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Abstract 

DIFFERENTIAL EXPRESSION OF MICRORNA MIR-145 AND MIR-155 

DOWNSTREAM TARGETS IN ORAL CANCERS EXHIBITING LIMITED 

CHEMOTHERAPY RESISTANCE 

 

 

By 

 

Conner Belnap, DDS 

 

Dr. Karl Kingsley, Examination Committee Chair 

Professor of Biomedical Sciences 

University of Nevada, Las Vegas 

School of Dental Medicine 

 

Introduction: Oral cancer remains an important issue in the United States with more than 50,000 

new cases per year and almost 10,000 deaths annually [1,2]. Most of the data regarding the high 

rates of morbidity and mortality associated with oral cancer come from the advanced age of 

patients at diagnosis and the late stage of the tumor at diagnosis [3,4]. Many oral cancers (once 

diagnosed) are resistant to one or more chemotherapies, although more research needs to be done 

to determine the mechanisms of this chemotherapy resistance [5,6]. New evidence has suggested 

that non-coding microRNAs may play a significant role in mediating and modulating 

chemotherapy resistance, particularly among oral cancers [7-9]. One recent study from UNLV-

SDM found that the expression of miR-145 and the lack of expression of miR-155 strongly 
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correlated with a lack of chemotherapy resistance, although the mechanisms responsible for this 

observation are yet unidentified [10]. 

 

Methods: Commercially available cell lines of oral squamous cell carcinoma (OSCC) were used 

in this study, including CAL27, SCC-4, SCC-9 SCC-15, and SCC-25.  RNA was isolated from 

each of the cell lines using phenol and chloroform. The isolated  RNA from the cancerous cell 

lines was synthesized into cDNA by reverse transcription and screened for the targets of the 

miRNA downstream targets of miR-145 and miR-155 using qPCR. 

 

 

Results: Screening for miR-155 downstream targets revealed no expression of n=9 downstream 

targets, including March, IKBIP, ACT, CHAF, NPEG, FQS, CDX, JAR, or KDM. However, 

differential expression of n=6 downstream targets was observed with OLF, TBR, BACH, ZNF

 IRF, and ZIC, which were expressed in all oral cancer cell lines (CAL27, SCC25, 

SCC15, SCC9) except SCC4. 

 

Screening for miR-145 downstream targets revealed no expression of n=5 downstream targets, 

including CLLN3, FLI, MRTF, DAB and SRGAP1. Differential expression of n=8 downstream 

targets was observed with ADD3, MBTD, ACE1, TRIM2, FAM135A, KCN, FSCN, and 

SRGAP2. However, three downstream targets were differentially expressed in SCC15 only. 

More specifically, KCN and SRGAP2 expression was only observed in SCC15 but not other oral 

cancer cell lines. In addition, FAM135A was expressed in all oral cancer cell lines with the 
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exception of SCC15. These data strongly suggest differential regulation of these three 

downstream targets among the least chemotherapy resistant oral cancer cell line SCC15. 

 

 

Discussion and Conclusions: Based upon the results of this study, at least three downstream 

targets for miR-145 are dysregulated in oral cancers that lack chemotherapy resistance, including 

FAM135A (non-expressed), KCN and SRGAP2 (expressed). The potential involvement of miR-

145 with these genes, such as the involvement of FAM135 and SRGAP2 with Rho GTPase 

signaling, and KCN involvement with potassium ion channels, must be further investigated to 

determine how and whether these mechanisms may be involved in the lack of chemotherapy 

resistance. However, none of the downstream microRNA targets for miR-155 evaluated were 

dysregulated in oral cancers that lack chemotherapy resistance. 

 

 

Key words: Oral cancer, chemotherapy resistance, microRNA expression, qPCR screening 
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Chapter 1: Introduction 

Background and Significance 

 

Oral cancer remains an important issue in the United States with more than 50,000 new cases per 

year and almost 10,000 deaths annually [1,2]. Most of the data regarding the high rates of 

morbidity and mortality associated with oral cancer come from the advanced age of patients at 

diagnosis and the late stage of the tumor at diagnosis [3,4]. Many oral cancers (once diagnosed) 

are resistant to one or more chemotherapies, although more research needs to be done to 

determine the mechanisms of this chemotherapy resistance [5,6]. New evidence has suggested 

that non-coding microRNAs may play a significant role in mediating and modulating 

chemotherapy resistance, particularly among oral cancers [7-9]. One recent study from UNLV-

SDM found that the expression of miR-145 and the lack of expression of miR-155 strongly 

correlated with a lack of chemotherapy resistance, although the mechanisms responsible for this 

observation are yet unidentified [10]. 

  

Research Questions  

Question 1. Are the identified microRNA targets for miR-145 dysregulated in oral cancers that 

display chemotherapy resistance? 

 

Null hypothesis: None of the potential microRNA targets for miR-145 are dysregulated 

Alternative hypothesis: One (or more) potential microRNA targets for miR-145 are 

dysregulated 
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Question 2. Are the identified microRNA targets for miR-155 dysregulated in oral cancers that 

display chemotherapy resistance? 

 

Null hypothesis: None of the potential microRNA targets for miR-155 are dysregulated 

Alternative hypothesis: One (or more) potential microRNA targets for miR-155 are 

dysregulated 

 

 

 

Approval  

 

The appointment of an advisory committee was submitted for approval and approved on July 28, 

2022. The prospectus for this study was submitted for approval and approved on September 2, 

2022. This study involved an analysis of commercially available cell lines (in vitro study). No 

human subjects were recruited or involved in this study. 

 

Research Design  

 

Commercially available cell lines of oral squamous cell carcinoma (OSCC) were used in this 

study. They were obtained from the American Culture Tissue Collection (ATCC; Manassas, 

VA, USA). The following cell lines were used: CAL27 (CRL-2095), SCC-4 (CRL-1624), 

SCC-9 (CRL-1629), SCC-15 (CRL-1623), and SCC-25 (CRL-1628). The cell lines were 



 

 

3 
 

cultured in medium with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin from 

ThermoFisher Scientific (Fair Lawn, NJ, USA) following the manufacturer's guidelines. SCC-

4, SCC-9, SCC-15, and SCC-25 cells were cultured in DMEM:F12. The CAL27 cells were 

cultured in Dulbecco's Modified Eagle's Medium (DMEM). The cell cultures were maintained 

in tissue-culture treated flasks in a BSL-2 incubator at 37 °C with 5% CO2. Each cell line was 

verified by the manufacturer using the Short Tandem Repeat (STR) technique, with a validity 

rate exceeding 90%, as outlined in other studies [11-13]. 

 

RNA Isolation 

RNA was isolated from each of the cell lines.  This involved extracting the RNA using the 

TRIzol reagent from Invitrogen with phenol and chloroform. The extracted lysates were 

transferred to sterile tubes and chloroform was added. After mixing the samples and keeping 

them on ice for 15 minutes, a centrifuge was used to separate the RNA-containing phase from 

the rest of the solution. The RNA-containing phase was transferred to a sterile tube and 

combined with an equal amount of isopropanol, causing the nucleic acids to precipitate. After 

removal of the isopropanol, the pellet was washed with ethanol, and centrifuged again. The 

pellet was resuspended using nuclease-free distilled water. 

 

The concentration and quality of the isolated RNA was determined using a NanoDrop 

spectrophotometer. Absorbance of the RNA samples was absorbed at A260 nm and A280 nm. 

The absorbance values allow the calculation of the relative abundance or concentration of RNA 

as well as the overall quality of each sample. RNA samples with a concentration greater than 

100 ng and A260:A280 ratios exceeding 1.65 were considered suitable for this analysis. 
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cDNA and qPCR 

The isolated RNA from the cancer cell lines was synthesized into cDNA by reverse 

transcription using a ThermoFisher RT-PCR kit. The following steps were used: cDNA 

synthesis for 15 minutes at 50 °C, then enzyme deactivation for 2 minutes at 95 °C. Then, 40 

cycles were repeated that consisted of 20 seconds of denaturation at 95°C, annealing for 30 

seconds at varying temperatures depending on the primer, and an extension at 72 °C for 60 

seconds. [14] 

 

To amplify the potential miRNA targets with low expression levels, further processing of the 

cDNA was done using the TaqMan miR-Amp Reaction Mix. A mixture was prepared 

containing the cDNA, miR-Amp Master Mix, Primer Mix, and RNase-free water. The mixture 

was put in a thermal cycler, and temperature cycles were used for denaturation, annealing, and 

extension. 

 

Samples that met the criteria for quantity (>10 ng) and quality A260:A280 ratio above 1.60 

were screened for RNA targets of the miRNAs using qPCR. Each qPCR screening was done 

twice. Materials used in this process included 2X ABsolute SYBR green master mix (12.5 μL), 

forward and reverse primers (1.5 μL each), sample DNA (1.5 μL diluted to 1.0 ng/μL) and 

distilled nuclease-free water (8.0 μL). Activation (15 minutes at 95°C) was performed and 

followed by 40 cycles of denaturation (15 seconds at 95°C), annealing (30 seconds at various 

temperatures depending on each primer) and extension (30 seconds at 72°C). 
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Primers: 

miR-145 forward: 5′-AGAGAACTCCAGCTG-3′; 15 nt, 53% GC, Tm: 56 °C 

miR-145 reverse: 5′-GGCAACTGTGGGGTG-3′; 15 nt, 67% GC, Tm: 64 °C 

 

miR-155 forward: 5′-TTAATGCTAATTGTGATAGGGGT-3′; 23 nt, 35% GC, Tm: 61 °C 

miR-155 reverse: 5′-CCTATCACAATTAGCATTAATT-3′; 22 nt, 27% GC, Tm: 55 °C 
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Chapter 2 

Differential Expression Of MicroRNA MiR-145 and MiR-155 Downstream Targets In Oral 

Cancers Exhibiting Limited Chemotherapy Resistance 

 

This chapter has been submitted to and published by MDPI Internal Jourmal of Molecular 

Sciences (IJMS) and is presented in the style of that Journal. The complete Citation is:  

 

 

Belnap C, Divis T, Kingsley K, Howard KM. Differential Expression of MicroRNA MiR-145 

and MiR-155 Downstream Targets in Oral Cancers Exhibiting Limited Chemotherapy 

Resistance. International Journal of Molecular Sciences. 2024; 25(4):2167. 

https://doi.org/10.3390/ijms25042167 

 

Role of Authors: 

KK and KMH were responsible for the overall project design. CB and TD were responsible for 

data generation and analysis. KK, KMH, TD and CB contributed to the writing and editing of 

this manuscript. All authors have read and agreed to the submitted version of the manuscript. 

 

Abstract 

Background: New evidence has suggested that non-coding microRNAs play a significant role in 

mediating and modulating chemotherapy resistance, particularly among oral cancers. One recent 

study found that the expression of miR-145 and lack of miR-155 expression strongly correlated 

with a limited chemotherapy resistance to Cisplatin, 5-Fluorouracil and Paclitaxel , although the 

mechanism(s) responsible for these observations remain unidentified.  

 

Methods: Using commercially available cell lines of oral squamous cell carcinoma (OSCC), 

RNA was isolated using phenol:chloroform extraction. The isolated RNA was converted into 

cDNA by reverse transcription and subsequently screened for the presence or absence of 

downstream targets of miR-145 and miR-155 using qPCR.  
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Results: The expression of miR-145 downstream gene targets (n=13) were analyzed in all OSCC 

cells. The expression pattern of three miR-145 gene targets could be correlated to the degree of 

chemotherapy resistance.  In the least chemotherapy resistant cells (SCC15), altered expression 

of KCN and SRGAP2 and the absence of FAM135A expression were observed.  This differential 

expression was unique to the SCC15 cells and not detected in any of the other OSCC cell lines. 

 

Conclusions: These data strongly support that differential regulation of these three downstream 

targets is related to the chemotoxic sensitivity of the SCC15 oral cancer cell line. The potential 

involvement of these targets must be further investigated to determine how and whether 

mechanisms of these cellular pathways may be involved in the observed lack of chemotherapy 

resistance. These data may be important to design targets or treatments to reduce chemotherapy 

resistance and improve patient treatment outcomes. 

 

 

Key words: Oral cancer, chemotherapy resistance, microRNA expression, qPCR screening 

 

Introduction 

Oral cancer remains an important epidemiologic concern worldwide, with recent estimates of 

more than 350,000 cases diagnosed annually, resulting in nearly 200,000 deaths [1]. These high 

rates of oral cancer morbidity and mortality may be attributable to numerous factors, although 

many studies now suggest late-stage diagnosis of tumors and the advanced age of patients at the 

time of diagnosis are among the most impactful variables [2,3]. Although many efforts are being 

made to foster early detection and diagnosis, it has become evident that treatment will be needed 
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for most of these patients and understanding the factors that determine treatment responsiveness 

among these tumors becomes ever more critical [4,5]. 

 

Oral cancer is complex and often involves multiple treatment modalities including surgical 

resection, chemotherapy and radiation treatments  [6,7]. Depending upon the size, location, and 

stage of the tumor, oral cancers may be subject to surgical resection structured to remove the 

tumor mass along with a small margin of normal tissue immediately surrounding the area of 

concern  [8,9]. These procedures may be followed with either radiation or chemotherapy as the 

main types of follow-up care administered to these oral cancer patients [10,11].  

 

Chemotherapy for oral cancer typically involves one or more of several well-known treatments, 

such as Cisplatin, 5-Fluorouracil (5-FU) and Paclitaxel (Taxol) [12,13]. Cisplatin functions as a 

cytotoxic treatment by binding to DNA within rapidly dividing cells of the tumor and forming a 

bond between platinum and the nitrogen atom of guanine or “G”, which interferes with 

transcription, replication and DNA repair mechanisms [14,15]. Other treatments such as 5-

Fluorouracil or 5-FU function primarily as antimetabolites, inhibiting function of the enzyme 

thymidylate synthase, thereby inhibiting an important step in the process of DNA synthesis in 

rapidly dividing cells, such as tumor cells [16,17]. In addition, chemotherapy agents such as 

Paclitaxel or Taxol function by binding microtubules, inducing mitotic arrest at the spindle 

assembly checkpoint of cell division or the G2/M transition [18-20].  

 

Despite the varied mechanisms of action of these chemotherapy agents, many oral cancers also 

display significant levels of resistance to one or more of these standard treatments [21,22]. The 
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mechanisms proposed to explain this chemoresistance have been identified as specific allelic 

variations or genetic mutations that allow for metabolic reprogramming and dysregulation to 

bypass one or more of the chemotherapy pathways or checkpoints, as outlined previously 

[23,24]. However, new evidence has now suggested that non-coding microRNAs may also play 

an alternative and significant role in mediating and modulating chemotherapy resistance, 

particularly among oral cancers [25,26].  

 

MicroRNAs are small, highly conserved, non-coding RNAs involved in the regulation of gene 

expression through post-transcriptional mediation, such as mRNA inhibition or negative 

regulation [27,28]. In fact, many studies have identified microRNA expression profiles related to 

many types of cancers, including lung, breast, and colorectal cancers [29-31]. Moreover, recent 

systematic reviews have identified microRNA expression profiles more closely associated with 

oral cancers through large-scale salivary biomarker screening studies [32-35]. 

 

More specifically, systematic reviews and meta-analyses have established microRNA expression 

profiles for oral cancers including miR-21, miR-31, miR-155 and miR-196 [36-39]. In addition, 

many studies have revealed that microRNA expression also functions to mediate chemotherapy 

resistance among oral cancers [40,41]. For example, increased tumor resistance to Cisplatin has 

been linked with expression of miR-21, but resistance among oral cancer has also been linked 

with miR-24, miR-218, and miR-629, while miR-15b, miR-27b, and miR-155 may be associated 

with decreased resistance to Cisplatin within these same tumors [42-47].   
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Recent work from this group has demonstrated expression of miR-21 and miR-365 among oral 

cancers, as well as confirmation of the lack of miR-27 expression among chemoresistant oral 

cancer cell lines [48-51].  

Moreover, this most recent study found that the expression of miR-145 and the absence of miR-

155 expression were also strongly correlated with a lack of chemotherapy resistance, although 

the mechanism(s) responsible for this observation remained unidentified [51]. The goal of this 

current study was to provide an evaluation of these microRNAs and their downstream targets to 

create a more comprehensive understanding of their potential role in the lack of 

chemotherapeutic resistance among oral cancers, which could provide new potential treatments 

and therapies [47,51 52]. 

 

 

Materials and Methods 

Cell Lines and Culture 

This study utilized commercial oral cancer cell lines, which included oral squamous cell 

carcinomas (OSCC) of the tongue. All cell lines were purchased from the American Tissue 

Culture Collection or ATCC (Manassas, VA, USA). These included SCC4, SCC9, SCC15, 

SCC25 and CAL27. All cells were cultured and maintained using the protocols and 

recommendations from the manufacturer. In brief, Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with fetal bovine serum or FBS (10%) and antibiotic Penicillin-

Streptomycin (1%) all from Fisher Scientific (Fair Lawn, NJ, USA) were used for CAL27 cells. 

All other cell lines (SCC25, SCC15, SCC9, SCC4) were maintained using DMEM:F12 with 10% 

FBS and 1% Penicillin-Streptomycin, all obtained from Fisher Scientific (Fair Lawn, NJ, USA). 
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Catalog information for ordering, the short tandem repeat (STR) analysis for verification of cell 

type (>90%), and the original derivation of each cell line provided by the manufacturer were 

provided, as follows: 

 

Table 1. STR cell line validation 

 

Cell line  Media  Designation STR analysis Original derivation 

CAL27 (CRL-2095) DMEM OSCC  93% match Male, 56 years old 

SCC25 (CRL-1628) DMEM:F12 OSCC  100% match Male, 70 years old 

SCC15 (CRL-1623 DMEM:F12 OSCC  95% match Male, 55 years old 

SCC9 (CRL-1629) DMEM:F12 OSCC  100% match Male, 25 years old 

SCC4 (CRL-1624) DMEM:F12 OSCC  92%  Male, 55 years old 

 

Culture of cells was facilitated using tissue culture-treated flasks and a FisherBrand Isotemp 

CO2 Biosafety Level 2 (BSL-2) incubator from Fisher Scientific (Fair Lawn, NJ, USA) at 37 °C, 

which was supplemented with additional medical-grade CO2 at 5%.  

 

 

Experimental chemotherapy agents 

Experimental assays utilized commercially available chemotherapy agents, which included 

Paclitaxel (Taxol; NSC 125973, Molecular Weight 853.91), 5-Fluorouracil (5-FU; NSC 19893, 

Molecular Weight 130.08), and cis-diamminedichloroplatinum (Cisplatin; NSC 119875, 

Molecular Weight 300.5) all obtained from Selleck Chemical (Houston, TX, USA). 
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Concentrations for each chemotherapy agent used in the proliferation and growth assays were 

within the range of 1.0 - 10.0 ng/mL to simulate the physiologic concentrations and dosages that 

have been validated through previous in vivo bioavailability studies [53,54].  

 

Proliferation assays 

Oral squamous cell carcinoma growth under experimental (chemotherapy) and control (no 

treatment) conditions was performed using Corning Costar 96-well tissue culture-treated assay 

plates from Fisher Scientific (Fair Lawn, NJ, USA). Cells were plated at standard concentrations 

(1 x 105 cells/mL) and were allowed to proliferate for 24, 48 and 72 hours with and without 

chemotherapeutic agents to establish baseline growth and determine chemotherapeutic inhibition 

for each cell line. All assays were performed in triplicate and each assay was performed using n=8 

wells per cell line and condition. At the conclusion of each endpoint (24 hours, 48 hours, 72 hours), 

cells were fixed using 10% buffered formalin prior to processing. Processing of each assay plate 

was performed by removing the buffered formalin and adding Gentian Violet 1% aqueous solution 

from Ricca Chemicals (Arlington, TX, USA). The stain was aspirated and wells were washed with 

10% phosphate buffered saline (PBS) obtained from Fisher Scientific (Fair Lawn, NJ, USA). All 

liquid was aspirated and plates were analyzed using an ELx808 Microplate Reader from BioTek 

Instruments (Winsooki, VT, USA) at 630 nm.  

 

RNA extraction 

Cellular RNA was extracted from all cell lines for further screening and analysis. This process 

involved phenol:chloroform extraction method, utilizing the TRIzol reagent obtained from 

Invitrogen (Waltham, MA, USA). In brief, supernatant was removed from cells in culture and 
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TRIzol reagent was added to facilitate cell lysis prior to transfer into sterile microcentrifuge tubes. 

To each 1.0 mL of cellular lysate, 200 uL of molecular-grade Chloroform from Invitrogen 

(Waltham, MA, USA) was added and mixed prior to incubation on ice for 15 minutes. Each sample 

was then centrifuged at 12,000 x relative centrifugal force (RCF) at 4°C for 15 minutes with a 

5424R Refrigerated Microcentrifuge obtained from Eppendorf (Hamburg, Germany). The upper 

aqueous layer containing RNA (300 uL) was then transferred to another sterile microcentrifuge 

tube and molecular-grade Isopropanol (300 uL) was added to precipitate nucleic acids. All samples 

were then centrifuged at 4°C for 10 minutes to pellet the nucleic acids. Following completion of 

this process, the isopropanol was removed and the nucleic acid-containing pellet was washed with 

ethanol prior to a final centrifugation at 4°C for 10 minutes. All remaining ethanol was removed 

and each pellet was resuspended using nuclease-free water. Assessment of RNA concentrations 

and quality were performed using the NanoDrop 2000 Spectrophotometer obtained from Fisher 

Scientific (Fair Lawn, NJ, USA). Relative quantification and purity were determined using 

absorbance readings at A260 nm and A280 nm.  

                                                                                                                                                           

cDNA synthesis 

To amplify microRNA from the oral cancer cell lines, RNA was processed using the TaqMan 

Advanced miRNA Assay conversion kit from Applied Biosystems (Waltham, MA, USA), as 

previously described {51,55]. This protocol includes a poly-adenylation reaction, which involved 

0.5 µL 10X poly(A) buffer, 0.5 µL ATP (adenosine triphosphate),  0.3 µL poly(A) enzyme, and 

1.7 µL RNase-free water added to each of the 96-wells in a qPCR reaction plate with 2.0 µL of 

RNA extracted from each cell line. The poly-adenylation reaction was performed using the 
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manufacturer recommended protocol of  37 °C for 45 minutes, followed by 65 °C for 10 minutes 

in a Mastercycler gradient thermal cycler from Eppendorf (Hamburg, Germany). 

 

Following the completion of the poly-adenylation reaction, the adaptor ligation reaction was 

immediately performed using 3.0 µL 5X DNA ligase buffer, 4.5 µL RNase-free water added to 

each of 50% PEG (polyethylene glycol) 8000,  0.6 µL 25X ligation adaptor,  1.5 µL RNA ligase, 

and  0.4 µL RNase-free water added to each of the 96-wells containing the completed poly-

adenylation reaction in the qPCR reaction plate. The adaptor ligation reaction was performed 

using the manufacturer recommended protocol of 16 °C for 60 minutes.  

 

Following the adaptor ligation reaction, the reverse transcription (RT) reaction was immediately 

performed using 6.0 µL 5X RT buffer, 1.2 µL dNTP mix, 1.5 µL 20X universal RT primer, 3.0 

µL 10 X RT enzyme mix, and 3.3 µL RNase-free water added to each of the 96-wells containing 

the adaptor ligation reaction. The RT reaction was performed using the manufacturer 

recommended protocol of 42 °C for 15 minutes, followed by 85 °C for an additional five 

minutes.  

 

The final step reaction in this protocol was the amplification of the cDNA using the TaqMan 

miR-Amp Reaction Mix, which included 25.0 µL 2X miR-Amp Master Mix, 2.5 µL 20X Primer 

Mix and nuclease, 17.5 µLRNase-free water and 5.0 uL of the RT reaction product. The 

amplification reaction was performed using the manufacturer recommended protocol of 95 °C 

for five minutes, followed by 14 cycles of 95 °C for three seconds, extension at 60 °C for 30 

seconds, and a stop reaction at 99 °C for ten minutes.  
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qPCR screening 

Screening of the cDNA for microRNA expression was completed using the SYBR Green qPCR 

Master Mix from ThermoFisher Scientific (Fair Lawn, NJ, USA) using the manufacturer 

recommended protocols. In brief, each reaction was prepared with 12.5 uL Absolute SYBR 

Green, 1.75 uL forward and reverse primers, 7.5 uL nuclease-free water and 1.5 uL sample 

cDNA for a total reaction volume of 25 uL. Thermocycle reactions were performed using the 

QuantStudio Real-Time Polymerase Chain Reaction (PCR) system from Applied Biosciences 

(Waltham, MA, USA) with 95 °C denaturation for 15 seconds, annealing at each primer pair 

specific temperature, and 72 °C final extension for 30 seconds. The validated primer sets (Table 

2) included [51,55]: 

 

Table 2. Validated qPCR primers 

 

Positive control primers   

GAPDH forward 5′ATCTTCCAGGAGCGAGATCC-3′ Tm: 66 °C 

GAPDH reverse 5′ACCACTGACACGTTGGCAGT-3′ Tm: 70 °C 

Beta-actin forward 5′-GTGGGGTCCTGTGGTGTG-3′  Tm: 69 °C 

Beta-actin reverse 5′-GAAGGGGACAGGCAGTGA-3′ Tm: 67 °C 
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microRNA primers   

miR-16 forward 5′-TAGCAGCACGTAAATATTGGCG-3  Tm: 65 

°C 

miR-16 reverse 5′-TGCGTGTCGTGGAGTC-3′ Tm: 65 °C 

miR-21 forward 5′-GCCACCACACCAGCTAATTT-3′ Tm: 66 °C 

miR-21 reverse 5′-CTGAAGTCGCCATGCAGATA-3′ Tm: 65 °C 

miR-27 forward  5′-ATATGAGAAAAGAGCTTCCCTGTG-3’ Tm: 61 °C 

miR-27 reverse 5′-CAAGGCCAGAGGAGGTGAG-’3′ Tm: 67 °C 

miR-124 forward 5′-TTCACAGCGGACCTTGA-3′ Tm: 64 °C 

miR-124 reverse 5′-GAACATGTCTGCGTATCTC-3′ Tm: 60 °C 

miR-125 forward 5′-GCCCTCCCTGAGACCTCAA-3′ Tm: 69 °C 

miR-125 reverse 5′-GTGCAGGGTCCGAGGT-3′ Tm: 68 °C 

miR-133 forward 5′-CCGGTTAACTCGAGCTCTGTGAGAG-3′ Tm: 71 °C 

miR-133 reverse 5′-CTAGCTAGGAATTCTGTGACCTGTG-’3′ Tm: 66 °C 

miR-135 forward 5′-CGATATGGCTTTTTATTCCTA -3′ Tm: 56 °C 

miR-135 reverse 5′-GAGCAGGGTCCGAGGT -3′ Tm: 67 °C 
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miR-140 forward 5′-GGGCAGTGGTTTTACCCTA -3′ Tm: 64 °C 

miR-140 reverse 5′-CAGTGCGTGTCGTGGAGT -3′ Tm: 68 °C 

miR-143 forward 5′-AGTGCGTGTCGTGGAGTC-3′ Tm: 68 °C 

miR-143 reverse 5′-GCCTGAGATGAAGCACTGT-3′ Tm: 65 °C 

miR-145 forward 5′-AGAGAACTCCAGCTG-3′ Tm: 56 °C 

miR-145 reverse 5′-GGCAACTGTGGGGTG-3′ Tm: 64 °C 

miR-152 forward 5′-GGTTCAAGACAGTACGTGACT-3′ Tm: 64 °C 

miR-152 reverse 5′-CCAAGTTCTGTATGCACTGA-3′ Tm: 62 °C 

miR-155 forward 5′-TTAATGCTAATTGTGATAGGGGT-3′ Tm: 61 °C 

miR-155 reverse 5′-CCTATCACAATTAGCATTAATT-3′ Tm: 55 °C 

miR-210 forward 5′-CATAGATAGCCACTGCCCACA-3′ Tm: 67 °C 

miR-210 reverse 5′-GTGCAGGGTCCGAGGTATTC-3′ Tm: 68 °C 

miR-218 forward 5′-TCGGGCTTGTGCTTGATC T-3′ Tm: 65 °C 

miR-218 reverse 5′-GTGCAGGGTCCGAGTG-3’ Tm: 66 °C 

miR-221 forward 5′-CCCAGCATTTCTGACTGTTG-3′ Tm: 64 °C 

miR-221 reverse 5′-TGTGAGACCATTTGGGTGAA-3′ Tm: 64 °C 
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miR-222 forward 5′-CGCAGCTACATCTGGCTACTG-3′ Tm: 68 °C 

miR-222 reverse 5′-GTGCAGGGTCCGAGGT-3′ Tm: 68 °C 

miR-224 forward 5′-GCGAGGTCAAGTCACTAGTGGT-3′ Tm: 69 °C 

miR-224 reverse 5′-CGAGAAGCTTGCATCACCAGAGAACG-3′ Tm: 72 °C 

miR-320 forward 5′-AACGGAGAGTTGGGTCGAAA-3′ Tm: 66 °C 

miR-320 reverse 5′-TTGCCTCTCAACCCAGCTTT-3′ Tm: 67 °C 

miR-365 forward 5′-ATAGGATCCTGAGGTCCCTTTCGTG-3′ Tm: 70 °C 

miR-365 reverse 5′-

GCGAAGCTTAAAAACAGCGGAAGAGTTTG

G-3′ 

Tm: 72 °C 

miR-375 forward 5′-GGCTCTAGAGGGGACGAAGC-3′ Tm: 70 °C 

miR-375 reverse 5′-GGCAAGCTTTTTCCACACCTCAGCCTTG-

3′ 

Tm: 74 °C 

miR-424 forward 5′-AGGACGAAACACCCCCTATTCCTTGC-3′ Tm: 73 °C 

miR-424 reverse 5′-TAATGGATCCGAATACCTGCTCCTGA-3′ Tm: 69 °C 

miR-494 forward 5′-GAAGATCTACGTCTGGTCTACCCAGTGC-

3′ 

Tm: 72 °C 
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miR-494 reverse 5′-

GGGGTACCACCGAGAGTGGAGCCGGCAA-

3′ 

 Tm: 82 

°C 

miR-654 forward 5′-GGGATGTCTGCTGACCA-3′ Tm: 64 °C 

miR-654 reverse 5′-CAGTGCGTGTCGTGGA-3′ Tm: 65 °C 

miR-720 forward 5′-GCGTGCTCTCGCTGGGG-3′ Tm: 73 °C 

miR-720 reverse 5′-GTGCAGGGTCCGAGGT-3′ Tm: 68 °C 

miR-1246 forward 5′-TGAAGTAGGACTGGGCAGAGA-3′ Tm: 67 °C 

miR-1246 reverse 5′-TTTGGGTCAGGTGTCCACTC-3′ Tm: 67 °C 

Downstream primers, miR-

145 

  

FSCN1 forward (TS 100) 5′-CCAGGGTATGGACCTGTCTG-3′ Tm: 65°C 

FSCN1 reverse (TS 100) 5′-GTGTGGGTACGGAAGGCAC-3′ Tm: 65°C 

ABHD17C forward (TS 

100) 

5′-CTACTCGGGATACGGCGTCA-3′ Tm: 65°C 

ABHD17C reverse (TS 100) 5′-AGAGGATAATGTTCTCGGGACTC-3′ Tm: 63°C 

FLI forward (TS 100) 5′-CAGCCCCACAAGATCAACCC-3′ Tm: 65°C 
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FLI reverse (TS 100) 5′-CACCGGAGACTCCCTGGAT-3′ Tm: 65°C 

MRTFB forward (TS 100) 5′-ATGGATCACACAGGGGCGATA-3 Tm: 63°C 

MRTFB reverse (TS 100) 5′-CCGCTGGGCTCTTCAAAGG-3′; Tm: 65°C 

DAB2 forward (TS 100) 5′-GTAGAAACAAGTGCAACCAATGG-3′ Tm: 61°C 

DAB2 reverse (TS 100) 5′-GCCTTTGAACCTTGCTAAGAGA-3′ Tm: 61°C 

SRGAP1 forward (TS 100) 5′-ACCCCGAGCCGATTCAAGA-3′ Tm: 62°C 

SRGAP1 reverse (TS 100) 5′-GAACTCGCATCTCCGTTTGCT-3′ Tm: 63°C 

SRGAP2 forward (TS 100) 5′-TGAAGGAGAAAGCGTCAAGCC-3′ Tm: 62°C 

SRGAP2 reverse (TS 100) 5′-AAGGTCAGATAGGTCATGGATGT-3′ Tm: 61°C 

CLCN3 forward (TS 99) 5′-GGAGGCAGCATTAACAGTTCT-3′ Tm: 61°C 

CLCN3 reverse (TS 99) 5′-TCGCACCCAATCAATAGTATGGA-3′ Tm: 61°C 

MBTD1 forward (TS 99) 5′-GGCATGGCTACCTGTGAGATG-3′ Tm: 65°C 

MBTD1 reverse (TS 99) 5′-GGCCAAAATGCTTGCCTTCT-3′ Tm: 61°C 

FAM135A forward (TS 99) 5′-AGTAGCCGAACATTGAAGCTG-3′ Tm: 61°C 

FAM135A reverse (TS 99) 5′-TGGCTGGTGTAGTGCAACC-3′ Tm: 62°C 

ABCE1 forward (TS 99) 5′-GGAATGCAAAAAGAGTTGTCCTG-3′ Tm: 61°C 
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ABCE1 reverse (TS 99) 5′-CGAGGGATAGGCAACCTGTG-3′ Tm: 65°C 

KCNA4 forward (TS 99) 5′-GTACCTCCCATGACCCTCAGA-3′ Tm: 65°C 

KCNA4 reverse (TS 99) 5′-CTGCCGGTAGTGGGCTTTC-3′ Tm: 65°C 

ADD3 forward (TS 99) 5′-CCAGCCAAGGCGTGATTAC′ Tm: 62°C 

ADD3 reverse (TS 99) 5′-TGAAGTCTTGTCGTAGATCAGGA-3′ Tm: 61°C 

TRIM2 forward (TS 99) 5′-TGCGCCAGATTGACAAGCA′; Tm: 60°C 

TRIM2 reverse (TS 99) 5′-GCACCTCTCGCAGAAAGTG-3′ Tm: 62°C 

Downstream primers, miR-

155 

  

ZNF652 forward (TS 99) 5′-GCTGGTTGAAAACTGTGCTGT-3′ Tm: 61°C 

ZNF652 reverse (TS 99) 5′-GAAGATGGCACTTGACCACGA-3′ Tm: 63°C 

ZIC3 forward (TS 99) 5′-CGGCGCACGATCTATCTTCAG-3′ Tm: 65°C 

ZIC3 reverse (TS 99) 5′-TGCGGAACAGAAACTCGC-3′ Tm: 62°C 

BACH1 forward (TS 99) 5′-TCTGAGTGAGAACTCGGTTTTTG-3′ Tm: 61°C 

BACH1 reverse (TS 99) 5′-CGCTGGTCATTAAGGCTGAGTCC-3′ Tm: 63°C 

JARID2 forward (TS 99) 5′-ACCAGTCTAAGGGATTAGGACC-3′ Tm: 63°C 
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JARID2 reverse (TS 99) 5′-TGCTGGGACTATTCGGCTGA-3′ Tm: 62°C 

KDM5B forward (TS 97) 5′-CCATAGCCGAGCAGACTGG-3′ Tm: 65°C 

KDM5B reverse (TS 97) 5′-GGATACGTGGCGTAAAATGAAGT-3′ Tm: 61°C 

TBR1 forward (TS 97) 5′-GCAGCAGCTACCCACATTCA-3′ Tm: 62°C 

TBR1 reverse (TS 97) 5′-AGGTTGTCAGTGGTCGAGATA-3′ Tm: 61°C 

IRF2-BP2 forward (TS 97) 5′-CCCATGACTCCTACATCCTCTT-3′ Tm: 63°C 

IRF2-BP2 reverse (TS 97) 5′-GAGGGCGGACTGTTGCTATTC-3′ Tm: 65°C 

OLFML3 forward (TS 97) 5′-TCCTTTTGTCATGGTCGGGAC-3′ Tm: 63°C 

OLFML3 reverse (TS 97) 5′-TAAAGCAGCTAGTCGGCGTTC-3′ Tm: 63°C 

MPEG1 forward (TS 96) 5′-CGGCAGCATGGGCTAAATCA-3′ Tm: 62°C 

MPEG1 reverse (TS 96) 5′-TGTCCACATTCCGCAGATTGT-3′ Tm: 61°C 

CDX1 forward (TS 96) 5′-GGTGGCAGCGGTAAGACTC-3′ Tm: 65°C 

CDX1 reverse (TS 96) 5′-TGTAACGGCTGTAATGAAACTCC-3′ Tm: 61°C 

ACTL7A forward (TS 96) 5′-TGGGTCCGCCATACGAGTT-3′ Tm: 62°C 

ACTL7A reverse (TS 96) 5′-GTCCACGACCACTGCTTTG-3′ Tm: 62°C 

MARCH1 forward (TS 96) 5′-CACTGGGACACTGCGCTTT-3′ Tm: 62°C 
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MARCH1 reverse (TS 96) 5′-TCACAGCAGCGTGTATCTGAG-3′ Tm: 63°C 

FOS forward (TS 96) 5′-CCGGGGATAGCCTCTCTTACT-3 Tm: 65°C 

FOS reverse (TS 96) 5′-CCAGGTCCGTGCAGAAGTC-3′ Tm: 65°C 

IKBIP forward (TS 96) 5′-GCTCATCTAAAGCGTCTACAGG-3′ Tm: 63°C 

IKBIP reverse (TS 96) 5′-AAGCGTCGTCAGACTGTTGTT-3′ Tm: 61°C 

CHAF1A forward (TS 96) 5′-AGCCCGTCTGCCGTTTAAG-3′ Tm: 62°C 

CHAF1A reverse (TS 96) 5′-AGAAGTACCCTGATCGTCTGAC-3′ Tm: 63°C 

 

 

Results 

 

The oral cancer cell lines were grown with and without the addition of the chemotherapy agents 

(Figure 1). More specifically, the addition of Cisplatin, 5-FU and Taxol inhibited the growth of 

all oral cancer cell lines - although these effects exhibited extensive variability. For example, the 

cell lines  SCC25 and SCC9 exhibited the most resistance (and the least inhibition to growth) 

against all three chemotherapeutic agents, ranging between -3.3% to -18.6%. Other cell lines, 

such as SCC4 and CAL27, exhibited less resistance and moderate inhibition of cell growth 

ranging between -32.5% to -44.3%. However, one cell line in particular, SCC15, exhibited the 
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least resistance and the most inhibition to growth to all three chemotherapy agents, which ranged 

from -62.7% to -68.3%.  

 

 

 

 

Figure 1. Comparison of baseline (control) growth with experimental treatment among oral 

cancer cell lines. The most chemoresistant (least inhibited) cell lines to all three chemotherapy 

agents (Cisplatin, 5-FU, Taxol) included SCC25 and SCC9 with moderate inhibition observed 

among SCC4 and CAL27 cells. The least chemoresistant (most inhibited) cell line was SCC15. 
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To determine any differences in expression that may modulate the observed differences in 

chemotherapy resistance, RNA was extracted from all cell lines (Table 3). These data 

demonstrated the successful isolation of RNA from all cell lines, which averaged 454.6 +/- 44.6 

ng/uL and ranged from 422 to 492 ng/uL. Purity of RNA, determined by the ratio of absorbance 

at A260 to A280, averaged 1.79 among the cancer cell lines with a range between 1.77 and 1.81. 

Synthesis of cDNA from the isolated RNA was completed, which demonstrated concentrations 

that averaged 1526 +/- 53.6 with a range between 1499 and 1552 ng/uL. Purity of cDNA 

averaged 1.84, which ranged between 1.81 and 1.88. 
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Table 3. RNA and cDNA analysis 

 

To confirm and verify the results of the previous studies, qPCR screening for expression of 

microRNAs was performed for all oral cancer cell lines (Figure 2). Several microRNAs were 

found to be expressed in all oral cancers to varying degrees, including miR-16 (positive control), 

Cell line RNA 

concentration 

RNA purity 

[A260:A280 

ratio] 

cDNA 

concentration 

cDNA purity 

[A260:A280 

ratio] 

SCC4 422 +/- 38 ng/uL 1.81 1552 +/- 57 

ng/uL 

1.84 

SCC9 461 +/- 41 ng/uL 1.77 1499 +/- 61 

ng/uL 

1.81 

SCC15 492 +/- 44 ng/uL 1.79 1523 +/- 52 

ng/uL 

1.82 

SCC25 443 +/- 49 ng/uL 1.80 1531 +- 51 

ng/uL 

1.88 

CAL27 455 +/- 51 ng/uL 1.81 1528 + 47 ng/uL 1.86 

Average  

Range 

454.6 +/- 44.6  

422 - 492 ng/uL 

1.79 

1.77 - 1.81 

1526 +/- 53.6 

1499 - 1552 

ng/uL 

1.84 

1.81 - 1.88 
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miR-21, miR-125, miR-133, miR-365, miR-720 and miR-1246. In addition, several microRNAs 

were not found to be expressed among any of the oral cancer cell lines, which included miR-140, 

miR-152, miR-218, miR-221, and miR-224.  

 

 

 

 

 

Figure 2. Analysis of qPCR screening for oral cancer microRNA expression. All oral cancer cell 

lines expressed  miR-16, miR-21, miR-125, miR-133, miR-365, miR-720 and miR-1246, while 

no oral cancer cell lines expressed miR-140, miR-152, miR-218, miR-221, or miR-224.  
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Further analysis of the qPCR screening results revealed that several microRNAs were found to 

be differentially expressed in some, but not all, oral cancer cell lines (Figure 3). For example, 

miR-124 and miR-210 were expressed only among SCC4 cells, while miR-143 was observed 

only among CAL27 cells. Most microRNAs were expressed in at least two or three oral cancer 

cell lines, including miR-27, miR-135, miR-222, miR-320,  miR-375, miR-424 niR-494, and 

miR-654. However, two microRNAs were differentially expressed among SCC15 cells only, 

which included miR-145 that was only observed among SCC15 cells and miR-155 that was 

observed in all other cell lines except SCC15 cells. 
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Figure 3. Differential expression of microRNAs among oral cancers. Differentially expressed 

microRNAs included miR-27, miR-124, miR-135,  miR-143, miR-210, miR-222, miR-320, miR-

375, miR-424 miR-494, and miR-654. Differentially expressed in SCC15 included miR-145 

(only expressed among SCC15 cells) and miR-155 (expressed  in all other cell lines except 

SCC15). 

 

 

To more closely evaluate the potential relationship between miR-145 expression and 

chemoresistance of SCC15 cells, downstream targets of miR-145 were identified and screened 

(Figure 4). This analysis revealed that in addition to the positive control GAPDH, all oral cancers 

expressed the miR-145 downstream targets MBTD1 and FSCN1. In addition, none of the oral 

cancers expressed CLCN3, FLI-1, MRTF, DAB, SRGAP1, or ABHD17C. However, differential 

expression was observed with TRIM2, ADD3 and ABCE1 among some of the oral cancer cell 
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lines. Moreover, SCC15-specific expression was observed with KCNA4 and SRGAP2 and lack 

of expression among SCC15 cells of FAM135A, which was expressed in all other oral cancer 

cell lines. 

 

 

 

 

 

 

Figure 4. Screening and analysis of  miR-145 downstream targets.  All cell lines expressed 

MBTD1 and FSCN1, while none  expressed CLCN3, FLI-1, MRTFB, DAB, SRGAP1, or 

ABHD17C. Differential expression was observed with TRIM2, ADD3 and ABCE1 with SCC15-

specific expression observed with KCNA4, SRGAP2, and FAM135A. 

 



 

 

33 
 

 

To more closely evaluate the potential relationship between the lack of miR-155 expression and 

chemoresistance of SCC15 cells, downstream targets of miR-155 were also identified and 

screened (Figure 5). This analysis revealed that in addition to the positive control GAPDH, all 

oral cancers (except SCC4) expressed the miR-155 downstream targets OLFML3, TBR1, 

BACH1, ZNF652, IRF2-BP2 and ZIC3. In addition, none of the oral cancers expressed 

MARCH1, IKBIP, ACTL7A, CHAF1A, MPEG1, FOX, CDX1, JARID2 or KDM5B.  No 

differential or SCC15-specific expression was observed among any of the miR-155 downstream 

targets analyzed. 
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Figure 5. Screening and analysis of  miR-155 downstream targets.  All cell lines (except SCC4) 

expressed OLFML3, TBR1, BACH1, ZNF652, IRF2-BP2 and ZIC3, while none of the oral 

cancers expressed MARCH1, IKBIP, ACTL7A, CHAF1A, MPEG1, FOX, CDX1, JARID2 or 

KDM5B.  No differential or SCC15-specific expression was observed among any of the miR-

155 downstream targets analyzed. 

 

Discussion 

The primary objective of this current study was to provide an evaluation of the specific 

microRNA expression profile of the oral cancer cell line SCC15 lacking chemotherapeutic 

resistance, which may provide new potential insights into potential treatments and therapies. 

These results confirmed the expression of miR-145 among this chemosensitive cell line 

previously reported from this group [51]. This supports other research that demonstrates low or 
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lack of miR-145 expression was associated with oral cancer diagnosis and progression, while 

miR-145 expression correlated with improved prognosis and increased survival [32,40].  

 

In fact, previous research has demonstrated that increased levels of miR-145 negatively 

correlated with oral cancer progression and may, in fact, function as an intermediary tumor 

suppressor [56-58]. Some evidence has suggested that miR-145 may function as a primary, direct 

tumor suppressor in other cancers and may function similarly to inhibit c-myc and CDK6 in oral 

cancers [59,60]. These mechanisms appear to support many other studies that have demonstrated 

that lack of miR-145 expression was associated with oral cancer progression both in vitro and in 

vivo [61,62].  

 

The importance of miR-145 suppression becomes apparent as more and more overlapping 

mechanisms to suppress miR-145 activity are discovered, including the activity of circular 

RNAs, such as circ_ZNF236, circ_005063, and circ_000199 [63,64]. This research has 

demonstrated that other circular RNAs such as circ_GOLPH3 and circ_0001461 function to 

inhibit miR-145 as well as to inhibit additional downstream targets, such as KDM2 and NFkB 

[65,66]. Finally, many other circular RNAs, including circ_0058063 and circ_0033144 may 

function in concert with additional axis factors to inhibit miR-145 while upregulating other 

downstream targets, such as SERPINE1 and LASP1 [67,68]. 

 

The results of this current study may be the first to demonstrate the expression of miR-145 

correlated with the lack of expression in the predicted downstream target FAM135A, which was 

expressed in the other chemoresistant cell lines and has been recently demonstrated to function in 
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lipid metabolism within other cancers such as breast and pancreatic cancers [69,70]. Moreover, 

this study also demonstrated the association between miR-145 expression and positive 

expression of the potassium voltage-gated channel protein KCNA4, which was also recently 

identified in a genome-wide differential expression study of renal cell carcinomas [71]. Finally, 

this study found miR-145 expression positively associated with SRGAP2 expression, which is a 

Rho GTPase-activating protein originally identified as regulating neuronal migration and 

differentiation - but more recently has been identified as a potential chemoregulatory modulator 

in hepatocellular carcinomas and colorectal cancers [72-74].  

 

Although this study found no downstream targets of miR-155 (expressed in all of the 

chemoresistant cell lines) that were differentially expressed, it is clear that the lack of miR-155 

expression among the chemosensitive cell line SCC15 is significant as this has been identified by 

other studies as a direct activator of additional downstream targets, such as the anti-apoptosis 

regulator BCL6 and pro-cell cycle regulator Cyclin D2 [75,76]. In addition, many studies have 

confirmed miR-155 expression may directly contribute to chemotherapy resistance to 5-FU and 

Cisplatin among oral cancers through additional pathway modulation, such as TP53INP1 [77-

79]. Thus, continued research to confirm the lack of miR-155 expression among chemosensitive 

oral cancers may also help the understanding and delineation of which factors may be critical for 

designing treatments and therapies that increase effectiveness and efficacy. 
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Conclusions 

 

The results of this study strongly support that differential regulation of key microRNAs, such as 

miR-145 and miR-155 may be functionally related to the chemotoxic sensitivity of the SCC15 

oral cancer cell line. The potential involvement of specific downstream targets of miR-145, 

including FAM135A, KCNA4 and SRGAP2 must be further investigated to determine how and 

whether mechanisms of these cellular pathways may be involved in the observed lack of 

chemotherapy resistance. These data may be important to design future targets, therapies or 

treatments to reduce oral cancer chemotherapy resistance and improve patient treatment 

outcomes. 
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Chapter 3 

Summary and Conclusions: 

 

This study sought to investigate the finding that oral cancers that do not display chemotherapy 

resistance (SCC15) also display differential microRNA expression. For example, miR-145 is 

expressed by SCC15 and no other commercially available oral cancer cell lines. Alternatively, 

miR-155 is not expressed by SCC15 and is expressed by all the other commercially available 

oral cancer cell lines. 

 

The downstream targets of miR-145 and miR-155 were then evaluated and analyzed for this 

study. These data demonstrated that some miR-145 downstream targets were differentially 

expressed in SCC15 cells, while none of the miR-155 downstream targets were. More 

specifically, KCNA4 and SRGAP2 were expressed by only SCC15 cells, whereas FAM135A 

was not expressed by SCC15 cells but was observed among all other oral cancer cell lines. 

 

These data strongly suggest that one or more of these downstream targets may play a critical role 

in mediating or modulating the lack of chemotherapy resistance observed among the SCC15 cell 

line. Further investigation of the function of these downstream targets is warranted. 

 

 

 

Research Question 1. Are the identified microRNA targets for miR-145 dysregulated in oral 
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cancers that display chemotherapy resistance? 

 

Null hypothesis: None of the potential microRNA targets for miR-145 are dysregulated 

Alternative hypothesis: One (or more) potential microRNA targets for miR-145 are 

dysregulated 

 

Based upon these results the null hypothesis can be rejected and the alternative hypothesis can 

be accepted. 

 

Research Question 2. Are the identified microRNA targets for miR-155 dysregulated in oral 

cancers that display chemotherapy resistance? 

 

Null hypothesis: None of the potential microRNA targets for miR-155 are dysregulated 

Alternative hypothesis: One (or more) potential microRNA targets for miR-155 are 

dysregulated 

 

Based upon these results the null hypothesis can be accepted and the alternative hypothesis 

can be rejected. 
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Limitations and Recommendations: 

 

This study relied on commercially available oral cancer cell lines. One recommendation for 

future studies would be the validation of these results using primary tumors or patient explants. 

Another recommendation might be the experimental administration of miR-145 among other oral 

cancer cell lines to determine if this is sufficient to induce chemotherapy sensitivity. 

Alternatively, the blocking of miR-155 expression among other oral cancer cell lines may help to 

determine if this is sufficient to induce chemotherapy sensitivity. It might be necessary to 

complete both objectives concurrently, but such a results would be a significant finding that 

could alter how oral cancers could be treated in the near future.  
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I, Karl Kingsley, holder of copyrighted material entitledDifferential Expression Of MicroRNA 

MiR-145 and MiR-155 Downstream Targets In Oral Cancers Exhibiting Limited Chemotherapy 
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Howard originally submitted to  MDPI Internal Journal of Molecular Sciences, January 
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Name (typed)       Title  

 

 



 

 

53 
 

Curriculum Vitae 

Graduate College 

University of Nevada, Las Vegas 

Conner Belnap 

Email:  conner.belnap@gmail.com 

 

 

Degrees:   

Bachelor of Science – Biology, 2017 

Utah State University, Logan, Utah 

Doctor of Dental Surgery , 2021 

Marquette University, Milwaukee, Wisconsin 

Thesis Title:  

Differential Expression Of MicroRNA MiR-145 and MiR-155 Downstream Targets In Oral 

Cancers Exhibiting Limited Chemotherapy Resistance 

 

 

Thesis Examination Committee:  

Chairperson, Katherine Howard, Ph.D.  

Committee Member, Karl Kingsley, Ph.D. M.P.H. 

Committee Member, Brian Chrzan, D.D.S., Ph.D. 

Graduate Faculty Representative, Erika Marquez, Ph.D. 

Graduate Coordinator, Brian Chrzan, D.D.S., Ph.D. 

 

 

 

 


