, it 

failed to accurately measure BOS under any condition or combined analysis (MAPE for combined 

conditions BOS = 4.29%, CCC for combined conditions BOS = 0.10). 

Conclusion: While the Garmin fēnix 6 shows promise for estimating VO2max, reflecting its utility for both 

individuals and researchers, it falls short in accurately measuring BOS, limiting its application for 

monitoring acclimatization and managing pulmonary diseases. This research underscores the importance 
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of validating wearable technology devices to leverage their full potential in enhancing personal health 

and advancing public health research.  
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Introduction 

Wearable technology (WT) has continued to grow in popularity and sophistication each year, with WT 

reaching the #1 spot in worldwide surveys of fitness trends in seven of the last nine years and being in 

the top three for the other two years (2018 and 2021) (Newsome et al., 2024; Thompson, 2015; 

Thompson, 2019; Thompson, 2022; Thompson, 2016; Thompson, 2017; Thompson, 2018; Thompson, 

2021; Thompson, 2023). According to recent surveys, almost one in three Americans uses a wearable 

device to track their health and exercise, and around 70% of people own at least one wearable or plan to 

buy one in the next year (Clark, 2019; Dhingra et al., 2023). This prevalence of WT may represent a 

revolutionary change in physiology and public health research, simply due to the vast pool of potential 

data that may become available to researchers. Also an important aspect is the constant monitoring of 

physiological metrics that these devices perform, which will provide granular details into a person’s 

physiology that could transform human physiology research (Carrier et al., 2020a; Wright et al., 2017). 

However, this transformation may only come to be realized if WT devices are found to be accurate in 

their measurements and estimates. As these consumer grade wearable devices are not subject to any 

type of regulation, there is no governing body ensuring accuracy. Thus, if researchers, athletes/coaches, 

public health officials, and health-care professionals hope to continue to utilize these devices, an 

understanding of their accuracy and when they can appropriately be used is necessary. This underpins 

the importance of independent validation of WT devices by researchers to further several scientific 

fields. 

 

Among the many variables WT can estimate or measure, maximal aerobic capacity (or VO2max) and 

blood oxygen saturation (BOS) measured via pulse oximetry are important for a variety of health and 

fitness related purposes. VO2max represents the maximal amount of oxygen an individual can transport 
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from the environment into their lungs, diffuse into the blood, and extract at the muscles and organs to 

produce energy, or ATP. It represents a measure of cardiorespiratory fitness (CRF) and has a strong 

inverse relation with all-cause mortality and cardiovascular diseases (Harber et al., 2017; Lee et al., 2011; 

Qiu et al., 2021). VO2max also has an important relationship to endurance performance among athletes, 

being the most important single factor in predicting race performance (Bassett & Howley, 2000; Joyner & 

Coyle, 2008; Kenney et al., 2021). Pulse oximeters can non-invasively measure the amount of oxygen 

bound to hemoglobin based on how light reflects off the blood cells when broadcast from the device. 

Devices with pulse oximeters to measure BOS can also be used to monitor cardiorespiratory functions, 

especially in people with pulmonary diseases. It can also be useful for athletes looking to travel to 

altitude for an event or competition who wish to monitor their acclimatization process (Dünnwald et al., 

2021; Sinex & Chapman, 2015). Therefore, the purpose of this study was to evaluate the accuracy 

(validity) of VO2max estimates and blood oxygen saturation measured via pulse oximetry using the 

Garmin fēnix 6 with a general population participant pool. 

 

Methods 

Prior to data collection occurring for this study, the protocols were approved by the University of 

Nevada, Las Vegas Institutional Review Board (IRB). All participants signed an informed consent and filled 

out pre-assessment documents prior to completing the study. While the VO2max and pulse oximetry 

testing were completed separately, some participants completed both, and are included in each dataset. 

As the participant pool for both VO2max and pulse oximetry testing are different, demographic data is 

provided for each group. 

 

VO2max Testing 
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For VO2max testing, 19 apparently healthy, active and sedentary individuals were recruited to 

participate (25.50±5.26 years, 11 male, 8 female, 173.63±9.08 cm, 74.08±14.16 kg, BMI=24.42±3.21, 

22.14±6.06% fat mass, 36.87±4.58% muscle mass, 25.07±23.65 km run per week, all reported as 

mean±SD). Data collection occurred over two separate days. The first day participants completed a 

graded exercise test on a treadmill utilizing progressive increases in speed and grade every two minutes 

until volitional exhaustion to determine VO2max. Maximal oxygen consumption was measured using the 

ParvoMedics TrueOne 2400 metabolic system (ParvoMedics Inc, Salt Lake City, UT, USA). VO2max was 

determined by taking the highest average oxygen consumption during the graded exercise test for a set 

timeframe. Aggregated VO2max values for 4-breath, 15-second, 30-second, and 1-minute averaged 

timeframes were obtained by the metabolic system and served as the criterion measure for comparisons 

to the WT device. The second day consisted of an outdoor run, guided by the wearable device (Garmin 

fēnix 6®, Garmin Ltd, Olathe, KS, USA) to generate an estimated VO2max value. Participants were asked 

to come back between two and seven days from the first visit (5.06±3.96 days). Researchers performed a 

factory reset on the watch prior to each subject to prevent data from previous participants influencing 

the measurements and estimates of the current subject. Participants then put on the associated heart 

rate monitor (Garmin HRM-Run®) for the outdoor run. The outdoor run involved a 10-15 minute run at 

an intensity above 70% of the participants estimated max HR, according to manufacturer guidelines. This 

provided the device enough data to estimate VO2max, using a linear extrapolation of heart rate (HR) and 

running speed (Aerobic Fitness Level (VO₂max) Estimation – Firstbeat White Paper. 2017). The outdoor 

run was performed in one of two places, the University track, or a flat area of campus, depending on 

logistics and track availability. Participants ran laps until researchers told them to stop within the time 

window. Five participants completed the testing at the track, and 15 participants completed testing on 

campus. The altitude was ~686m, and the average temperature during outdoor testing was 20.67±12.62 
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°C, as measured by local weather readings. The average distance, time, pace, and HR were 2.13±0.17 km, 

12.91±1.42 min, 6.33±1.49 min/km, and 153.50±11.45 bpm, respectively, as measured by the device. 

 

Pulse Oximetry Testing 

For pulse oximetry testing, 22 apparently healthy individuals were recruited to participate (25.48±6.02 

years, 13 male, 9 female, 173.27±7.70 cm, 68.88±9.10 kg, BMI=22.91±2.40, 18.55±7.05% fat mass, 

38.73±3.61% muscle mass). Participants began by putting on the fēnix 6 on their left wrist and were 

instructed to have the strap tension secure but comfortable. Researchers then placed a medical grade 

pulse oximeter (Roscoe Medical Fingertip Pulse Oximeter, Model: POX-ROS, Roscoe Medical Inc., 

Middleburg Heights, OH, USA), on the right index finger of the participant. Participants completed 

testing under four conditions (normoxia/hypoxia, anterior/posterior watch placement). All participants 

were seated for all pulse oximetry tests. The first testing condition was under normoxic (normal oxygen 

concentration) conditions, with the watch head placed on the posterior wrist. Researchers performed 

the necessary steps on the watch to generate a BOS level by the fēnix 6 and recorded the value from the 

fingertip oximeter at the same time the watch generated a value. Afterwards, the watch was then placed 

on the anterior wrist, and the process repeated. After both normoxic conditions were completed, 

participants performed hypoxic (low oxygen concentration) testing of the pulse oximeter. Participants 

were connected to an altitude simulator machine (Hypoxico Everest Summit II, Hypoxico Inc., New York, 

New York, USA), for a minimum of five minutes to allow for blood oxygen levels to stabilize prior to 

testing. The machine was set to an altitude of 3657.6 m (12,000 ft) as the default for participants. 

However, if participants got lightheaded or uncomfortable at that simulated altitude, it was lowered to 

an altitude better tolerated by the individual and the five-minute waiting period reset, with the 

possibility of returning to normoxia for as long as needed before restarting at a lower simulated altitude. 
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All participants were seated for all pulse oximetry tests. Participants were instructed to control their 

breathing rate and breathed in and out in synchronization with the altitude simulator bursts of air. This 

corresponded to a breathing rate of 12.5 breaths per minute. Blood oxygen saturation testing under 

hypoxia was tested with the watch on the anterior and posterior left wrist, as was performed prior in the 

normoxic testing condition. The average time under hypoxia was 9.18±1.05 min. If the fēnix 6 was unable 

to generate a measurement of BOS for any trial, the researchers retried up to three times for each trial 

that the watch did not generate a value on the first attempt. If it was still unable to generate a 

measurement after three tries, no further attempts were made. Once values were obtained from the 

watch and the fingertip oximeter, the pulse oximetry testing was concluded. 

 

Data Analysis 

VO2max values for each timeframe (4-breath, 15-sec, 30-sec, and 1-min) and BOS values for each 

condition (anterior/posterior placement, normoxia/hypoxia) were input into Google Sheets (Alphabet 

Inc., Mountain View, CA, USA). Pulse oximetry values were compared by condition as well as combined 

dataset. All granular calculations were completed within Google Sheets. All summary statistics, validation 

measures, and figures were completed and generated in jamovi (jamovi project, version 2.2, 

https://www.jamovi.org/). Descriptive statistics, error analysis (mean absolute percentage error), 

correlation analysis (Pearson’s r, Lin’s Concordance Correlation Coefficient [CCC]), equivalence testing 

(TOST Paired Samples Test), and bias assessment (Bland-Altman analysis) were also performed. TOST test 

upper and lower bounds were set at +0.5 and -0.5 Cohen’s D for each test. Data analysis for VO2max was 

completed by comparing the fēnix 6 estimates of VO2max to each laboratory aggregated timeframe. 

Determination of validation was pre-determined, and any condition that produced a CCC > 0.7, and a 

MAPE < 10%, the device was considered valid. 

https://www.jamovi.org/


112 
 

 

Results 

VO2max 

The 19 participants used for this analysis had an average VO2max of 48.9ml/kg/min and an average 

VO2max percentile of 83.37±21.14%, based on the 30-sec averaged VO2max values. Error analysis 

showed that the fēnix 6 VO2max estimate had a MAPE of less 10% for the 15-sec, 30-sec, and 1-min 

averaged timeframes (see Table 1). Correlation analysis produced a CCC > 0.7 for both the 15-sec and 30-

sec averaged timeframes (see Table 1). Equivalence testing via the TOST test produced no equivalent 

results, with equivalence conditions being violated for the 4-breath, 15-sec, 30-sec, and 1-min averaged 

times (see Table 1). Bland-Altman bias values and 95% confidence intervals can be found in Table 1 and 

associated plots can be found for all time parameters in Figure 1.   
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Table 4.1. Validity Statistics for Garmin VO2max Estimate 

 
fēnix 6 VO2max 
Estimate 

Lab VO2max – 4 
breath avg 

Lab VO2max – 
15 sec avg 

Lab VO2max – 
30 sec avg 

Lab VO2max – 1 
min avg 

Mean 
(ml/kg/min) 49.68 54.54 49.95 48.94 47.91 

Standard 
Deviation 4.61 7.28 7.04 6.67 6.76 

MAPE  10.70% 7.23% 7.05% 8.53% 

Pearson 
Correlation  0.73 0.78 0.78 0.76 

Lin’s 
Concordance  0.49 0.71 0.73 0.68 

Bland-Altman 
Bias  

-4.87 

(-7.30, -2.44) 

-0.26 

(-2.45, 1.92) 

0.75 

(-1.28, 2.78) 

1.77 

(-0.35, 3.89) 

TOST Test p-
value (Upper)  <0.001 0.80 0.45 0.10 

TOST Test p-
value (Lower)  <0.972 0.01 0.09 0.34 

VO2max descriptive and validation statistics results, n=20. MAPE = Mean Absolute Percentage Error, 

TOST Test = Two One-Sided T-Tests. Bland-Altman bias values and 95% confidence intervals provided. 

Values that met the predetermined validation criteria are bolded.  
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Figure 4.1. VO2 Bland-Altman Plot of fēnix 6 Compared to Laboratory VO2max Values.  

4-sec average in top left, 15-sec average in top right, 30-sec average in bottom left, 1-min average in 

bottom right. X-axis units of measurement are VO2max (ml/kg/min) and Y-axis units is the difference 

between the two measurements (test device vs criterion).  
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Pulse Oximetry 

Error analysis showed that the fēnix 6 BOS values had a MAPE of less than 10% for all four conditions and 

the combined data (see Table 2 and appendix Table A.3). Correlation analysis did not produce a CCC > 0.7 

for any conditions, including the combined data (see Table 2 and appendix Table 3). Equivalence testing 

via TOST test was violated for all four conditions but was met for the combined data (see Table 2 and 

appendix Table A.3). Bland-Altman bias values and 95% confidence intervals can be found in Table 2 for 

the combined data and appendix files for individual conditions. The associated plots can be found for the 

combined data in Figure 3. The total number of measurements the fēnix 6 generated was 52, for a total 

success rate (or data availability rate) of 59%. This means that when prompted for a blood oxygen 

saturation measurement, it only provided data 59% of the time.  
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Table 4.2. Validity Statistics for Garmin Blood Oxygen Saturation Estimates 

 
fēnix 6 Blood Oxygen 
Saturation Measurement (%) 

Criterion Blood Oxygen Saturation 
Measurement (%) 

Mean 95.44% 92.06% 

Standard Deviation 1.60% 8.17% 

MAPE  4.29% 

Pearson Correlation  0.18 

Lin’s Concordance  0.10 

Bland-Altman Bias  

1.12 

(-0.34, 2.57) 

TOST Test p-value (Upper)  0.13 

TOST Test p-value (Lower)  0.02 

Blood oxygen saturation measurements, measured via pulse oximetry in Garmin fēnix 6 and criterion 

device. Descriptive and validation statistics results for n=22 (52 distinct fēnix 6 values from all conditions 

and participants). Bland-Altman bias values and 95% confidence intervals provided. Values that met the 

predetermined validation criteria are bolded.  
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Figure 4.2. Bland-Altman Plots for the Combined Pulse Oximetry Data. 

Data in figure contains all four conditions hypoxia/normoxia and anterior/posterior watch placement. X-

axis unit of measurement is percent oxygen saturation (%) and Y-axis units is the difference between the 

two measurements (test device vs criterion).  
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Discussion 

In this study, the validity of VO2max estimates and BOS values measured via pulse oximetry in WT was 

compared to gold standard measurements. Based on the pre-established validation criteria, the fēnix 6 

has acceptable accuracy in its estimation of VO2max and corresponds closely to the 15-sec and 30-sec 

averaged timeframes. The measurements of BOS via pulse oximetry did not have acceptable accuracy for 

any condition or the combined data. As the appropriate use-cases of these devices is discussed, it is 

important to note that these are consumer-grade devices, not medical devices. Thus, they are not 

subject to FDA regulation (or any other governing body) in terms of accuracy and effectiveness. VO2max 

and pulse oximeters have an important role in monitoring the health of an individual, including general 

health and fitness levels and those with potential cardiovascular disease (CVD) and pulmonary diseases. 

While these devices are being used for measuring variables in diseased populations, they are not 

intended for that purpose. Despite this, researchers, health-care professionals, and public health officials 

are utilizing WT to track these metrics for scientific, policy, and health-care related purposes (Burnham 

et al., 2018; Greiwe & Nyenhuis, 2020; Iqbal et al., 2016; Ming et al., 2020; Park & Jayaraman, 2003; 

Phillips et al., 2018; Qaddoori et al., 2023). This illustrates the need for independent evaluation of these 

devices, in terms of validity and reliability, compared to gold-standard measurements. Wearable 

technology has the potential to revolutionize public health and physiology research, due to its constant 

monitoring and widespread availability (Carrier et al., 2020a; Wright et al., 2017). Thus, researchers, 

health-care professionals, public health officials, and scientific journals should be invested in the 

independent validation of these devices to further several scientific fields. 

 

Wearable technology can generate an estimate of VO2max through HR, as the linear relationship 

between HR and VO2 is well established (Aerobic Fitness Level (VO₂max) Estimation – Firstbeat White 



119 
 

Paper. 2017). The fēnix 6 measures HR and speed and utilizes a linear extrapolation up to the estimated 

max HR, based an individual’s age, to determine VO2max. While this can be accomplished simply with 

the watch and built in photoplethysmography (PPG) based HR monitor, an accessory HR monitor that is 

placed on the chest and utilizes ECG technology to determine HR can also be used. The PPG sensors 

common in many watch-based wearable devices have been shown to be much less accurate at reading 

HR during exercise than ECG-based HR monitors, mainly due to the PPG sensors susceptibility to motion 

artifacts during movement (Carrier et al., 2021; Chow & Yang, 2020; Estepp et al., 2014; Lu & Yang, 2009; 

Terbizan et al., 2002). ECG-based HR monitors have been recommended for use during exercise, which 

was observed in the current investigation. While WT represents an improvement in availability in 

tracking physiological metrics, such as VO2max, field-based maximal and submaximal tests to estimate 

VO2max have been around for decades (Zwiren et al., 1991). A meta-analysis detailing the performance 

of these submaximal predictive equations compared to gold-standard testing found that they have a 

correlation range of r = 0.57 to 0.92 (Evans et al., 2015). The current investigation found an r value of 

0.78 for the 15-sec and 30-sec timeframes. Previous studies have found the Garmin fēnix 3 to have 

correlations of up to 0.92 (Carrier et al., 2020b), equal to the best submaximal equations that have been 

developed, in terms of correlation values. Although comparing these devices solely based on correlation 

gives an imperfect view of their validity, accuracy, and reliability, they do offer some comparative value. 

 

Having an accurate estimate of VO2max can be very useful, as it represents an important metric to 

determine a person’s health status. VO2max is a reliable predictor for overall cardiorespiratory fitness 

(CRF), which is an independent risk factor for all-cause and disease-specific mortality (Harber et al., 

2017; Lee et al., 2011; Qiu et al., 2021). Meaning, an individual with a low VO2max value will be at a 

higher risk of mortality due only to that metric, regardless of any other health metrics. The American 

Heart Association has released a lengthy review and position statement endorsing regular measurement 
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of CRF in clinical practice. They state, “A growing body of epidemiological and clinical evidence 

demonstrates not only that CRF is a potentially stronger predictor of mortality than established risk 

factors such as smoking, hypertension, high cholesterol, and type 2 diabetes mellitus, but that the 

addition of CRF to traditional risk factors significantly improves the reclassification of risk for adverse 

outcomes” (Ross et al., 2016). As assessment of CRF is ideally performed through a maximal exercise test 

and measurement of oxygen consumption and carbon dioxide production through a metabolic system. 

Unfortunately, that is not possible for many people who cannot complete a maximal exercise test (those 

with CVD, musculoskeletal diseases, pulmonary diseases, etc.) or those who cannot afford the cost of 

laboratory measurements. Wearable technology has the potential to evaluate VO2max through a 

relatively light exercise bout (as is the case with the current device being tested) or even at rest (as is the 

case with other wearable devices). Thus, an accurate estimate of VO2max has the potential to influence 

personal health measures, as well as provide greater insights into the public health status for researchers 

and policy makers. As the fēnix 6 was found to generate accurate estimates of VO2max, individual 

recreational users, and possibly researchers, public health officials, and health-care professionals can 

trust the values generated by the device. However, researchers and health-care workers may want to 

utilize a more stringent validation threshold than what has been employed in the current investigation. 

 

In addition to the role of VO2max in personal health, it is also an important measure for endurance 

athletes. VO2max is among the most important single measure to determine performance in an 

endurance event and is considered by many to be the single most important metric in determining 

performance (Bassett & Howley, 2000; Joyner & Coyle, 2008; Kenney et al., 2021). Having the ability to 

know an athletes VO2max allows for improved training programs to be developed that are tailored to 

the athlete’s specific fitness level. As gold-standard methods of determining VO2max can be expensive 

and time consuming, they are not a practical option for many recreational athletes or teams. Wearable 
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technology can represent a cost-effective method of determining aerobic capacity for individuals, as well 

as teams. These devices can also generate a VO2max value during the course of normal training, 

eliminating the need to take a day off from training for testing purposes. It also has the added benefit of 

constant monitoring, allowing small changes in aerobic capacity to influence the training protocol. 

 

Measuring BOS via pulse oximetry is a well-established, and widely used method in clinical settings. The 

introduction of pulse oximetry into smart watches and other wearable devices is a recent advancement. 

Pulse oximeters measure BOS by broadcasting pulses of light and measuring the reflection via PPG 

sensors to monitor changes in blood oxygen concentration. This technology may prove to be an 

important way to monitor a person’s disease status and health metrics, especially those with pulmonary 

diseases, such as asthma, emphysema, and chronic obstructive pulmonary disease (COPD). However, 

independent validation of these devices will need to be completed in order to trust the measures. It can 

also be useful for athletes who travel to altitude to monitor the acclimatization process, such as hikers, 

mountaineers, or other athletes travelling to higher altitudes than their current altitude (Luks & 

Swenson, 2011). While the device tested in the current investigation performed poorly, especially during 

the hypoxic conditions, it may be of interest to future researchers to test the ability to accurately 

measure BOS throughout the day, rather than on-demand. However, as we have mentioned previously, 

PPG sensors are susceptible to motion artifacts, and could have similar issues with accuracy when 

measured throughout the day. Some research has demonstrated that desaturations below 50% can be 

observed when patients are moving during testing (Chan et al., 2013). With the severe limitations in 

terms of the accuracy of this device, especially during hypoxic conditions, those looking to use this 

device to measure acclimatization when at altitude should look elsewhere for accurate measurements. 
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For the current investigation, we have used the generally accepted thresholds of MAPE < 10% and CCC > 

0.7. However, universal agreement for thresholds or even analytical tests to determine validity have not 

been established. As we recruited from the general population for this study, the fairly liberal thresholds 

of 10% and 0.7 seemed appropriate. However, those looking to use this device in higher level athletics, 

public health and/or physiology research, and healthcare may seek more conservative thresholds to 

determine appropriate use-cases. In the future, a tiered threshold system could be established, to better 

understand the appropriate use-cases of these devices. In terms of analytical tests, we have decided only 

to use MAPE and CCC in the determination of validity. However, we have also included bias assessments 

(Bland-Altman analysis) and equivalence testing (TOST test). These have all been suggested as 

appropriate analytical techniques to determine validity, though are not always common in other 

validation literature (Carrier et al., 2020a; van Lier et al., 2020; Welk et al., 2019). For instance, 

equivalence testing is especially absent from much of the validation literature. We have included all for 

the benefit of the reader and because we view them as appropriate tests to determine validity. However, 

because thresholds have not been established for these additional tests, we have not included them in 

our validity thresholds. 

 

Conclusion 

In this study, we tested the Garmin fēnix 6 VO2max estimate and blood oxygen saturation values 

measured via pulse oximetry for accuracy compared to gold-standard, laboratory measurements. The 

fēnix 6 showed acceptable accuracy for VO2max, and most closely aligned with the 15-sec and 30-sec 

timeframes. The fēnix 6 did not show acceptable accuracy for blood oxygen levels for any condition, or 

the combined analysis. Therefore, the Garmin fēnix 6 may reasonably be expected to generate an 

accurate estimate of an individual’s VO2max based on 15-sec or 30-sec aggregated data if more accurate, 
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laboratory tests are not available. In addition, the fēnix 6 will not generate an accurate estimate of an 

individual’s blood oxygen levels, either in normoxia/hypoxia, or anterior/posterior watch placement on 

the wrist. 
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Chapter 5 - Conclusion 

This dissertation marks a significant advancement in the field of wearable technology, addressing critical 

gaps and setting new standards for the evaluation and application of wearable technology devices in 

various contexts. The dissertation consisted of three primary works, the first established a risk of bias 

tool to evaluate validity and reliability studies that utilize wearable technology, known as the WEArable 

technology Risk of Bias and Objectivity Tool (WEAR-BOT). The second was a systematic review and meta-

analysis looking at physiological variables measured during exercise via wearable technology, with 

WEAR-BOT analysis. The final piece was a validation study as an example of the type of research that the 

WEAR-BOT can evaluate, or guide researchers through a methodological design for their own studies. 

As stated earlier in the dissertation, wearable technology may be viewed as an emerging field of science, 

as it has only been in the last ~10 years that the technology has progressed enough to be genuinely 

useful to the user. The technology now has broad adoption, which will only continue as the technology 

advances and costs are reduced. This has led to some inappropriate applications and analyses of 

wearable technology, especially in terms of validity and reliability studies which was examined earlier. 

Despite this, it continues to be an important means of collecting data and informing decisions for 

individual users and researchers. As the technology matures, and adoption continues to spread to many 

different fields, we can expect to improve our understanding of human physiology, human behavior, and 

many other areas that the technology will infiltrate. Research will continue to be proposed and 

performed using wearable technology, some possibilities for future research can be seen below. 

The foundation laid by this dissertation paves the way for several future projects aimed at further 

refining and expanding our understanding and application of wearable technology. Planned systematic 

reviews using the WEAR-BOT tool will extend into areas such as physical variables and special 

populations, broadening the scope of validated wearable technology applications. These reviews are 
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crucial for identifying gaps in the current research landscape and setting the agenda for future 

investigations. 

Furthermore, the need to establish appropriate thresholds for validity, likely utilizing a tiered approach 

for different use-cases, signifies a pioneering step towards a personalized and context-specific 

application of wearable technologies. By differentiating between general population use, recreational 

athletics, collegiate and professional athletics, military use, and research use, this endeavor will cater to 

the varying demands for accuracy and reliability across different sectors, thereby enhancing the utility 

and adoption of wearable devices. 

Incorporating wearable technology into public health research opens up vast possibilities for exploring 

the relationship between physiological or physical variables and health or disease status. This approach 

not only contributes to the body of knowledge on disease prevention and management but also 

leverages wearable technology as a tool for public health advancement. 

There is also a need to establish an easily accessible database, compiling results from different validation 

and reliability studies, which would represent a strategic move towards transparency and accessibility in 

wearable technology research. Such a database would serve as a valuable resource for researchers, 

practitioners, and consumers alike, facilitating informed decision-making and fostering collaborative 

efforts across disciplines. 

In conclusion, this dissertation not only enriches the scientific quality of wearable technology research 

but also charts a course for future inquiries and applications. By addressing current challenges and 

setting forth ambitious future projects, this work contributes meaningfully to the field, enhancing the 

reliability, validity, and utility of wearable technology. The implications of this research are far-reaching, 

promising to impact not only future scientific investigations but also the integration of wearable 

technology in everyday life, public health initiatives, and specialized professional practices.
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Appendix 

Table A.1. Compiled MAPE Results 

Manufact
urer Model Author 

Exercis
e 
Modali
ty 

Exercise 
Subgrou
p 

Populat
ion 

Sam
ple 
Size HR EE RR 

O2 
Saturat
ion 

Skin 
Tem
p 

VO2
max 

Fluid 
Loss 

SpectroPh
on 

Dehydra
tion 
Body 
Monitor 
(DBM) 
Paired 
with 
Samsung 
Gear S2 

Rodin et 
al. 

Walkin
g 

 
Male 120 

      

10.1
6% 

SpectroPh
on 

Dehydra
tion 
Body 
Monitor 
(DBM) 
Paired 
with 
Samsung 
Gear S2 

Rodin et 
al. 

Walkin
g 

 
Female 120 

      

8.96
% 

SpectroPh
on 

Dehydra
tion 
Body 
Monitor 
(DBM) 
Paired 
with 
Samsung 
Gear 
Fit2 

Rodin et 
al. 

Walkin
g 

 
Male 120 

      

10.3
2% 

SpectroPh
on 

Dehydra
tion 
Body 
Monitor 
(DBM) 
Paired 
with 

Rodin et 
al. 

Walkin
g 

 
Female 120 

      

9.52
% 
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Samsung 
Gear 
Fit2 

Jabra 

Elite 
Sport 
Earbuds 

Reece et 
al. 

Walkin
g 

 
General 23 

7.91
% 

      

Jabra 

Elite 
Sport 
Earbuds 

Reece et 
al. 

Walkin
g 

Fast 
Walking General 23 

10.8
0% 

      

Jabra 

Elite 
Sport 
Earbuds 

Reece et 
al. 

Runnin
g 

 
General 23 

7.91
% 

      

Jabra 

Elite 
Sport 
Earbuds 

Reece et 
al. Cycling 

 
General 23 

7.15
% 

      

Scosche 
Rhythm 
24 

Reece et 
al. 

Walkin
g 

 
General 23 

2.33
% 

      

Scosche 
Rhythm 
24 

Reece et 
al. 

Walkin
g 

Fast 
Walking General 23 

1.54
% 

      

Scosche 
Rhythm 
24 

Reece et 
al. 

Runnin
g 

 
General 23 

1.24
% 

      

Scosche 
Rhythm 
24 

Reece et 
al. Cycling 

 
General 23 

0.90
% 

      

Apple 

Apple 
Watch 
Series 4 

Reece et 
al. 

Walkin
g 

 
General 23 

1.50
% 

      

Apple 

Apple 
Watch 
Series 4 

Reece et 
al. 

Walkin
g 

Fast 
Walking General 23 

1.17
% 

      

Apple 

Apple 
Watch 
Series 4 

Reece et 
al. 

Runnin
g 

 
General 23 

0.92
% 

      

Apple 

Apple 
Watch 
Series 4 

Reece et 
al. Cycling 

 
General 23 

0.62
% 
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Garmin 

Forerun
ner 735 
XT 

Reece et 
al. 

Walkin
g 

 
General 23 

8.75
% 

      

Garmin 

Forerun
ner 735 
XT 

Reece et 
al. 

Walkin
g 

Fast 
Walking General 23 

12.6
3% 

      

Garmin 

Forerun
ner 735 
XT 

Reece et 
al. 

Runnin
g 

 
General 23 

11.2
2% 

      

Garmin 

Forerun
ner 735 
XT 

Reece et 
al. Cycling 

 
General 23 

7.56
% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Light 
Cycling General 14 

16.8
0% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Light 
Cycling General 14 

14.2
0% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Light 
Cycling General 14 

21.9
0% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Light 
Cycling General 14 

17.4
0% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Modera
te 
Cycling General 14 

32.2
0% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Modera
te 
Cycling General 14 

27.3
0% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Vigorou
s Cycling General 14 

38.1
0% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Cycling 

Vigorou
s Cycling General 14 

37.4
0% 
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Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Stairs 

 
General 14 

8.00
% 

      

Xiaomi 
Mi Band 
2 

Paradiso
, Colino, 
& Liu Stairs 

 
General 14 

7.80
% 

      

Fitbit Charge 2 
O'Drisco
ll et al. 

Walkin
g 

 
General 14 

25.0
0% 

44.00
% 

     

Fitbit Charge 2 
O'Drisco
ll et al. 

Walkin
g 

Incline 
Walking General 14 

17.0
0% 

31.00
% 

     

Fitbit Charge 2 
O'Drisco
ll et al. 

Runnin
g 

 
General 14 

8.00
% 

15.00
% 

     

Fitbit Charge 2 
O'Drisco
ll et al. 

Runnin
g 

Incline 
Running General 14 

5.00
% 

12.00
% 

     

Fitbit Charge 2 
O'Drisco
ll et al. Cycling 

Light 
Cycling General 14 

12.0
0% 

40.00
% 

     

Fitbit Charge 2 
O'Drisco
ll et al. Cycling 

Modera
te 
Cycling General 14 

16.0
0% 

39.00
% 

     

Sensewea
r 

Armban
d Mini 

O'Drisco
ll et al. 

Walkin
g 

 
General 14 

 

14.00
% 

     

Sensewea
r 

Armban
d Mini 

O'Drisco
ll et al. 

Walkin
g 

Incline 
Walking General 14 

 

13.00
% 

     

Sensewea
r 

Armban
d Mini 

O'Drisco
ll et al. 

Runnin
g 

 
General 14 

 

15.00
% 

     

Sensewea
r 

Armban
d Mini 

O'Drisco
ll et al. 

Runnin
g 

Incline 
Running General 14 

 

15.00
% 

     

Sensewea
r 

Armban
d Mini 

O'Drisco
ll et al. Cycling 

Light 
Cycling General 14 

 

31.00
% 

     

Sensewea
r 

Armban
d Mini 

O'Drisco
ll et al. Cycling 

Modera
te 
Cycling General 14 

 

35.00
% 

     

Adidas 

Smart 
Sports 
Bra 

Navalta, 
Ramirez 
et al. Run 

 
General 24 

13.5
7% 
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Adidas 

Smart 
Sports 
Bra 

Navalta, 
Ramirez 
et al. Walk 

 
General 24 

9.56
% 

      

Berlei 
Sports 
Bra 

Navalta, 
Ramirez 
et al. Run 

 
General 24 

0.58
% 

      

Berlei 
Sports 
Bra 

Navalta, 
Ramirez 
et al. Walk 

 
General 24 

0.61
% 

      

Sensoria 
Fitness 

Biometri
c Sports 
Bra 

Navalta, 
Ramirez 
et al. Run 

 
General 24 

4.00
% 

      

Sensoria 
Fitness 

Biometri
c Sports 
Bra 

Navalta, 
Ramirez 
et al. Walk 

 
General 24 

1.91
% 

      

Suunto 

Spartan 
Sport 
Watch + 
Chest 
Strap 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Uphill) General 21 

1.50
% 

      

Suunto 

Spartan 
Sport 
Watch + 
Chest 
Strap 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Downhi
ll) General 21 

2.20
% 

      

Garmin Fenix 5 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Uphill) General 21 

13.7
0% 

      

Garmin Fenix 5 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Downhi
ll) General 21 

13.4
0% 

      

Jabra 

Elite 
Sport 
Earbuds 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Uphill) General 21 

24.5
0% 

      

Jabra 

Elite 
Sport 
Earbuds 

Navalta, 
Montes 
et al. 

Runnin
g Trail 

Running 
General 21 

20.6
0% 
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(Downhi
ll) 

Motiv 
Motiv 
Ring 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Uphill) General 21 

16.4
0% 

      

Motiv 
Motiv 
Ring 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Downhi
ll) General 21 

15.4
0% 

      

Scosche Rhythm+ 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Uphill) General 21 

6.20
% 

      

Scosche Rhythm+ 

Navalta, 
Montes 
et al. 

Runnin
g 

Trail 
Running 
(Downhi
ll) General 21 

3.80
% 

      

Biovotion 
AG Everion 

Havema
n et al. 

Walkin
g 

 
General 20 

16.0
0% 

 

22.9
0% 3.80% 

7.80
% 

  

Biovotion 
AG Everion 

Havema
n et al. Cycling 

 
General 20 

3.00
% 

 

27.1
0% 1.50% 

8.20
% 

  

Biovotion 
AG Everion 

Havema
n et al. 

Walkin
g 

 
General 20 

23.4
0% 

 

22.7
0% 3.00% 

8.80
% 

  

Biovotion 
AG Everion 

Havema
n et al. Cycling 

 
General 20 

2.90
% 

 

26.8
0% 1.30% 

9.10
% 

  

MediBioS
ense 

VitalPatc
h 

Havema
n et al. 

Walkin
g 

 
General 20 

13.4
0% 

 

8.30
% 

 

1.20
% 

  

MediBioS
ense 

VitalPatc
h 

Havema
n et al. Cycling 

 
General 20 

2.30
% 

 

6.70
% 

 

1.70
% 

  

Fitbit Charge 3 
Havema
n et al. 

Walkin
g 

 
General 20 

20.2
0% 

      

Fitbit Charge 3 
Havema
n et al. Cycling 

 
General 20 

6.10
% 

      

Oura Gen2 

Kristians
son et 
al. 

Walkin
g 

Slow 
Walking General 32 

 

14.90
% 
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Oura Gen2 

Kristians
son et 
al. 

Walkin
g 

Fast 
Walking General 32 

 

47.00
% 

     

Oura Gen2 

Kristians
son et 
al. 

Runnin
g 

Slow 
Running General 32 

 
6.00% 

     

Oura Gen2 

Kristians
son et 
al. 

Runnin
g 

Fast 
Running General 32 

 

81.70
% 

     

Oura Gen2 

Kristians
son et 
al. 

Runnin
g 

Sprintin
g General 32 

 

225.6
0% 

     

Fitbit Versa 
Jagim et 
al. 

Runnin
g 

Graded 
Exercise 
Test General 20 

11.6
0% 9.60% 

     

Polar Ignite 
Jagim et 
al. 

Runnin
g 

Graded 
Exercise 
Test General 20 

11.0
0% 

16.70
% 

     

Polar 
TeamPro 
Sensor 

Jagim et 
al. 

Runnin
g 

Graded 
Exercise 
Test General 20 

3.00
% 

13.80
% 

     

Fitbit Charge 4 
Jachyme
k, et al. 

Runnin
g 

Graded 
Exercise 
Test General 31 

10.1
9% 

      

Xiaomi 
Mi Band 
5 

Jachyme
k, et al. 

Runnin
g 

Graded 
Exercise 
Test General 31 

6.89
% 

      

Xiaomi 
Mi Band 
2 

Chow & 
Yang Mixed 

 
General 20 

7.69
% 

      

Xiaomi 
Mi Band 
2 

Chow & 
Yang Mixed 

 
Elderly 20 

6.04
% 

      

Garmin 
Vivosma
rt HR+ 

Chow & 
Yang Mixed 

 
General 20 

3.77
% 

      

Garmin 
Vivosma
rt HR+ 

Chow & 
Yang Mixed 

 
Elderly 20 

4.73
% 
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Apple 

Apple 
Watch 
Series 6 

Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

6.30
% 

      

Apple 

Apple 
Watch 
Series 7 

Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

4.00
% 

      

Apple 

Apple 
Watch 
Series 8 

Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

1.90
% 

      

Apple 

Apple 
Watch 
Series 9 

Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

5.70
% 

      

Apple 

Apple 
Watch 
Series 10 

Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

5.70
% 

      

Apple 

Apple 
Watch 
Series 11 

Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

3.00
% 

      

Apple 

Apple 
Watch 
Series 12 

Støve et 
al. 

Strengt
h 
Trainin
g 

Dumbbe
ll 
Exercise
s General 29 

10.4
0% 

      

Apple 

Apple 
Watch 
Series 13 

Støve et 
al. 

Strengt
h 
Trainin
g 

Dumbbe
ll 
Exercise
s General 29 

14.0
0% 

      

Apple 

Apple 
Watch 
Series 14 

Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

3.50
% 

      

Apple 

Apple 
Watch 
Series 15 

Støve et 
al. Strengt

h 
Machin
e 

General 29 
5.50
% 
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Trainin
g 

Exercise
s 

Apple 

Apple 
Watch 
Series 16 

Støve et 
al. 

Strengt
h 
Trainin
g 

Machin
e 
Exercise
s General 29 

3.10
% 

      

Apple 

Apple 
Watch 
Series 17 

Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

1.60
% 

      

Apple 

Apple 
Watch 
Series 18 

Støve et 
al. 

Strengt
h 
Trainin
g 

Bodywei
ght 
Exercise
s General 29 

11.9
0% 

      

Apple 

Apple 
Watch 
Series 19 

Støve et 
al. 

Strengt
h 
Trainin
g 

Bodywei
ght 
Exercise
s General 29 

13.2
0% 

      

Apple 

Apple 
Watch 
Series 20 

Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

2.80
% 

      

Whoop Band 3.0 
Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

12.1
0% 

      

Whoop Band 3.1 
Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

14.7
0% 

      

Whoop Band 3.2 
Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

5.60
% 

      

Whoop Band 3.3 
Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

9.90
% 

      



141 
 

Whoop Band 3.4 
Støve et 
al. 

Strengt
h 
Trainin
g 

Barbell 
Exercise
s General 29 

13.8
0% 

      

Whoop Band 3.5 
Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

8.10
% 

      

Whoop Band 3.6 
Støve et 
al. 

Strengt
h 
Trainin
g 

Dumbbe
ll 
Exercise
s General 29 

8.20
% 

      

Whoop Band 3.7 
Støve et 
al. 

Strengt
h 
Trainin
g 

Dumbbe
ll 
Exercise
s General 29 

12.6
0% 

      

Whoop Band 3.8 
Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

4.40
% 

      

Whoop Band 3.9 
Støve et 
al. 

Strengt
h 
Trainin
g 

Machin
e 
Exercise
s General 29 

12.5
0% 

      

Whoop 
Band 
3.10 

Støve et 
al. 

Strengt
h 
Trainin
g 

Machin
e 
Exercise
s General 29 

14.8
0% 

      

Whoop 
Band 
3.11 

Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

6.50
% 

      

Whoop 
Band 
3.12 

Støve et 
al. 

Strengt
h 
Trainin
g 

Bodywei
ght 
Exercise
s General 29 

10.8
0% 

      

Whoop 
Band 
3.13 

Støve et 
al. Strengt

h 
Bodywei
ght 

General 29 
13.3
0% 
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Trainin
g 

Exercise
s 

Whoop 
Band 
3.14 

Støve et 
al. 

Strengt
h 
Trainin
g 

Recover
y General 29 

6.20
% 

      

Apple 

Apple 
Watch 
Series 6 

Ho, 
Yang, & 
Li Cycling 

Light 
Cycling General 30 

1.00
% 

      

Apple 

Apple 
Watch 
Series 6 

Ho, 
Yang, & 
Li Cycling 

Modera
te 
Cycling General 30 

0.92
% 

      

Apple 

Apple 
Watch 
Series 6 

Ho, 
Yang, & 
Li Cycling 

Vigorou
s Cycling General 30 

0.91
% 

      

Garmin 
Forerun
ner 945 

Ho, 
Yang, & 
Li Cycling 

Light 
Cycling General 30 

1.16
% 

      

Garmin 
Forerun
ner 945 

Ho, 
Yang, & 
Li Cycling 

Modera
te 
Cycling General 30 

1.26
% 

      

Garmin 
Forerun
ner 945 

Ho, 
Yang, & 
Li Cycling 

Vigorou
s Cycling General 30 

1.39
% 

      

Goldwin 
C3fit IN-
pulse 

Hashim
oto et 
al. 

Walkin
g 

 
General 8 

0.49
% 

      

Goldwin 
C3fit IN-
pulse 

Hashim
oto et 
al. 

Runnin
g 

 
General 8 

0.67
% 

      

Apple 

Apple 
Watch 
Series 6 

Hajj-
Boutros 
et al. 

Walkin
g 

 
General 60 

2.30
% 

24.10
% 

     

Apple 

Apple 
Watch 
Series 6 

Hajj-
Boutros 
et al. 

Runnin
g 

 
General 60 

2.90
% 

14.90
% 
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Apple 

Apple 
Watch 
Series 6 

Hajj-
Boutros 
et al. 

Strengt
h 
Trainin
g 

 
General 60 

1.40
% 

20.00
% 

     

Apple 

Apple 
Watch 
Series 6 

Hajj-
Boutros 
et al. Cycling 

 
General 60 

2.20
% 

17.70
% 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. 

Walkin
g 

 
General 60 

5.50
% 

15.56
% 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. 

Runnin
g 

 
General 60 

4.00
% 

15.70
% 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. 

Strengt
h 
Trainin
g 

 
General 60 

3.50
% 

34.60
% 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. Cycling 

 
General 60 

5.70
% 

16.40
% 

     

Fitbit Sense 

Hajj-
Boutros 
et al. 

Walkin
g 

 
General 60 

4.40
% 

45.10
% 

     

Fitbit Sense 

Hajj-
Boutros 
et al. 

Runnin
g 

 
General 60 

3.80
% 

17.80
% 

     

Fitbit Sense 

Hajj-
Boutros 
et al. 

Strengt
h 
Trainin
g 

 
General 60 

5.30
% 

34.10
% 

     

Fitbit Sense 

Hajj-
Boutros 
et al. Cycling 

 
General 60 

5.20
% 

26.60
% 

     

Garmin fēnix 3 
HR 

Carrier 
et al. 

Runnin
g 

 
General 17 

     
8.05% 
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Garmin Forerun
ner 
735XT 

Damasc
eno et 
al. Mixed 

Light 
Exercise General 28 

2.90
% 

      

Garmin Forerun
ner 
735XT 

Damasc
eno et 
al. Mixed 

Modera
te 
Exercise General 28 

3.00
% 

      

Garmin Forerun
ner 
735XT 

Damasc
eno et 
al. Mixed 

Vigorou
s 
Exercise General 28 

2.90
% 

      

Polar Vantage 
V2 

Cosoli, 
Antogno
li, 
Veroli, & 
Scalise Mixed 

Walking 
and 
Running General 10 

8.29
% 

      

Polar Vantage 
V2 

Cosoli, 
Antogno
li, 
Veroli, & 
Scalise 

Swimm
ing 

 
General 10 

29.7
8% 

      

Garmin Venu Sq Cosoli, 
Antogno
li, 
Veroli, & 
Scalise Mixed 

Walking 
and 
Running General 10 

3.60
% 

      

Garmin Venu Sq Cosoli, 
Antogno
li, 
Veroli, & 
Scalise 

Swimm
ing 

 
General 10 

58.9
4% 

      

Polar Ignite Budig et 
al. 

Runnin
g 

 
General 36 

2.57
% 

      

Polar Ignite Budig et 
al. 

Swimm
ing 

 
General 36 

8.61
% 

      

Polar Ignite Budig et 
al. 

Swimm
ing 

 
General 36 

51.0
8% 

      

Garmin Forerun
ner 945 

Budig et 
al. 

Runnin
g 

 
General 36 

1.23
% 
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Garmin Forerun
ner 945 

Budig et 
al. 

Swimm
ing 

 
General 36 

3.29
% 

      

Garmin Forerun
ner 945 

Budig et 
al. 

Swimm
ing 

 
General 36 

55.3
2% 

      

Polar Polar H7 Baek, 
Ha, & 
Park 

Walkin
g 

 
General 15 

1.27
% 

      

Polar Polar H7 Baek, 
Ha, & 
Park 

Walkin
g 

Nordic 
Walking General 15 

1.28
% 

      

Fitbit Charge 2 Baek, 
Ha, & 
Park 

Walkin
g 

 
General 15 

3.73
% 

      

Fitbit Charge 2 Baek, 
Ha, & 
Park 

Walkin
g 

Nordic 
Walking General 15 

5.73
% 

      

Apple Apple 
Watch 
Series 2 

Støve et 
al. Cycling 

Light 
Cycling 

General 30 
4.90
% 

      

Apple Apple 
Watch 
Series 2 

Støve et 
al. Cycling 

Modera
te 
Cycling General 30 

3.10
% 

      

Apple Apple 
Watch 
Series 2 

Støve et 
al. Cycling 

Modera
te 
Cycling General 30 

2.30
% 

      

Apple Apple 
Watch 
Series 2 

Støve et 
al. 

Walkin
g 

 

General 30 
3.60
% 

      

Apple Apple 
Watch 
Series 2 

Støve et 
al. 

Runnin
g 

 

General 30 
3.40
% 

      

Apple Apple 
Watch 
Series 2 

Støve et 
al. 

Runnin
g 

 

General 30 
3.60
% 

      

Garmin Forerun
ner 235 

Støve et 
al. Cycling 

Light 
Cycling General 30 

26.9
0% 
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Garmin Forerun
ner 235 Støve et 

al. Cycling 

Modera
te 
Cycling General 30 

55.7
0% 

      

Garmin Forerun
ner 235 Støve et 

al. Cycling 

Modera
te 
Cycling General 30 

78.1
0% 

      

Garmin Forerun
ner 235 

Støve et 
al. 

Walkin
g 

 

General 30 
9.80
% 

      

Garmin Forerun
ner 235 

Støve et 
al. 

Runnin
g 

 

General 30 
5.60
% 

      

Garmin Forerun
ner 235 

Støve et 
al. 

Runnin
g 

 

General 30 
4.60
% 

      

Fitbit Charge 4 Nissen 
et al. Mixed 

 
General 23 

9.76
% 

      

Fitbit Charge 4 Nissen 
et al. 

Walkin
g 

Slow 
Walking General 23 

8.12
% 

      

Fitbit Charge 4 Nissen 
et al. 

Walkin
g 

Fast 
Walking General 23 

6.36
4 

      

Fitbit Charge 4 Nissen 
et al. Stairs 

 
General 23 

7.61
% 

      

Fitbit Charge 4 

Nissen 
et al. 

Strengt
h 
Trainin
g 

Bodywei
ght 
Exercies General 23 

11.9
8% 

      

Samsung Galaxy 
Watch 
Active 2 

Nissen 
et al. Mixed 

 
General 23 

9.42
% 

      

Samsung Galaxy 
Watch 
Active 2 

Nissen 
et al. 

Walkin
g 

Slow 
Walking General 23 

9.05
% 

      

Samsung Galaxy 
Watch 
Active 2 

Nissen 
et al. 

Walkin
g 

Fast 
Walking General 23 

6.29
% 
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Samsung Galaxy 
Watch 
Active 2 

Nissen 
et al. Stairs 

 
General 23 

6.16
% 

      

Samsung Galaxy 
Watch 
Active 2 Nissen 

et al. 

Strengt
h 
Trainin
g 

Bodywei
ght 
Exercies General 23 

5.51
% 

      
Reported mean absolute percentage errors (MAPEs) from each study reviewed. 
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Table A.2. Compiled Pearson Correlation Results 

Manufactu
rer Model Author 

Exercise 
Modalit
y 

Exercise 
Subgrou
p 

Populati
on 

Samp
le 
Size HR EE 

VO2m
ax RR VO2 

Cor
e 
Bod
y 
Tem
p 

Fluid 
Loss 

SpectroPh
on 

Dehydrati
on Body 
Monitor 
(DBM) 
Paired 
with 
Samsung 
Gear S2 

Rodin et 
al. Walking 

 
General 240 

      

0.93
14 

SpectroPh
on 

Dehydrati
on Body 
Monitor 
(DBM) 
Paired 
with 
Samsung 
Gear Fit2 

Rodin et 
al. Walking 

 
General 240 

      

0.92
59 

Fitbit Charge 2 
O'Driscoll 
et al. Walking 

 
General 59 0.23 0.39 

     

Fitbit Charge 3 
O'Driscoll 
et al. Walking 

Incline 
Walking General 59 0.29 0.59 

     

Fitbit Charge 4 
O'Driscoll 
et al. Running 

 
General 49 0.66 0.7 

     

Fitbit Charge 5 
O'Driscoll 
et al. Running 

Incline 
Running General 30 0.81 0.81 

     

Fitbit Charge 6 
O'Driscoll 
et al. Cycling 

Light 
Cycling General 59 0.55 0.38 

     

Fitbit Charge 7 
O'Driscoll 
et al. Cycling 

Moderat
e Cycling General 58 0.62 0.37 

     

Sensewear 
Armband 
Mini 

O'Driscoll 
et al. Walking 

 
General 59 

 
0.62 
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Sensewear 
Armband 
Mini 

O'Driscoll 
et al. Walking 

Incline 
Walking General 59 

 
0.56 

     

Sensewear 
Armband 
Mini 

O'Driscoll 
et al. Running 

 
General 49 

 
0.69 

     

Sensewear 
Armband 
Mini 

O'Driscoll 
et al. Running 

Incline 
Running General 30 

 
0.71 

     

Sensewear 
Armband 
Mini 

O'Driscoll 
et al. Cycling 

Light 
Cycling General 59 

 
0.7 

     

Sensewear 
Armband 
Mini 

O'Driscoll 
et al. Cycling 

Moderat
e Cycling General 58 

 
0.41 

     

Polar OH1 
Muggeri
dge et al. Cycling 

Light 
Cycling General 20 

0.98
3 

      

Polar OH2 
Muggeri
dge et al. Cycling 

Vigorous 
Cycling General 20 

0.98
5 

      

Polar OH3 
Muggeri
dge et al. Running 

 
General 20 0.99 

      

Polar OH4 
Muggeri
dge et al. Running 

Intense 
Cycling General 20 

0.79
4 

      

Polar OH5 
Muggeri
dge et al. Running Sprinting General 20 

0.72
2 

      

Fitbit Charge 3 
Muggeri
dge et al. Cycling 

Light 
Cycling General 20 

0.27
2 

      

Fitbit Charge 4 
Muggeri
dge et al. Cycling 

Vigorous 
Cycling General 20 

0.18
3 

      

Fitbit Charge 5 
Muggeri
dge et al. Running 

 
General 20 

0.87
9 

      

Fitbit Charge 6 
Muggeri
dge et al. Running 

Intense 
Cycling General 20 0.39 

      

Fitbit Charge 7 
Muggeri
dge et al. Running Sprinting General 20 

0.34
8 

      

Oura Gen2 
Kristianss
on et al. Running 

 
General 32 

 
0.93 
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Fitbit Versa 
Jagim et 
al. Mixed 

Walking, 
running General 20 0.86 0.93 

     

Polar Ignite 
Jagim et 
al. Mixed 

Walking, 
running General 20 0.83 0.54 

     

Polar 
TeamPro 
Sensor 

Jagim et 
al. Mixed 

Walking, 
running General 20 0.95 0.85 

     

Apple 

Apple 
Watch 
Series 6 

Støve et 
al. 

Strengt
h 
Training 

Barbell 
Exercises General 29 

0.83
9 

      

Apple 

Apple 
Watch 
Series 6 

Støve et 
al. 

Strengt
h 
Training 

Barbell 
Exercises General 29 

0.83
2 

      

Apple 

Apple 
Watch 
Series 6 

Støve et 
al. 

Strengt
h 
Training 

Machine 
Exercises General 29 

0.95
3 

      

Apple 

Apple 
Watch 
Series 6 

Støve et 
al. 

Strengt
h 
Training 

Bodywei
ght 
Exercises General 29 

0.58
1 

      

Whoop Band 3.0 
Støve et 
al. 

Strengt
h 
Training 

Barbell 
Exercises General 29 

0.76
3 

      

Whoop Band 3.1 
Støve et 
al. 

Strengt
h 
Training 

Barbell 
Exercises General 29 

0.60
2 

      

Whoop Band 3.3 
Støve et 
al. 

Strengt
h 
Training 

Bodywei
ght 
Exercises 

 
29 

0.49
45 

      

Garmin 
Forerunn
er 230 

Snyder, 
Willough
by, & 
Smith Running 

 
Male 22 

  
0.762 

    

Garmin 
Forerunn
er 230 

Snyder, 
Willough
by, & 
Smith Running 

 
Female 22 

  
0.801 
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Vital Scout 
Hopkins 
et al. Cycling 

 
General 12 

 

0.77
6 

 

0.74
4 

0.77
7 

  

Apple Watch 6 

Hajj-
Boutros 
et al. Walking 

 
General 60 0.95 0.75 

     

Apple Watch 6 

Hajj-
Boutros 
et al. Running 

 
General 60 0.84 0.86 

     

Apple Watch 6 

Hajj-
Boutros 
et al. 

Strengt
h 
Training 

 
General 60 0.98 0.74 

     

Apple Watch 6 

Hajj-
Boutros 
et al. Cycling 

 
General 60 0.93 0.72 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. Walking 

 
General 60 0.75 0.69 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. Running 

 
General 60 0.88 0.74 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. 

Strengt
h 
Training 

 
General 60 0.96 0.71 

     

Polar 
Vantage 
V 

Hajj-
Boutros 
et al. Cycling 

 
General 60 0.78 0.6 

     

Fitbit Sense 

Hajj-
Boutros 
et al. Walking 

 
General 60 0.86 0.72 

     

Fitbit Sense 

Hajj-
Boutros 
et al. Running 

 
General 60 0.85 0.88 

     

Fitbit Sense 

Hajj-
Boutros 
et al. 

Strengt
h 
Training 

 
General 60 0.88 0.61 
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Fitbit Sense 

Hajj-
Boutros 
et al. Cycling 

 
General 60 0.89 0.69 

     

Hexoskin 
Smart 
Shirt 

Haddad 
et al. Running 

 
General 9 0.79 

      

greenTEG CORE 
Goods et 
al. Hockey 

Hockey 
Practice Athletes 11 

     
0.89 

 

greenTEG CORE 
Goods et 
al. Hockey 

Hockey 
Match Athletes 8 

     
0.81 

 

greenTEG CORE 
Goods et 
al. Hockey 

Hockey 
Match Athletes 7 

     
0.88 

 

greenTEG CORE 
Goods et 
al. Hockey 

Hockey 
Match Athletes 6 

     
0.84 

 

Apple 

Apple 
Watch 
Series 4 

Düking et 
al. Mixed 

Walking, 
running General 25 0.97 0.71 

     

Apple 

Apple 
Watch 
Series 4 

Düking et 
al. Mixed 

Walking, 
running General 25 0.97 0.71 

     

Apple 

Apple 
Watch 
Series 4 

Düking et 
al. Mixed 

Walking, 
running General 25 0.99 0.8 

     

Apple 

Apple 
Watch 
Series 4 

Düking et 
al. Mixed 

Walking, 
running General 25 0.94 0.95 

     

Apple 

Apple 
Watch 
Series 4 

Düking et 
al. Mixed 

Walking, 
running General 25 0.85 0.93 

     

Apple 

Apple 
Watch 
Series 4 

Düking et 
al. Mixed 

Walking, 
running General 25 0.92 0.66 

     

Apple 

Apple 
Watch 
Series 4 

Düking et 
al. Mixed 

Walking, 
running General 25 0.95 0.75 
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Polar 
Vantage 
V 

Düking et 
al. Mixed 

Walking, 
running General 25 0.89 0.67 

     

Polar 
Vantage 
V 

Düking et 
al. Mixed 

Walking, 
running General 25 0.91 0.49 

     

Polar 
Vantage 
V 

Düking et 
al. Mixed 

Walking, 
running General 25 0.88 0.72 

     

Polar 
Vantage 
V 

Düking et 
al. Mixed 

Walking, 
running General 25 0.86 0.95 

     

Polar 
Vantage 
V 

Düking et 
al. Mixed 

Walking, 
running General 25 0.89 0.95 

     

Polar 
Vantage 
V 

Düking et 
al. Mixed 

Walking, 
running General 25 0.75 0.85 

     

Polar 
Vantage 
V 

Düking et 
al. Mixed 

Walking, 
running General 25 0.88 0.72 

     

Garmin fēnix 5 
Düking et 
al. Mixed 

Walking, 
running General 25 0.85 0.2 

     

Garmin fēnix 5 
Düking et 
al. Mixed 

Walking, 
running General 25 0.83 0.21 

     

Garmin fēnix 5 
Düking et 
al. Mixed 

Walking, 
running General 25 0.63 0.57 

     

Garmin fēnix 5 
Düking et 
al. Mixed 

Walking, 
running General 25 0.82 0.84 

     

Garmin fēnix 5 
Düking et 
al. Mixed 

Walking, 
running General 25 0.82 0.91 

     

Garmin fēnix 5 
Düking et 
al. Mixed 

Walking, 
running General 25 0.58 0.21 

     

Garmin fēnix 5 
Düking et 
al. Mixed 

Walking, 
running General 25 0.77 0.45 

     

Fitbit Versa 
Düking et 
al. Mixed 

Walking, 
running General 25 0.57 0.88 

     

Fitbit Versa 
Düking et 
al. Mixed 

Walking, 
running General 25 0.54 0.78 
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Fitbit Versa 
Düking et 
al. Mixed 

Walking, 
running General 25 0.52 0.74 

     

Fitbit Versa 
Düking et 
al. Mixed 

Walking, 
running General 25 0.82 0.76 

     

Fitbit Versa 
Düking et 
al. Mixed 

Walking, 
running General 25 0.68 0.92 

     

Fitbit Versa 
Düking et 
al. Mixed 

Walking, 
running General 25 0.53 0.42 

     

Fitbit Versa 
Düking et 
al. Mixed 

Walking, 
running General 25 0.65 0.72 

     

Garmin Forerunn
er 735XT 

Damasce
no et al. Mixed 

Light 
Exercise General 28 0.87 

      

Garmin Forerunn
er 735XT Damasce

no et al. Mixed 

Moderat
e 
Exercise General 28 0.81 

      

Garmin Forerunn
er 735XT 

Damasce
no et al. Mixed 

Vigorous 
Exercise General 28 0.72 

      

Xiaomi Mi Band 
4 

de la 
Casa 
Pérez et 
al. Stairs 

 
General 46 

0.46
8 

      

Xiaomi Mi Band 
5 

de la 
Casa 
Pérez et 
al. Stairs 

 
General 46 

0.79
7 

      

Xiaomi Mi Band 
6 

de la 
Casa 
Pérez et 
al. Stairs 

 
General 46 0.75 

      

Xiaomi Mi Band 
7 

de la 
Casa 
Pérez et 
al. Stairs 

 
General 46 

0.68
8 

      

Xiaomi Mi Band 
8 de la 

Casa 
Stairs 

 
General 46 

0.71
5 
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Pérez et 
al. 

Garmin fēnix 3 
HR 

Carrier et 
al. Running 

 
General 17 

  
0.917 

    

BodyMedi
a 

SenseWe
ar Pro3 
(Band 
Only) 

Costello 
et al. Rugby 

Rugy 
Pre-
Season Athletes 6 

 
0.61 

     

BodyMedi
a 

SenseWe
ar Pro3 
(Band 
Only) 

Costello 
et al. Rugby 

Rugy In-
Season Athletes 7 

 
0.79 

     

BodyMedi
a 

SenseWe
ar Pro3 
(Band + 
Optimeye
) 

Costello 
et al. Rugby 

Rugy 
Pre-
Season Athletes 6 

 
0.68 

     

BodyMedi
a 

SenseWe
ar Pro3 
(Band + 
Optimeye
) 

Costello 
et al. Rugby 

Rugy In-
Season Athletes 7 

 
0.83 

     

Polar Vantage 
V2 

Cosoli, 
Antognol
i, Veroli, 
& Scalise Mixed 

Walking, 
Running General 10 0.83 

      

Polar Vantage 
V2 

Cosoli, 
Antognol
i, Veroli, 
& Scalise 

Swimmi
ng 

 
General 10 0.2 

      

Garmin Venu Sq Cosoli, 
Antognol
i, Veroli, 
& Scalise Mixed 

Walking, 
Running General 10 0.95 

      

Garmin Venu Sq Cosoli, 
Antognol
i, Veroli, 
& Scalise 

Swimmi
ng 

 
General 10 0.13 
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Apple Watch 6 Alfonso 
et al. Walking 

 
General 18 

0.99
8 

      

Polar Vantage 
M2 

Alfonso 
et al. Walking 

 
General 18 

0.65
2 

      

Fitbit Charge 4 Nissen et 
al. Walking 

Slow 
Walking General 23 

0.18
8 

      

Fitbit Charge 4 Nissen et 
al. Walking 

Fast 
Walking General 23 

0.40
8 

      

Fitbit Charge 4 Nissen et 
al. Stairs Stairs General 23 

0.80
3 

      

Fitbit Charge 4 
Nissen et 
al. 

Strengt
h 
Training 

Bodywei
ght 
Exercise General 23 

0.33
5 

      

Samsung Galaxy 
Watch 
Active 2 

Nissen et 
al. Walking 

Slow 
Walking General 23 0.24 

      

Samsung Galaxy 
Watch 
Active 2 

Nissen et 
al. Walking 

Fast 
Walking General 23 

0.51
6 

      

Samsung Galaxy 
Watch 
Active 2 

Nissen et 
al. Stairs Stairs General 23 

0.81
2 

      

Samsung Galaxy 
Watch 
Active 2 

Nissen et 
al. 

Strengt
h 
Training 

Bodywei
ght 
Exercise General 23 

0.66
8 

      
Reported Pearson correlation coefficients from each study reviewed. 
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Table A.3. Individual Condition Test Results for Garmin Watch 

 

fēnix 
Anterior 
Normoxia 

Criterion 
Anterior 
Normoxia 

fēnix 
Posterior 
Normoxia 

Criterion 
Posterior 
Normoxia 

fēnix 
Anterior 
Hypoxia 

Criterion 
Anterior 
Hypoxia 

fēnix 
Posterior 
Hypoxia 

Criterion 
Posterior 
Hypoxia 

Mean (%) 95.67% 97.10% 95.74% 97.05% 94.90% 88.00% 95.18% 85.90% 

Standard 
Deviation 

2.35% 1.74% 1.41% 2.24% 0.32% 8.29% 1.66% 9.55% 

MAPE  1.80%  2.95%  6.93%  6.92% 

Pearson 
Correlation 

 0.44  -0.47  0.00  0.29 

Lin’s 
Concordance 

 0.37  -0.33  0.00  0.10 

Bland-
Altman Bias 

 -1.08 

(-2.53, 
0.36) 

 -1.37 

(-2.95, 
0.22) 

 4.90 

(0.56, 
9.24) 

 4.36 

(0.30, 
8.43) 

TOST Test 
(Upper) 

 0.003  < 0.001  0.82  0.76 

TOST Test 
(Lower) 

 0.47  0.36  0.001  0.001 

Validity statistics for each individual condition (normoxia/hypoxia, anterior/posterior) for the Garmin watch 

compared to the criterion. 
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● Gel Electrophoresis 

● Graded Treadmill and Cycle Ergometer 

Exercise Testing (VO2max) 

● Hawkin Dynamics Force Plate Testing 

● Hematocrit and Hemoglobin Testing 

● LabQuest 

● Lactate Threshold Testing 

● ParvoMedics Metabolic System 

● PCR Gene Amplification 

● Phlebotomy 

● RNA Extraction and Purification 

● Skinfold Body Composition Testing 

● Submaximal & Field-Based Aerobic Capacity 

Testing 

● Wingate Testing 
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Honors & Awards 

Professional Organizations 

● Graduate Student Research Competition Finalist, Southwest Chapter of the American College of 

Sports Medicine Annual Meeting, Oct., 2023. 

University of Nevada, Las Vegas 

● Western Association of Graduate Schools Nominee 

○ Department Nominee (Kinesiology and Nutrition Sciences) for Western Association of 

Graduate Schools (WAGS) Outstanding Master’s Thesis Award for the “Distinguished 

Master’s Thesis Award STEM” Category, Jul. 2021 

○ College Nominee (School of Integrated Health Sciences) for Western Association of 

Graduate Schools (WAGS) Outstanding Master’s Thesis Award for the “Distinguished 

Master’s Thesis Award STEM” Category, Aug. 2021 

○ University Nominee (UNLV) for Western Association of Graduate Schools (WAGS) 

Outstanding Master’s Thesis Award for the “Distinguished Master’s Thesis Award STEM” 

Category, Nov. 2021 

● 2nd Place Winner for Poster Presentation Group, GPSA Research Forum, Apr. 2021 

Utah Valley University 

● Graduated with Distinction (Cum Laude), Aug. 2017 

● Dean’s List 2014 to 2017 

 

Service & Volunteer Work 

● Peer reviewer for scientific journals: 

o ACSM’s Health & Fitness Journal - Jan. 2024 to Present 
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o Topics in Exercise Science and Kinesiology - Oct. 2023 to Present 

o Sports Medicine - Jul. 2023 to Present 

o Frontiers in Digital Health - Mar. 2022 to Present 

o International Journal of Exercise Science - Dec. 2019 to Present 

● Student Leadership Committee Member, UNLV Sport Innovation Institute - Aug. 2023 - Present 

● UNLV Diversity, Equity, Inclusion, & Justice Advisory Board Member, School of Integrated Health 

Sciences Student Representative - Aug. 2022 - Present 

● Las Vegas Golden Knights performance and physiological testing technician - Aug. 2022, Jul. 2023 

● Las Vegas Lights FC performance and physiological testing technician - Jan. 2020 

 

Scientific Presentations 

Oral Presentations 

1. Carrier, B.; Bunn, J.; Reece, J.D.; Aguilar, C.D.; Eschbach, C.; Navalta, J.W. "The Risk of Bias in 

Validity and Reliability Studies Testing Physiological Variables using Consumer-Grade Wearable 

Technology: A Systematic Review and WEAR-BOT Analysis," Int. J. Exerc. Sci.: Conf. Proc. 2023, 

14(3), Article 6. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss3/6 

○ Presented as a finalist in the Graduate Student Research Competition. 

2. Carrier, B.; Helm, M.M.; Davis, D.W.; Cruz, K.; Barrios, B.; Navalta, J.W., FACSM. "Validation of 

VO2max and Lactate Threshold Estimates in Wearable Technology in High-Level Runners," 

American College of Sports Medicine, May 2022, San Diego, CA, USA. 

○ Presented as a thematic poster presentation. 
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3. Carrier, B.; Navalta, J.W. "Understanding Heart Rate Monitor Technology, Validity, and 

Appropriate Use-Cases in Wearable Technology During Exercise," University of Nevada, Las Vegas 

Annual Graduate and Professional Student Research Forum, Apr. 2022, Las Vegas, NV, USA 

○ Presented as a pre-recorded video presentation. 

4. Symposium: Wearable Activity Monitors. Introduction of student presenters, Navalta, J.W.; The 

evolution of wearable devices, Salatto, R.W.; The current state of technology devices in applied 

settings, Barrios, B.; The needed considerations in current testing models, Jolley, B.D.; The future 

of wearable exercise testing, Carrier, B. Virtual Annual Meeting of the Southwest American 

College of Sports Medicine, 2020 

○ Presented as a pre-recorded video presentation. 

5. Carrier, B.; Salatto, R.W.; Manning, J.W.; Barrios, B.; Sertic, J.V.L.; Davis, D.W.; Cater, P.C.; 

McGinnis, G.; DeBeliso, M.; Navalta, J.W. "Does Acute Beta-Alanine Supplementation Improve 

Performance, Rating of Perceived Exertion and Heart Rate During Hiking?" American College of 

Sports Medicine, May 2020, San Francisco, CA, USA 

○ Presented as a thematic poster presentation. 

 

Poster Presentations 

1. Carrier, B.; Salatto, R.W.; Davis, D.W.; Sertic, J.V.L.; Barrios, B.; Cater, P.; Navalta, J.W., "Assessing 

the Validity of Several Heart Rate Monitors in Wearable Technology While Mountain Biking," 

Southwest Am. Coll. Sports Med., Oct. 2021, Costa Mesa, CA, USA 

2. Carrier, B.; Cruz, K.; Farmer, H.; Navalta, J., "Validation of the Lactate Threshold Estimate from 

the Garmin fenix 6 Fitness Tracker," Am. Coll. Sports Med., Jun. 2021, Washington D.C., USA 

Presented as a digital poster. 



170 
 

3. Carrier, B.; Cruz, K.; Farmer, H.; Navalta, J., "Validation of the Lactate Threshold Estimate from 

the Garmin fenix 6 Fitness Tracker," Univ. Nevada, Las Vegas Ann. Grad. Prof. Stud. Res. Forum, 

Apr. 2021, Las Vegas, NV, USA 

4. Carrier, B.; Trainor, T.; Jolley, B.W.; Navalta, J.W.; Creer, A., "Validation of the Humon Hex Lactate 

Threshold Estimate," Southwest Am. Coll. Sports Med., Oct. 2019, Costa Mesa, CA, USA 

5. Carrier, B.; Holmes, T.; Williams, L.; Dahl, S.; Weber, L.; Creer, A.; Standifird, T., "Validation of 

Garmin Fitness Tracker Biomechanics," Am. Coll. Sports Med., May 2019, Orlando, FL, USA 

6. Carrier, B.; Richards, S.; Hancock, C.; Brooks, L., "Who Brought the Microbes? Investigating the 

source of fecal veneer on rock climbing holds," Intermountain Am. Soc. Microbiol., Apr. 2019, 

Provo, UT, USA 

7. Carrier, B.; Holmes, T.; Williams, L.; Dahl, S.; Weber, L.; Creer, A.; Standifird, T., "Validation of 

Garmin Fitness Tracker Biomechanics," Southwest Am. Coll. Sports Med., Oct. 2018, Costa Mesa, 

CA, USA 

8. Carrier, B.; Ferguson, D.; Ogden T.H., "Molecular Phylogeny of Baetidae (Ephemeroptera)," 

Evolution 2017, June 2017, Portland, OR, USA 

9. Carrier, B.; Ferguson, D.; Ogden T.H., "Molecular Phylogeny of Baetidae (Ephemeroptera)," Utah 

Conf. Undergrad. Res., Feb. 2017, Orem, UT, USA 

10. Carrier, B.; Ogden T.H., "Phylogenetic Relationships of Mayfly Family Baetidae (Ephemeroptera)," 

Utah Conf. Undergrad. Res., Feb. 2016, Salt Lake City, UT, USA 

 

Abstracts 

Submitted Abstracts 
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1. Cross, C.L.; Carrier, B.; Alcala, M.; “Soil-transmitted helminths in the United States: Using Big 

Data to characterize patients and analyze disease trends”. Submitted to American Society of 

Parasitologists National Meeting, Mar. 2024 

 

Published Peer Reviewed Abstracts 

1. Carrier, B.; Bunn, J.; Reece, J.D.; Aguilar, C.D.; Eschbach, C.; Navalta, J.W.; “The Risk of Bias in 

Validity and Reliability Studies Testing Physiological Variables using Consumer-Grade Wearable 

Technology: A Systematic Review and WEAR-BOT Analysis”, Int. J. Exerc. Sci.: Conf. Proc. 2023, 

14(3), Article 6. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss3/6 

2. Carballo, T.; Blank, M.; Carrier, B.; Cruz, S.; Bovell, J.; Davis, D.; Sweder, T.; Malek, E.; Zarei, S.; 

Navalta, J.; “Does hand use affect metabolic measures during pickleball”. Int. J. Exercise Sci. Conf. 

Proc. 2023, 14(1), 123. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss3/123 

3. Blank, M.; Davis, D.; Carrier, B.; Carballo, T.; Bovell, J.; Sweder, T.; Cruz, S.; Yu, Z.; Zarei, S.; 

Navalta, J.; “Evaluation of caloric expenditure metrics of Garmin Instinct wearable technology 

devices during pickleball:. Int. J. Exercise Sci. Conf. Proc. 2023, 14(3), 118. Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss3/118 

4. Zarei, S.; Cruz, S.; Carballo, T.; Carrier, B.; Davis, D.; Bovell, J.; Sweder, T.; Blank, M.; Malek, E.; 

Navalta, J.; “Validity and reliability of the Garmin Instinct in measuring heart rate during 

pickleball”. Int. J. Exercise Sci. Conf. Proc. 2023, 14(3), 134. Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss3/134 

5. Cruz, S.; Carballo, T.; Davis, D.; Carrier, B.; Bovell, J.; Blank, M.; Sweder, T.; Yu, Z.; Zarei, S.; 

Navalta, J.; “Does handedness impact pulmonary measures during pickleball?” Int. J. Exercise Sci. 

Conf. Proc. 2023, 14(3), 28. 
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6. Bovell, J.; Davis, D.; Carrier, B.; Zarei, S.; Carballo, T.; Blank, M.; Sweder, T.; Cruz, S.; Malek, E.; 

Navalta, J.; “Validity and reliability of the Polar OH1 biceps-band heart rate monitor during 

pickleball”. Int. J. Exercise Sci. Conf. Proc. 2023, 14(3), 131. Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss3/131 

7. Ziegler, K. K.; McKenzie, A.; Ziegler, W.; Maxwell, S.; Carrier, B.; Aguilar, C.; Routsis, A.; Thornton, 

T.; Bovell, J.; Zarei, S.; Green, D.; Lavin, K. L. A.; Hawkes, A.; Cowley, J.; Funk, M.; Navalta, J. W. 

FACSM; Lawrence, M. M. Perceived Fatigue and Physical Activity Enjoyment Following Indoor 

and Outdoor Moderately Heavy Superset Resistance Training. Int. J. Exercise Sci. Conf. Proc. 2023, 

14, 144. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss3/144. 

8. Ziegler, W. F.; Carrier, B.; Aguilar, C. D.; Pearce, D.; Graffius, J. M.; Ellingford, B.; Fullmer, W.; 

Cowley, J.; Funk, M.; Bodell, N.; Navalta, J. W. FACSM; Lawrence, M. M.; “Repetition Count 

Concurrent Validity of Various Garmin Wrist Watches During Light Circuit Resistance Training”. 

Int. J. Exercise Sci. Conf. Proc. 2023, 14, 143. Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss3/143 

9. Maxwell, S. M.; Carrier, B.; Aguilar, C.; Ziegler, K.; McKenzie, A.; Ziegler, W.; Routsis, A.; Thornton, 

T.; Zarei, S.; Green, D.; Bovell, J.; Lavin, K. A.; Hawkes, A.; Cowley, J. C.; Funk, M.; Navalta, J. W. 

FACSM; Lawrence, M. M.; “Rating of Perceived Exertion, Average Heart Rate, and Energy 

Expenditure Following Indoor and Outdoor Moderately Heavy Superset Resistance Training”. Int. 

J. Exercise Sci. Conf. Proc. 2023, 14, 139.  Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss3/139 

10. Thorton, T.; Ziegler, W.; Maxwell, S.; McKenzie, A.; Routsis, A.; Ziegler, K.; Carrier, B.; Aguilar, C.D.; 

Green, D.; Bovell, J.; Lavin, K.L.A.; Zarei, S.; Cowley, J.; Hawkes, A.; Funk, M.; Navalta, J.W.; 

Lawrence, M.M. "Heart Rate and Energy Expenditure Concurrent Validity of Identical Garmin 
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Wrist Watches During Moderately Heavy Resistance Training" Southwest Am. Coll. Sports Med., 

Oct. 2023, Costa Mesa, CA, USA 

11. Graffius, J.; Pearce, D.; Ellingford, B.; Carrier, B.; Aguilar, C.; Fullmer, W.; Ziegler, W.; Gil, D.; Torres, 

M.; Davis, D.; Peck, M.; Vargas, N.; Weyers, B.; Carlos, K.; Bodell, N.; Manning, J.; Funk, M.; 

DeBeliso, M.; Navalta, J.; Lawrence, M. "Garmin wrist watches heart rate and energy expenditure 

validity during light circuit resistance training" Med. Sci. Sports Exercise 2023, 55(9S), 1185. 

https://www.doi.org/10.1249/01.mss.0000983372.14302.26 

12. Pearce, D.; Graffius, J.; Ellingford, B.; Carrier, B.; Aguilar, C.; Gil, D.; Torres, M.; Davis, D.; Ziegler, 

W.; Fullmer, W.; Peck, M.; Vargas, N.; Weyers, B.; Carlos, K.; Bodell, N.; Manning, J.; Cowley, J.; 

Funk, M.; Navalta, J.; Lawrence, M. "Heart rate and energy expenditure validity and reliability in 

Garmin Instinct watches during resistance training," Med. Sci. Sports Exercise 2023, 55(9S), 

1186. https://www.doi.org/10.1249/01.mss.0000983376.69328.37 

13. Torres, M.; Pearce, D.; Graffius, J.; Ellingford, B.; Gil, D.; Carrier, B.; Aguilar, C.; Ziegler, W.; 

Fullmer, W.; Weyers, B.; Peck, M.; Vargas, N.; Carlos, K.; Davis, D.; Funk, M.; Lawrence, M.; 

Manning, J.; Navalta, J.; Bodell, N. "Outdoor resistance training decreases Rate of Perceived 

Exertion during light-intensity resistance training," Med. Sci. Sports Exercise 2023, 55(9S), 1820. 

https://www.doi.org/10.1249/01.mss.0000985576.76514.c9 

14. Pearce, D.; Graffius, J.M.; Ellingford, B.; Carrier, B.; Aguilar, C.D.; Gil, D.; Torence, M.; Davis, D.W.; 

Ziegler, W.; Fullmer, W.; Peck, M.; Vargas, N.R.; Weyers, B.; Carlos, K.; Bodell, N.; Manning, J.W.; 

Navalta, J.W.; DeBeliso, M.; Funk, M.; Lawrence, M.M. "Concurrent Validity and Reliability of 

Average Heart Rate and Energy Expenditure of Identical Garmin Instinct Watches During Low 

Intensity Resistance Training," Southwest Am. Coll. Sports Med., Oct. 2022, Costa Mesa, CA, USA 

15. Graffius, J.M.; Pearce, D.; Ellingford, B.; Carrier, B.; Aguilar, C.D.; Fullmer, W.; Ziegler, W.; Gil, D.; 

Torence, M.; Davis, D.W.; Peck, M.; Vargas, N.R.; Weyers, B.; Carlos, K.; Bodell, N.; Manning, J.W.; 
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DeBeliso, M.; Navalta, J.W.; Funk, M.; Lawrence, M.M. "Average Heart Rate and Energy 

Expenditure Validity of Garmin Vivoactive 3 and Fenix 6 Wrist Watches During Light Circuit 

Resistance Training," Southwest Am. Coll. Sports Med., Oct. 2022, Costa Mesa, CA, USA 

16. Carlos, K.; Davis, D.W.; Carrier, B.; Perdomo Rodriguez, J.; Vargas, N.R.; Malek, E.M.; Weyers, B.; 

Navalta, J.W. "The Validity of Bicep Located Heart Rate Monitors During Running," Southwest 

Am. Coll. Sports Med., Oct. 2022, Costa Mesa, CA, USA 

17. Perdomo Rodriguez, J.; Davis, D.W.; Vargas, N.R.; Malek, E.M.; Carrier, B.; Carlos, K.; Weyers, B.; 

Navalta, J.W. "Comparing Exercise Intensity as a Percentage of the Age-Estimated Heart Rate Max 

Among Walking, Jogging, and Skipping," Southwest Am. Coll. Sports Med., Oct. 2022, Costa 

Mesa, CA, USA 

18. Weyers, B.; Davis, D.W.; Vargas, N.R.; Perdomo Rodriguez, J.; Malek, E.M.; Carlos, K.; Carrier, B.; 

Navalta, J.W. "Determining Validity and Reliability of Caloric Expenditure Recorded by Wearable 

Technology While Walking and Running," Southwest Am. Coll. Sports Med., Oct. 2022, Costa 

Mesa, CA, USA 

19. Vargas, N.R.; Carrier, B.; Davis, D.W.; Rodriguez, J.P.; Malek, E.M.; Weyers, B.; Carlos, K.; Navalta, 
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20. Carrier, B.; Helm, M.M.; Davis, D.W.; Cruz, K.; Barrios, B.; Navalta, J.W. "Validation of VO2max and 

Lactate Threshold Estimates in Wearable Technology in High-Level Runners," Am. Coll. Sports 

Med., May 2022, San Diego, CA, USA 

21. Cruz, K.; Davis, D.W.; Carrier, B.; Navalta, J.W. "Validity of the K5 Wearable Metabolic System 

during the YMCA Bench Press Test - A Pilot Study," Am. Coll. Sports Med., May 2022, San Diego, 

CA, USA 
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Fenix 6S Maximal Oxygen Consumption (VO2max) Estimate," Int. J. Exercise Sci.: Conf. Proc. 
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24. Helm, M.M.; Carrier, B.; Davis, D.W.; Cruz, K.; Barrios, B.; Navalta, J.W. "Validation of Sweat Rate, 

Fluid Loss, and Sodium Loss in Wearable Technology," Int. J. Exercise Sci.: Conf. Proc. 2021, 14(1), 

Article 8. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss1/8 

25. Carrier, B.; Salatto, R.W.; Davis, D.W.; Sertic, J.V.L.; Barrios, B.; Cater, P.; Navalta, J.W. "Assessing 

the Validity of Several Heart Rate Monitors in Wearable Technology While Mountain Biking," Int. 

J. Exercise Sci.: Conf. Proc. 2021, 14(1), Article 18. Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss1/18 

26. Helm, M.M.; Carrier, B.; Davis, D.W.; Cruz, K.; Barrios, B.; Navalta, J.W. "Validation of the Garmin 

Fenix 6S Maximal Oxygen Consumption (VO2max) Estimate," Int. J. Exercise Sci.: Conf. Proc. 

2021, 14(1), Article 29. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss1/29 

27. Davis, D.W.; Carrier, B.; Cruz, K.; Barrios, B.; Navalta, J.W. FACSM "The Effects of Meditative and 

Mindful Walking on Mental and Cardiovascular Health," Int. J. Exercise Sci.: Conf. Proc. 2021, 

14(1), Article 8. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss1/8 

28. Bodell, N.; Carrier, B.; Gil, D.; Fullmer, W.; Cruz, K.; Aguilar, C.D.; Davis, D.W.; Malek, E.M.; 

Montes, J.; Manning, J.W.; Navalta, J.W.; Lawrence, M.M.; DeBeliso, M. "Validity of Average Heart 

Rate and Energy Expenditure in Polar OH1 and Verity Sense While Self-Paced Walking," Int. J. 



176 
 

Exercise Sci.: Conf. Proc. 2021, 14(1), Article 69. Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss1/69 

29. Gil, D.; Carrier, B.; Fullmer, W.; Cruz, K.; Aguilar, C.D.; Davis, D.W.; Malek, E.M.; Bodell, N.; 

Montes, J.; Manning, J.W.; Navalta, J.W.; Lawrence, M.M.; DeBeliso, M. "Validity of Average Heart 

Rate and Energy Expenditure in Polar OH1 and Verity Sense While Self-Paced Running," Int. J. 

Exercise Sci.: Conf. Proc. 2021, 14(1), Article 27. Available at: 

https://digitalcommons.wku.edu/ijesab/vol14/iss1/27 

30. Fullmer, W.B.; Carrier, B.; Malek, E.; Gil, D.; Cruz, K.; Aguilar, C.; Davis, D.; Bodell, N.; Montes, J.; 

Manning, J.; DeBeliso, M.; Navalta, J.; Lawrence, M.M. "Validity of Average Heart Rate and 

Energy Expenditure in Polar Armband Devices While Self-Paced Biking," Int. J. Exercise Sci.: Conf. 

Proc. 2021, 14(1), Article 26. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss1/26 

31. Cruz, K.; Navalta, J.W.; Davis, D.W.; Carrier, B. "Validity of the K5 Wearable Metabolic System 

during the YMCA Bench Press Test - A Pilot Study," Int. J. Exercise Sci.: Conf. Proc. 2021, 14(1), 

Article 22. Available at: https://digitalcommons.wku.edu/ijesab/vol14/iss1/22 

32. Carrier, B.; Cruz, K.; Farmer, H.; Navalta, J. "Validation of the Lactate Threshold Estimate from the 

Garmin fenix 6 Fitness Tracker," Am. Coll. Sports Med., Jun. 2021, Washington D.C., USA 

33. Cruz, K.; Carrier, B.; Farmer, H.; Navalta, J. "The Validity of VO2 Max: Treadmill GXT and Wearable 

Technology," Am. Coll. Sports Med., Jun. 2021, Washington D.C., USA 

34. Carrier, B.; Cruz, K.; Farmer, H.; Navalta, J. "Validation of the Lactate Threshold Estimate from the 

Garmin fenix 6 Fitness Tracker," Univ. Nevada, Las Vegas Ann. Grad. Prof. Stud. Res. Forum, Apr. 

2021, Las Vegas, NV, USA 

35. Cruz, K.; Carrier, B.; Farmer, H.; Navalta, J. "The Validity of VO2 Max: Treadmill GXT and Wearable 

Technology," Univ. Nevada, Las Vegas Ann. Grad. Prof. Stud. Res. Forum, Apr. 2021, Las Vegas, NV, 

USA 



177 
 

36. Cruz, K.; Salatto, R.W.; Davis, D.W.; Carrier, B.; Barrios, B.; Cater, P.; Farmer, H.; Navalta, J.W. 

"Evaluation of Rating of Perceived Exertion During Mountain Biking," Southwest Am. Coll. Sports 

Med., Oct. 2020, Costa Mesa, CA, USA 

37. Farmer, H.; Salatto, R.W.; Davis, D.W.; Carrier, B.; Barrios, B.; Cater, P.; Cruz, K.; Navalta, J., FACSM. 

"Felt Arousal Scale is Not Reliable for Use in Repeated Mountain Biking Trial Application," 

Southwest Am. Coll. Sports Med., Oct. 2020, Costa Mesa, CA, USA 

38. Carrier, B.; Salatto, R.W.; Manning, J.W.; Barrios, B.; Sertic, J.V.L.; Davis, D.W.; Cater, P.C.; 

McGinnis, G.; DeBeliso, M.; Navalta, J.W. "Does Acute Beta-Alanine Supplementation Improve 

Performance, Rating of Perceived Exertion and Heart Rate During Hiking?", Am. Coll. Sports 

Med., May 2020, San Francisco, CA, USA 

39. Barrios, B.; Carrier, B.; Cater, P.C.; Sertic, J.V.L.; Salatto, R.W.; Navalta, J.W. "Validation of Heart 

Rate Monitoring of Fenix 5 During Mountain Biking," Am. Coll. Sports Med., May 2020, San 

Francisco, CA, USA 

40. Sertic, J.V.L.; Carrier, B.; Cater, P.C.; Barrios, B.; Salatto, R.W.; Navalta, J.W. "Validation of Two 

Wearable Chest Straps for Heart Rate Monitoring During Mountain Biking," Am. Coll. Sports 

Med., May 2020, San Francisco, CA, USA 

41. Salatto, R.W.; Navalta, J.W.; Montes, J.; Bodell, N.; Carrier, B.; Sertic, J.V.L; Barrios, B.; Cater, P.C.; 

Davis, D.W.; Manning, J.W.; DeBeliso, M. "Evaluating the Validity of Heart Rate Measured by the 

Suunto Spartan Sport Watch During Trail Running," Am. Coll. Sports Med., May 2020, San 

Francisco, CA, USA 

42. Navalta, J.W.; McGinnis, G.R.; Manning, J.W.; Salatto, R.W.; Carrier, B.; Davis, D.W.; Sertic, J.V.L.; 

Cater, P.C.; Barrios, B.; Malek, E.M.; Reynolds, C.K.; DeBeliso, M. "Acute Beta-Alanine 

Supplementation and Pain Perception Before and After Hiking," Am. Coll. Sports Med., May 

2020, San Francisco, CA, USA 



178 
 

43. Trainor, T.; Carrier, B.; Jolley, B.W.; Creer, A. "Validation of the Humon Hex Lactate Threshold 

Estimate," Am. Coll. Sports Med., May 2020, San Francisco, CA, USA 

44. Standifird, T.; Williams, L.; Carrier, B.; Creer, A. "Differences Between Predicted And Measured 

V02 During Level And Uphill Walking," Am. Coll. Sports Med., May 2020, San Francisco, CA, USA 

45. Carrier, B.; Trainor, T.; Jolley, B.W.; Navalta, J.W.; Creer, A. "Validation of the Humon Hex Lactate 

Threshold Estimate," Southwest Am. Coll. Sports Med., Oct. 2019, Costa Mesa, CA, USA 

46. Barrios, B.; Sertic, J.V.L.; Cater, P.C.; Davis, D.W.; Carrier, B.; Salatto, R.W.; Montes, J.; Bodell, N.; 

Manning, J.W.; DeBeliso, M.; Navalta, J.W. "Evaluating the Validity of Heart Rate Measured by the 

Jabra Elite During Trail Running," Southwest Am. Coll. Sports Med., Oct. 2019, Costa Mesa, CA, 

USA 

47. Cater, P.C.; Sertic, J.V.L.; Davis, D.W.; Barrios, B.; Carrier, B.; Salatto, R.W.; Montes, J.; Bodell, N.; 

Manning, J.W.; DeBeliso, M.; Navalta, J.W. "Evaluating the Validity of Heart Rate Measured by the 

Rhythm During Trail Running," Southwest Am. Coll. Sports Med., Oct. 2019, Costa Mesa, CA, USA 

48. Davis, D.W.; Barrios, B.; Carrier, B.; Salatto, R.W.; Sertic, J.V.L.; Cater, P.C.; Montes, J.; Bodell, N.; 

Manning, J.W.; DeBeliso, M.; Navalta, J.W. "Evaluating the Validity of Heart Rate Measured by the 

Garmin Fenix 5 During Trail Running," Southwest Am. Coll. Sports Med., Oct. 2019, Costa Mesa, 

CA, USA 

49. Salatto, R.W.; Navalta, J.W.; Montes, J.; Bodell, N.; Carrier, B.; Sertic, J.V.L; Barrios, B.; Cater, P.C.; 

Davis, D.W.; Manning, J.W.; DeBeliso, M. "Evaluating the Validity of Heart Rate Measured by the 

Suunto Spartan Sport Watch During Trail Running," Southwest Am. Coll. Sports Med., Oct. 2019, 

Costa Mesa, CA, USA 

50. Sertic, J.V.L.; Cater, P.C.; Davis, D.W.; Barrios, B.; Carrier, B.; Salatto, R.W.; Montes, J.; Bodell, N.; 

Manning, J.W.; DeBeliso, M.; Navalta, J.W. "Validating the Heart Rate Feature of the Motiv Ring 

on Outside Graded Terrain," Southwest Am. Coll. Sports Med., Oct. 2019, Costa Mesa, CA, USA 



179 
 

51. Navalta, J.W.; Salatto, R.W.; Montes, J.; Bodell, N.; Carrier, B.; Sertic, J.V.L.; Barrios, B.; Cater, P.; 

Davis, D.; Manning, J.W.; DeBeliso, M. "Wearable Device Price is Correlated with the Limits of 

Agreement Range as a Measure of Heart Rate Validity during Trail Running," Southwest Am. Coll. 

Sports Med., Oct. 2019, Costa Mesa, CA, USA 

52. Carrier, B.; Holmes, T.; Williams, L.; Dahl, S.; Weber, L.; Creer, A.; Standifird, T. "Validation of 

Garmin Fitness Tracker Biomechanics," Am. Coll. Sports Med., May 2019, Orlando, FL, USA 

53. Jolley, B.W.; Carrier, B.; Standifird, T.; Creer, A. "Validation of Garmin Fitness Tracker Metabolic 

Data (VO2max)," Am. Coll. Sports Med., May 2019, Orlando, FL, USA 

54. Carrier, B.; Richards, S.; Hancock, C.; Brooks, L. "Who Brought the Microbes? Investigating the 

source of fecal veneer on rock climbing holds," Intermountain Am. Soc. Microbiol., Apr. 2019, 

Provo, UT, USA 

55. Carrier, B.; Holmes, T.; Williams, L.; Dahl, S.; Weber, L.; Creer, A.; Standifird, T. "Validation of 

Garmin Fitness Tracker Biomechanics," Southwest Am. Coll. Sports Med., Oct. 2018, Costa Mesa, 

CA, USA 

56. Carrier, B.; Ferguson, D.; Ogden T.H. "Molecular Phylogeny of Baetidae (Ephemeroptera)," 

Evolution 2017, June 2017, Portland, OR, USA 

57. Carrier, B.; Ferguson, D.; Ogden T.H. "Molecular Phylogeny of Baetidae (Ephemeroptera)," Utah 

Conf. Undergrad. Res., Feb. 2017, Orem, UT, USA 

58. Carrier, B.; Ogden T.H. "Phylogenetic Relationships of Mayfly Family Baetidae (Ephemeroptera)," 

Utah Conf. Undergrad. Res., Feb. 2016, Salt Lake City, UT, USA 


	Acr66533711865623768832.tmp
	Carrier, Bryson.pdf


